# BOUNDARY VALUE PROBLEMS OF THE THEORY OF ANALYTIC FUNCTIONS WITH DISPLACEMENTS 

R. BANTSURI


#### Abstract

Integral representations are constructed for functions holomorphic in a strip. Using these representations an effective solution of Carleman type problem is given for a strip.


## Introduction

In studying some problems of the theory of elasticity and mathematical physics there arise boundary value problems of the theory of analytic functions for a strip $[1,2,3,4]$ when a linear combination of function values is given at a point $t$ of the lower strip boundary and at a point $t+a$ of the upper boundary.

We refer this problem to Carleman type problem for a strip. To solve this problem, in $\S 1$ we construct integral representations which play the same role in its solution as a Cauchy type integral plays in solving a linear conjugation problem. In $\S 2$ a solution is obtained for a Carleman type problem for a strip with continuous coefficients and in $\S 3$ a solution is given for a Carleman type problem for a strip with a coefficient polynomially increasing at infinity. In $\S 4$ a conjugation problem with a displacement is investigated.

When the coefficient is a meromorphic function, a Carleman type homogeneous problem was solved by E. W. Barens in [5] by means of Euler's gamma-functions (provided that the poles and zeros of the coefficient are known). Later various particular cases were studied in [1] and [6].

## § 1. Integral Representations of Holomorphic Functions in a STRIP

Let a function $\Phi(z), z=x+i y$, be holomorphic in a strip $\{a<y<b$, $-\infty<x<\infty\}$, continuous in a closed strip $\{a \leq y<\leq b,-\infty<x<\infty\}$

[^0]and satisfy the condition $\Phi(z) e^{\mu|z|} \rightarrow 0$ for $|z| \rightarrow \infty, \mu \geq 0$. The class of functions satisfying these conditions will be denoted by $A_{a}^{b}(\mu)$.

Let

$$
\begin{equation*}
\Phi_{k}(z) \in A_{0}^{\beta}\left(\mu_{k}\right), \quad \mu_{k}<\frac{\pi \beta\left[3+(-1)^{k}\right]}{2\left(\alpha^{2}+\beta^{2}\right)}, \quad k=1,2, \tag{1.1}
\end{equation*}
$$

where $\alpha$ and $\beta$ are real numbers, $\beta>0$. Then the following formulas are valid:

$$
\begin{align*}
& \Phi_{1}(z)=\frac{1}{2 a} \int_{-\infty}^{+\infty} \frac{\Phi_{1}(t)+\Phi_{1}(t+a)}{\sinh p(t-z)} d t, \quad 0<\mathcal{I}_{m} z<\beta  \tag{1.2}\\
& \Phi_{2}(z)=\frac{\cosh p z}{2 a} \int_{-\infty}^{+\infty} \frac{\Phi_{2}(t)-\Phi_{2}(t+a)}{\cosh p t \sinh p(t-z)} d t+\Phi_{2}\left(\frac{a}{2}\right), 0<\mathcal{I}_{m} z<\beta \tag{1.3}
\end{align*}
$$

where $p=\frac{\pi i}{a}, a=\alpha+i \beta$.
The above formulas are obtained using the theorem on residues.
If $\Phi_{k}(z)$ has a form

$$
\Phi_{k}(z)=\Psi_{k}(z)+\sum_{j=1}^{n} A_{j}\left(z-\frac{a}{2}\right)^{-j}, \quad \Psi_{k}(z) \in A_{0}^{\beta}\left(\mu_{k}\right), \quad k=1,2
$$

then we shall have

$$
\begin{align*}
& \Phi_{1}(z)=\frac{1}{2 a} \int_{-\infty}^{+\infty} \frac{\Phi_{1}(t)+\Phi_{1}(t+a)}{\sinh p(t-z)} d t-\sum_{j=1}^{n} \frac{(-p)^{j} A_{j}}{j!}\left(\frac{1}{\cosh p z}\right)^{(j-1)} \\
& 0<\mathcal{I}_{m} z<\beta  \tag{1.4}\\
& \Phi_{2}(z)=\frac{\cosh p z}{2 a} \int_{-\infty}^{+\infty} \frac{\Phi_{2}(t)-\Phi_{2}(t+a)}{\cosh p t \sinh p(t-z)} d t-\sum_{j=1}^{n} \frac{A_{j}(-p)^{j}}{j!}(\tanh p z)^{(j-1)}+ \\
& \quad+\Phi_{2}\left(\frac{a}{2}\right), 0<\mathcal{I}_{m} z<\beta \tag{1.5}
\end{align*}
$$

Let further $F_{k}, k=1,2$, be functions given on the real axis $L$ and having the form $F_{k}(x)=f_{k}(x) e^{\mu_{k}|x|}, f_{k}( \pm \infty)=0$, where $f_{k}$ are functions satisfying the Hölder condition everywhere on $L, \mu_{k}$ are numbers satisfying inequality (1.1).

Consider the integrals

$$
\begin{align*}
& \Phi_{1}(z)=\frac{1}{2 a} \int_{-\infty}^{+\infty} \frac{F_{1}(t) d t}{\sinh p(t-z)}, \quad 0<\mathcal{I}_{m} z<\beta  \tag{1.6}\\
& \Phi_{2}(z)=\frac{\cosh p z}{2 a} \int_{-\infty}^{+\infty} \frac{F_{2}(t) d t}{\cosh p t \sinh p(t-z)}, \quad 0<\mathcal{I}_{m} z<\beta \tag{1.7}
\end{align*}
$$

It is obvious that the functions are holomorphic in a strip $0<y<\beta$.
Using the Sohotski-Plemelj formulas we can show that the boundary values of $\Phi_{1}$ and $\Phi_{2}$ are expressed by the formulas

$$
\begin{align*}
& \Phi_{1}\left(t_{0}\right)=\frac{F_{1}\left(t_{0}\right)}{2}+\frac{1}{2 a} \int_{-\infty}^{+\infty} \frac{F_{1}(t) d t}{\sinh p\left(t-t_{0}\right)} \\
& \Phi_{1}\left(t_{0}+a\right)=\frac{F_{1}\left(t_{0}\right)}{2}-\frac{1}{2 a} \int_{-\infty}^{+\infty} \frac{F_{1}(t) d t}{\sinh p\left(t-t_{0}\right)}  \tag{1.8}\\
& \Phi_{2}\left(t_{0}\right)=\frac{F_{2}\left(t_{0}\right)}{2}+\frac{\cosh p z}{2 a} \int_{-\infty}^{+\infty} \frac{F_{2}(t) d t}{\cosh p t \sinh p\left(t-t_{0}\right)} \\
& \Phi_{2}\left(t_{0}+a\right)=-\frac{F_{2}\left(t_{0}\right)}{2}+\frac{\cosh p t_{0}}{2 a} \int_{-\infty}^{+\infty} \frac{F_{2}(t) d t}{\cosh p t \sinh p\left(t-t_{0}\right)} \tag{1.9}
\end{align*}
$$

It follows from Plemelj-Privalov's theorem that that the boundary values of $\Phi_{1}$ and $\Phi_{2}$ satisfy the Hölder condition on a finite part of the boundary.

Let us investigate the behavior of these functions in the neighbourhood of a point at infinity. We begin by considering the case with $\mu_{k}=0, k=1,2$.

Rewrite formula (1.6) as

$$
\begin{aligned}
\Phi_{1}(z) & =\frac{1}{2 a} \int_{-\infty}^{+\infty}\left[\frac{1}{\sinh p(t-z)}-\frac{a}{p} \frac{1}{(t-z)(t+a-z)}\right] F_{1}(t) d t+ \\
& +\frac{1}{2 a p} \int_{-\infty}^{+\infty} \frac{F_{1}(t)}{t-z} d t-\frac{1}{2 a p} \int_{-\infty}^{+\infty} \frac{F_{1}(t) d t}{t+a-z}, \quad 0<\mathcal{I}_{m} z<\beta
\end{aligned}
$$

Here the first term is holomorphic in the closed strip $0 \leq \mathcal{I}_{m} z \leq \beta$ and tends to zero at infinity. The second and the third term are analytic in the strip $0<\mathcal{I}_{m} z<\beta$, vanish at infinity and their boundary values satisfy the Hölder condition, including points at infinity [7].

Therefore $\Phi_{1} \in A_{0}^{\beta}(0)$.
Now let us consider the function $\Phi_{2}(z)$. Rewrite formula (1.7) as

$$
\Phi_{2}(z)=\frac{1}{2 a} \int_{-\infty}^{+\infty} \frac{(\cosh p z-\cosh p t) F_{2}(t) d t}{\cosh p t \sinh p(t-z)}+\frac{1}{2 a} \int_{-\infty}^{+\infty} \frac{F_{2}(t) d t}{\sinh p(t-z)}
$$

As we have shown, the second term here belongs to the class $A_{0}^{\beta}(0)$. Denote the first term by $\mathcal{I}$ and rewrite it as

$$
\begin{aligned}
\mathcal{I} & =-\frac{1}{2 a} \int_{-\infty}^{+\infty} \frac{\sinh \frac{p}{2}(t+z) F(t)}{\cosh p t \sinh \frac{p}{2}(t-z)} d t= \\
& =-\frac{1}{2 a} \int_{-\infty}^{+\infty} \frac{\sinh \frac{p}{2}(2 x-\tau+i y) F_{2}(x-\tau)}{\cosh p(x-\tau) \cosh \frac{p}{2}(\tau+i y)} d \tau= \\
& =-\frac{1}{2 a}\left(\int_{-\infty}^{0}+\int_{0}^{+\infty}\right) \frac{\sinh \frac{p}{2}(2 x-\tau+i y) F_{2}(x-\tau)}{\cosh p(x-\tau) \cosh \frac{p}{2}(\tau+i y)} d \tau
\end{aligned}
$$

Let $x>0$. Then the first integral will be bounded in the strip $0 \leq \mathcal{I}_{m} z<$ $\beta$, since $2 x-\tau<2(x-\tau)$.

Rewrite the second integral as

$$
\begin{aligned}
& \frac{1}{2 a} \int_{0}^{+\infty} \frac{\sinh \frac{p}{2}(2 x-\tau+i y) F_{2}(x-\tau)}{\cosh p(x-\tau) \cosh \frac{p}{2}(\tau+i y)} d \tau= \\
= & \left(\frac{1}{2 a} \int_{-\infty}^{0}+\frac{1}{2 a} \int_{0}^{x}\right) \frac{\sinh \frac{p}{2}(x+t+i y) F_{2}(t) d t}{\cosh p t \cosh \frac{p}{2}(x-t+i y)} .
\end{aligned}
$$

The first term is bounded, since $x+t<x-t$. The second term can be written in the form

$$
\begin{gather*}
\frac{1}{2 a} \int_{0}^{x} \frac{\sinh \frac{p}{2}\left([(x-t+i y)+2 t] F_{2}(t) d t\right.}{\cosh p t \cosh \frac{p}{2}(x-t+i y)}=\frac{1}{2 a} \int_{0}^{x} \tanh \frac{p}{2}(x-t+i y) F_{2}(t) d t+ \\
+\frac{1}{2 a} \int_{0}^{x} \tanh p t F_{2}(t) d t \tag{1.10}
\end{gather*}
$$

Since the function $\tanh \frac{p}{2} z=\tanh \frac{|p|^{2}}{2 \pi}(\beta+\alpha i) z$ is holomorphic in the strip $0 \leq \mathcal{I}_{m} z \leq \delta<\beta$ and $\left|\tanh \frac{p}{2} z\right| \rightarrow 1$, the estimate

$$
\begin{equation*}
\left|\Phi_{2}(z)\right|<\left|\Phi_{0}(x)\right|+\varepsilon|x| \tag{1.11}
\end{equation*}
$$

holds for the function $\Phi_{2}$ when $x$ are large in the closed strip $0 \leq \mathcal{I}_{m} z \leq \delta$. $\Phi_{0}(x)$ is bounded for $x>0$ and $\varepsilon<0$ is an arbitrarily small number. A similar estimate is also true for the case $x<0$. In the same manner one can obtain an estimate of the form (1.11) in the strip $0<\delta \leq \mathcal{I}_{m} z \leq \beta$ provided that the function $\Phi_{2}(z)$ is represented as

$$
\Phi_{2}(z)=\frac{1}{2 a} \int_{-\infty}^{+\infty} \frac{\cosh p z+\cosh p t}{\cosh p t \sinh p(t-z)} F_{2}(t) d t-\frac{1}{2 a} \int_{-\infty}^{+\infty} \frac{F_{2}(t) d t}{\sinh p(t-z)}
$$

Now let us consider the case with $\mu_{k}>0, k=1,2$. Rewrite (1.6) as follows:

$$
\Phi_{1}(z)=\frac{1}{2 a} \int_{-\infty}^{+\infty} \frac{\cosh \mu_{1} t \varphi_{1}(t) d t}{\sinh p(t-z)}, \quad \varphi_{1}(t) \equiv f_{1}(t) / \cosh \mu_{1} t
$$

It is obvious that $\varphi_{1}(t)$ satisfies the Hölder condition in the neighbourhood of a point at infinity.

We write the function $\Phi_{1}$ in the form

$$
\begin{gathered}
\Phi_{1}(z)=\frac{1}{2 a} \int_{-\infty}^{+\infty} \frac{\varphi_{1}(t) \cosh \left[\mu_{1}(t-z)+\mu_{1} z\right]}{\sinh p(t-z)} d t= \\
=\frac{\cosh \mu_{1} z}{2 a} \int_{-\infty}^{+\infty} \frac{\cosh \mu_{1}(t-z)}{\sinh p(t-z)} \varphi_{1}(t) d t+\frac{\sinh \mu_{1} z}{2 a} \int_{-\infty}^{+\infty} \frac{\sinh (t-z) \mu_{1}}{\sinh p(t-z)} \varphi_{1}(t) d t .
\end{gathered}
$$

Since $\mu_{1}<\pi \beta /\left(\alpha^{2}+\beta^{2}\right)=\operatorname{Re} p$, we have $\Phi_{1} \in A_{0}^{\beta}\left(\mu_{1}\right)$. Taking this into account and applying the arguments used in investigating the behavior of the function $\Phi_{2}(z)$ in the case with $F_{2}( \pm \infty)=0$, we show that

$$
\Phi_{2} \in A_{0}^{\beta}\left(\beta_{2}\right)
$$

Let us formulate the results obtained above.
Theorem 1. If the functions $F_{k}(x) e^{-\mu_{k}|x|},(k=1,2)$, satisfy the Hölder condition everywhere on $L$ and $F_{k}(x) e^{-\mu_{k}|x|} \rightarrow 0$ for $|x| \rightarrow+\infty$, where $\mu_{k}$ are some numbers satisfying inequality (1.1), then $\Phi_{k} \in A_{0}^{\beta}\left(\mu_{k}\right)$ for $\mu_{1} \geq 0$, $\mu_{2}>0, \quad \exp \Phi_{2} \in A_{0}^{\beta}(\varepsilon)$ for $\mu_{2}=0$, where $\varepsilon$ is an arbitrarily small positive number.

Formulas (1.8) and (1.9) imply

$$
\begin{array}{ll}
\Phi_{1}(t)+\Phi_{1}(t+a)=F_{1}(t), & t \in(-\infty, \infty) \\
\Phi_{2}(t)-\Phi_{2}(t+a)=F_{2}(t), & t \in(-\infty, \infty) \tag{1.13}
\end{array}
$$

i.e., $\Phi_{1}(z)$ and $\Phi_{2}(z)$ defined by (1.6) and (1.7) are solutions of boundary value problems (1.12) and (1.13) of the class $A_{0}^{\beta}\left(\mu_{k}\right), k=1,2$.

Clearly, if the function $\Phi_{2}(z)$ is a solution of problem (1.13), then the function $W(z)=c+\Phi_{2}(z)$ will also be a solution. We shall show that problems (1.12) and (1.13) do not have other solutions of the class $A_{0}^{\beta}\left(\mu_{k}\right)$, $k=1,2$. For this we should prove

Theorem 2. If $F_{2}(t) \in L(-\infty, \infty)$, then for a solution of problem (1.13) of the class $A_{0}^{\beta}(0)$ to exist it is necessary and sufficient that the condition

$$
\int_{-\infty}^{\infty} F_{2}(t) d t=0
$$

be fulfilled.
Proof. We can rewrite formula (1.7) as

$$
\begin{equation*}
\Phi_{2}(z)=\frac{1}{2 a} \int_{-\infty}^{\infty} \operatorname{coth} p(t-z) F_{2}(t) d t-\frac{1}{2 a} \int_{-\infty}^{\infty} \tanh p t F_{2}(t) d t \tag{1.14}
\end{equation*}
$$

It is obvious that the limits of $\Phi_{2}(z)$ exist for $x \rightarrow \pm \infty, 0 \leq y \leq \beta$, and

$$
\begin{equation*}
C+\Phi_{2}( \pm \infty+i y)= \pm \frac{1}{2 a} \int_{-\infty}^{\infty} F_{2}(t) d t-\frac{1}{2 a} \int_{-\infty}^{\infty} \tanh p t F_{2}(t) d t+C \tag{1.15}
\end{equation*}
$$

Taking

$$
C=\frac{1}{2 a} \int_{-\infty}^{\infty} F_{2}(t) \tanh p t d t
$$

and setting

$$
\begin{equation*}
\int_{-\infty}^{\infty} F_{2}(t) d t=0 \tag{1.16}
\end{equation*}
$$

we find by virtue of (1.15) and (1.16) that the solution of problem (1.13) has the form

$$
\begin{equation*}
W(z)=\frac{1}{2 a} \int_{-\infty}^{\infty} \operatorname{coth} p(t-z) F_{2}(t) d t \tag{1.17}
\end{equation*}
$$

and belongs to the class $A_{0}^{\beta}(0)$.
The necessity is proved by integrating equality (1.13) and applying the Cauchy theorem.

It remains to prove
Theorem 3. If the function $\varphi \in A_{0}^{\beta}\left(\frac{\pi \beta(3+\lambda)}{2\left(\alpha^{2}+\beta^{2}\right)}\right), \lambda= \pm 1$, and satisfies the condition $\varphi(z)=\lambda \varphi(x+a)$, then it is constant and, for $\lambda=-1$, equal to zero.

Proof. Let $\lambda=-1$ and

$$
\begin{equation*}
\Psi(z)=\frac{\varphi(z)}{\cosh p z}+\varphi\left(\frac{a}{2}\right) \frac{a}{\pi\left(z-\frac{a}{2}\right)} \tag{1.18}
\end{equation*}
$$

The function $\Psi(z) \in A_{0}^{\beta}(0)$ and satisfies the condition

$$
\begin{equation*}
\Psi(x)-\Psi(x+a)=\frac{2 a^{2}}{\pi} \varphi\left(\frac{a}{2}\right) \frac{1}{x^{2}-a^{2} / 4} \tag{1.19}
\end{equation*}
$$

Since $\Psi(z)$ is a solution of problem (1.19) of the class $A_{0}^{\beta}(0)$, the condition

$$
\frac{2 a^{2}}{\pi} \varphi\left(\frac{a}{2}\right) \int_{-\infty}^{\infty} \frac{d x}{x^{2}-a^{2} / 4}=4 a i \varphi\left(\frac{a}{2}\right)=0
$$

is fulfilled on account of Theorem 2. Thus $\Psi(z)$ is a solution of the homogeneous problem

$$
\Psi(x)-\Psi(x+a)=0, \quad-\infty<x<+\infty
$$

If we introduce the function

$$
\Psi_{1}(z)=\frac{\Psi(z)-\Psi\left(\frac{a}{2}\right)}{\cosh p z}
$$

then we shall have

$$
\Psi_{1}(x)+\Psi_{1}(x+a)=0, \quad-\infty<x<+\infty
$$

By applying the Fourier transform to the latter equality we obtain

$$
\widehat{\Psi}_{1}\left(1+e^{i \alpha t}\right) \equiv 0
$$

Hence we have $\widehat{\Psi}_{1}(t) \equiv 0, \Psi_{1}(z)=0$. Therefore by (1.18) $\varphi(z)=0$. We have thereby proved the theorem for $\lambda=-1$.

Let $\lambda=1$. Then

$$
\varphi(x)-\varphi(x+a)=0
$$

The function

$$
\begin{equation*}
\Psi(z)=\varphi(z)-\varphi\left(\frac{3}{4} a\right) \tag{1.20}
\end{equation*}
$$

also satisfies this condition and $\varphi\left(\frac{3}{4} a\right)=0$.

We introduce the notation

$$
\Psi_{0}(z)=\frac{\Psi(z)}{\cosh 2 p z}+\frac{a}{2 \pi} \frac{\Psi\left(\frac{a}{4}\right)}{z-\frac{a}{4}}
$$

Now, repeating the above arguments, we find that $\Psi\left(\frac{a}{4}\right)=0$, i. e., $\Psi_{0}(z) \in$ $A_{0}^{\beta}(0)$ and satisfies the condition

$$
\Psi_{0}(x)-\Psi_{0}(x+a)=0
$$

But, as shown above, in that case $\Psi_{0}(z)=\Psi(z)=0$ and therefore equality (1.20) implies

$$
\varphi(z)=\varphi\left(\frac{3}{4} a\right)
$$

which proves the theorem.

## § 2. A Carleman Type Problem with a Continuous Coefficient FOR A STRIP

Let us consider the following problem: find a function $\Phi$ of the class $A_{0}^{\beta}(\mu)$ by the boundary condition

$$
\begin{equation*}
\Phi(x)=\lambda G(x) \Phi(x+a)+F(x), \quad-\infty<x<+\infty \tag{2.1}
\end{equation*}
$$

where $a=\alpha+i \beta, \beta>0, \mu<\pi \beta(3+\lambda) / 2\left(\alpha^{2}+\beta^{2}\right), F$ and $G$ are the given functions satisfying the Hölder condition including a point at infinity, $G \neq 0$ and $F( \pm \infty)=0, G(-\infty)=G(\infty)=1$, the constant $\lambda$ takes the value 1 or -1 .

The integer number $\varkappa=\frac{1}{2 \pi}[\arg G(x)]_{-\infty}^{+\infty}$, where $[\arg G(x)]_{-\infty}^{+\infty}$ denotes an increment of the function $\arg G(x)$ when $x$ runs over the entire real axis from $-\infty$ to $\infty$, is called the index of the function $G(x)$. The index of $G_{0}(x)=G(x)[(x-a / 2) /(x+a / 2)]^{\varkappa}$ is equal to zero and therefore any branch of the function $\ln G_{0}(x)$ is continuous all over the real axis. We choose a branch that vanishes at infinity. By formulas (1.7) and (1.9) $G(x)$ can be represented as

$$
\begin{equation*}
G(x)=\frac{X(x)}{X(x+a)} \tag{2.2}
\end{equation*}
$$

where

$$
\begin{align*}
& X(z)=\left(z-\frac{a}{2}\right)^{\varkappa} X_{0}(z) \\
& X_{0}(z)=\exp \left(\frac{\cosh p z}{2 a} \int_{-\infty}^{+\infty} \frac{\ln G_{0}(t) d t}{\cosh p t \sinh p(t-z)}\right) \tag{2.3}
\end{align*}
$$

By virtue of Theorem $1 X_{0}(z)$ and $\left[X_{0}(z)\right]^{-1} \in A_{0}^{\beta}(\varepsilon)$, where $\varepsilon$ is an arbitrarily small positive number.

Using (2.2), we rewrite condition (2.1) as

$$
\begin{equation*}
\frac{\Phi(x)}{X(x)}=\lambda \frac{\Phi(x+a)}{X(x+a)}+\frac{F(x)}{X(x)}, \quad-\infty<x<\infty \tag{2.4}
\end{equation*}
$$

The function $\Phi(z) / X(z)$ is holomorphic in the strip $0<\mathcal{I}_{m} z<\beta$ except perhaps of the point $z=\frac{a}{2}$, at which it may have a pole of order $\varkappa$, for $\varkappa>0$, and satisfies the condition

$$
(\Phi(z) / X(z)) e^{-\mu|z|} \rightarrow 0 \quad \text { for } \quad|x| \rightarrow \infty \quad \text { and } \quad 0 \leq y \leq \beta
$$

where $0<\mu<\pi \beta(3+\lambda) / 2\left(\alpha^{2}+\beta^{2}\right)$. By (1.4) and (1.5) condition (2.4) implies

$$
\begin{align*}
\Phi(z)= & \frac{X(z)}{2 a} \int_{-\infty}^{+\infty} \frac{F(t) d t}{X(t) \sinh p(t-z)}+X(z) \varphi_{1}(z) \text { for } \lambda=-1  \tag{2.5}\\
\Phi(z)= & \frac{X(z) \cosh p z}{2 a} \int_{-\infty}^{+\infty} \frac{F(t) d t}{X(t) \cosh p t \sinh p(t-z)}+ \\
& +X(z) \varphi_{2}(z) \text { for } \lambda=1 \tag{2.6}
\end{align*}
$$

where

$$
\begin{align*}
& \varphi_{1}(z)= \begin{cases}0, & \varkappa \leq 0 \\
\sum_{k=1}^{\varkappa-1} C_{k}(1 / \cosh p z)^{(k)}, & \varkappa>0\end{cases}  \tag{2.7}\\
& \varphi_{2}(z)= \begin{cases}0, & \varkappa<0 \\
\sum_{k=1}^{\varkappa} C_{k}(\tanh p z)^{(k)}, & \varkappa \geq 0\end{cases} \tag{2.8}
\end{align*}
$$

$C_{k}$ are arbitrary constants.
Let us investigate the behavior of the function

$$
\begin{equation*}
\varphi(z)=\frac{X(z)}{2 a} \int_{-\infty}^{+\infty} \frac{F(t) d t}{X(t) \sinh p(t-z)}, \quad 0 \leq \mathcal{I}_{m} z \leq \beta \tag{2.9}
\end{equation*}
$$

in the neighbourhood of a point at infinity. The function $X(z)$ can be represented as

$$
X(z)=\left(z-\frac{a}{2}\right)^{\varkappa} \exp \Gamma_{1}(z) \cdot \exp \Gamma_{2}(z)
$$

where

$$
\begin{aligned}
& \Gamma_{1}(z)=-\frac{1}{2 a} \int_{-\infty}^{\infty} \frac{\sinh \frac{p}{2}(z+t) \ln G_{0}(t)}{\cosh p t \cosh \frac{p}{2}(t-z)} d t \\
& \Gamma_{2}(z)=\frac{1}{2 a} \int_{-\infty}^{\infty} \frac{\ln G_{0}(t) d t}{\sinh p(t-z)}
\end{aligned}
$$

As we have shown, $\Gamma_{2} \in A_{0}^{\beta}(0)$, i. e., $\left(\exp \Gamma_{2}(z)-1\right) \in A_{0}^{\beta}(0)$.
By differentiating the function $\Gamma_{1}(z)$ we obtain

$$
\Gamma_{1}^{\prime}(z)=\frac{1}{2 a} \int_{-\infty}^{\infty} \frac{\ln G_{0}(t) d t}{\cosh \frac{p}{2}(t-z)}, \quad 0 \leq \mathcal{I}_{m} z \leq \beta_{0}<\beta
$$

It is easy to verify that $\Gamma_{1}^{\prime}(z) \rightarrow 0$ for $|z| \rightarrow \infty$ and therefore for any there is a number $N$ such that

$$
\begin{equation*}
\left|\Gamma_{1}^{\prime}(x+i y)\right|<\varepsilon \quad \text { for } \quad|x|>N, \quad 0 \leq y \leq \beta_{0}<\beta \tag{2.10}
\end{equation*}
$$

We represent $\varphi(z)$ as

$$
\begin{gathered}
\varphi(z)=\frac{X(z)}{2 a} \int_{-N}^{N} \frac{F(t)}{X(t)} \cdot \frac{d t}{\sinh p(t-z)}+ \\
+\frac{X(z)}{2 a}\left(\int_{-\infty}^{N}+\int_{N}^{\infty}\right) \frac{F(t) d t}{X(t) \sinh p(t-z)}, \quad 0 \leq \mathcal{I}_{m} z \leq \beta_{0} .
\end{gathered}
$$

It is easy to show that the first and the second term vanish for $x \rightarrow+\infty$. We shall show that the third term also tends to zero for $x \rightarrow+\infty, 0 \leq y \leq$ $\beta_{0}<\beta$. This term will be denoted by $\mathcal{I}$.

$$
\mathcal{I}=\int_{N}^{\infty} \frac{\exp \left(\Gamma_{2}(z)-\Gamma_{2}(t)\right) \exp \left(\Gamma_{1}(z)-\Gamma_{1}(t)\right)\left(z-\frac{a}{2}\right)^{\varkappa} F(t)}{\left(t-\frac{a}{2}\right)^{\varkappa} \sinh p(t-z)} d t
$$

Assume that $\varkappa \geq 0$ and represent the function $\left(z-\frac{a}{2}\right)^{\varkappa}$ as

$$
\begin{equation*}
\left(z-\frac{a}{2}\right)^{\varkappa}=\varkappa!\sum_{n=1}^{\varkappa} \frac{\left(t-\frac{a}{2}\right)^{\varkappa-n}(z-t)^{n}}{(\varkappa-n)!n!}+\left(t-\frac{a}{2}\right)^{\varkappa} \tag{2.11}
\end{equation*}
$$

Inequality (2.10) implies that

$$
\left|\Gamma_{1}(z)-\Gamma_{1}(t)\right| \leq\left|\int_{t}^{z} \Gamma^{\prime}(s) d s\right| \leq \varepsilon|t-z|, \quad t<N, \quad \varkappa>N, \quad 0 \leq y \leq \beta_{0}
$$

i.e., $\operatorname{Re}\left(\Gamma_{1}(t)-\Gamma_{1}(z)\right)-\varepsilon|t-z|<0$. Thus we have

$$
\left|\exp \left[\Gamma_{1}(t)-\Gamma_{1}(z)\right)-\varepsilon\right| t-z|-1|<A|t-z|, \quad t>N, \quad x>N
$$

The latter inequality and formula (2.11) imply

$$
\begin{gathered}
|\mathcal{I}| \leq c \sum_{n=1}^{\varkappa} \int_{N}^{\infty} \frac{e^{\varepsilon|x-t|}|x-t+i y|^{n}|F(t)| d t}{(\varkappa-n)!n!|\sinh p(x-t+i y)|\left|t-\frac{a}{2}\right|^{n}}+ \\
+c_{1} \int_{N}^{\infty} \frac{e^{\varepsilon|x-t|}\left[A|x-t|+\left(1-e^{-\varepsilon|x-t|}\right)\right]|F(t)| d t}{|\sinh p(x-t+i y)|}+\left|\int_{N}^{\infty} \frac{F(t) d t}{2|a| \sinh p(t-z)}\right|
\end{gathered}
$$

where, as shown above, the third term is the modulus of a function of the class $A_{0}^{\beta}(0)$. Since $\varepsilon$ is an arbitrarily small number and $F(\infty)=F(-\infty)=$ 0 , the first two terms are the convolutions of functions summable with functions tending to zero for $\rightarrow \infty$. Therefore they tend to zero for $x \rightarrow \infty$, $0 \leq y \leq \beta_{0}<\beta$.

It can be shown in a similar manner that $\varphi(z) \rightarrow 0$ for $x \rightarrow-\infty, 0 \leq y \leq$ $\beta_{0}$, as well. It is not difficult to prove that the function $\varphi(z)$ tends to zero for $|x| \rightarrow \infty, \beta_{0} \leq \mathcal{I}_{m} z \leq \beta$. When $\varkappa<0$, one can use the same reasoning to show that $\varphi(z) \rightarrow 0$ for $|x| \rightarrow \infty, 0 \leq y \leq \beta$, provided that $z$ and $t$ are exchanged in equality (2.11). Thus the function $\Phi$ represented by (2.5) tends to zero for $|x| \rightarrow+\infty, 0 \leq y \leq \beta$. Quite similarly, it is proved that for the function $\Phi$ defined by (2.6) we have $\Phi(z) e^{-\varepsilon|z|} \rightarrow 0$ for $|x| \rightarrow \infty$, $0 \leq y \leq \beta$.

For $\varkappa<0$ the function $X(z)$ has a pole of order $-\varkappa$ at the point $z=\frac{a}{2}$. In that case the solution exists only if the following conditions are fulfilled:

$$
\begin{align*}
& \int_{-\infty}^{\infty} \frac{F(t)}{X(t)}\left(\frac{1}{\cosh p t}\right)^{(k)} d t=0, \quad k=0, \ldots,(-\varkappa-1), \text { for } \lambda=-1  \tag{2.12}\\
& \int_{-\infty}^{\infty} \frac{F(t)}{X(t)}\left(\frac{e^{p t}}{\cosh p t}\right)^{(k)} d t=0, \quad k=1, \ldots,(-\varkappa-1), \text { for } \lambda=1 \tag{2.13}
\end{align*}
$$

The results obtained can be formulated as
Theorem 4. For $\lambda=-1$ and $\varkappa \geq 0$ problem (2.1) is solvable in the class $A_{0}^{\beta}(0)$ and a general solution is given by (2.5) with formula (2.7) taken
into account. If $\varkappa<0$, then the problem is solvable if condition (2.12) is fulfilled. In these conditions problem (2.1) has a unique solution in the class $A_{0}^{\beta}(0)$ which is given by formula (2.5) for $\varphi_{1}=0$.

Theorem 5. if $\lambda=1$ and $\varkappa \geq-1$, the problem (2.1) is solvable in the class $A_{0}^{\beta}(\varepsilon)$ and the solution is given by (2.6) with (2.8) taken into account; for $\varkappa<-1$ the solution exists provided that condition (2.13) is fulfilled. If these conditions are fulfilled, then problem (2.1) has a unique solution in the class $A_{0}^{\beta}(\varepsilon)$. This solution is given by (2.6), where $\varphi_{2}=0$.

## § 3. A Carleman Type Problem with Unbounded Coefficients FOR A STRIP

Problems of the elasticity theory can often be reduced to a Carleman type problem with coefficients polynomially increasing or decreasing at infinity. We shall consider such a case below.

We write the boundary condition of the problem in the form

$$
\begin{equation*}
\Phi(x)=P_{n}(x) G(x) \Phi(x+i \beta)+F(x), \quad-\infty<x<\infty \tag{3.1}
\end{equation*}
$$

where $G(x)$ and $F(x)$ satisfy the conditions discussed in $\S 2$, and $P_{n}(x)$ is a polynomial without real zeros. Condition (3.1) can be rewritten as

$$
\begin{equation*}
\Phi(x)=q\left[x^{2}+4 \beta^{2}\right]^{\left[\frac{n}{2}\right]}(2 \beta-i x)^{\delta(n)} G_{0}(x) \Phi(x+i \beta)+F(x), \tag{3.2}
\end{equation*}
$$

where $\delta(n)=0$ for even $n$ and $\delta(n)=1$ for odd $n ; q$ is a complex number; $G_{0}(x)$ is a Hölder class function including a point at infinity $G_{0}(-\infty)=$ $G_{0}(\infty)=1$.

As shown above, the function $G_{0}(x)$ can be represented as

$$
\begin{equation*}
G_{0}(x)=\frac{X_{0}(x)}{X_{0}(x+i \beta)}, \quad-\infty<x<\infty \tag{3.3}
\end{equation*}
$$

where

$$
\begin{equation*}
X_{0}(z)=\left(z-\frac{i \beta}{2}\right)^{\varkappa} \exp \left(\frac{\cosh p z}{2 i \beta} \int_{-\infty}^{\infty} \frac{\ln \left[G_{0}(t)\left(\frac{t+i \beta / 2}{t-i \beta / 2}\right)^{\varkappa}\right]}{\cosh p t \sinh p(t-z)} d t\right) . \tag{3.4}
\end{equation*}
$$

Write the function $\left[x^{2}+4 \beta^{2}\right]^{\left[\frac{n}{2}\right]}(2 \beta-i x)^{\delta(n)}$ in form (3.3). We shall find solutions of the problems

$$
\begin{array}{ll}
X_{1}(x)=(2 \beta+i x) X_{1}(x+i \beta), & -\infty<x<+\infty \\
X_{2}(x+i \beta)=(2 \beta-i x) X_{2}(x), & -\infty<x<+\infty \tag{3.6}
\end{array}
$$

Applying the Fourier transformation to conditions (3.5) and (3.6), we obtain the differential equations

$$
\begin{aligned}
& \left(f_{1}(t) e^{\beta t}\right)^{\prime}=\left(1-2 \beta e^{\beta t}\right) f_{1}(t), \quad-\infty<t<+\infty \\
& f_{2}^{\prime}(t)=\left(2 \beta-e^{-\beta t}\right) f_{2}(t), \quad-\infty<t<+\infty
\end{aligned}
$$

where $f_{1}(t)$ and $f_{2}(t)$ denote the Fourier transforms of the functions $X_{1}(x)$ and $X_{2}(x)$.

By performing the reverse Fourier transformation of the solutions of these equations we obtain the solutions of problems (3.5) and (3.6):

$$
\begin{align*}
& X_{1}(z)=\int_{-\infty}^{+\infty} \exp \left(-\frac{1}{\beta} e^{\beta t}+3 \beta z+i t z\right) d t, \quad 0<\mathcal{I}_{m} z<\beta  \tag{3.7}\\
& X_{2}(z)=\int_{-\infty}^{+\infty} \exp \left(-\frac{1}{\beta} e^{-\beta t}-2 \beta t+i t z\right) d t, \quad 0<\mathcal{I}_{m} z<\beta \tag{3.8}
\end{align*}
$$

On substituting $e^{\beta t}=\beta \tau$, we have

$$
\begin{align*}
& X_{1}(z)=\beta^{2} \beta^{\frac{i z}{\beta}} \int_{0}^{\infty} e^{-\tau} \tau^{2+\frac{i z}{\beta}} d \tau=\beta^{2} \beta^{\frac{i z}{\beta}} \Gamma\left(3+\frac{i z}{\beta}\right),  \tag{3.9}\\
& X_{2}(z)=\beta^{-\frac{i z}{\beta}} \int_{0}^{\infty} e^{-\tau} \tau^{1-\frac{i z}{\beta}} d \tau=\beta \beta^{-\frac{i z}{\beta}} \Gamma\left(2-\frac{i z}{\beta}\right)
\end{align*}
$$

We introduce the notation

$$
\begin{equation*}
X_{3}(z)=\left[\frac{X_{1}(z)}{X_{2}(z)}\right]^{\left[\frac{n}{2}\right]}\left(X_{2}(z)\right)^{-\delta(n)}, \quad 0<\mathcal{I}_{m} z<\beta \tag{3.10}
\end{equation*}
$$

Using Stirling's formulas [11], we obtain from (3.9) and (3.10) the following representations of the functions $X_{1}(z)$ and $X_{2}(z)$ in the neighbourhood of a point at infinity:

$$
\begin{array}{ll}
\left|X_{1}(z)\right|=C_{1}(y) e^{-\frac{\pi}{2 \beta}|x|}|x|^{\frac{5}{2}-\frac{y}{\beta}}\left(1+O\left(\frac{1}{x}\right)\right), & 0 \leq y \leq \beta \\
\left|X_{2}(z)\right|=C_{2}(y) e^{-\frac{\pi}{2 \beta}|x|}|x|^{\frac{3}{2}+\frac{y}{\beta}}\left(1+O\left(\frac{1}{x}\right)\right), & 0 \leq y \leq \beta
\end{array}
$$

where $C_{1}(y), C_{2}(y)$ are the bounded functions that do not vanish.
By virtue of these formulas, for sufficiently large values of $|z|$ (3.10) implies

$$
\begin{equation*}
\left|X_{3}(z)\right|=C(y)\left(|x|^{\frac{\beta-2 y}{\beta}}\right)^{\left[\frac{n}{2}\right]}\left(e^{-\frac{\pi}{2 \beta}|x|}|x|^{\frac{3}{2}+\frac{y}{\beta}}\right)^{-\delta(n)}\left(1+O\left(\frac{1}{x}\right)\right) \tag{3.11}
\end{equation*}
$$

Using equalities (3.3) and (3.11), we rewrite condition (3.2) as

$$
\begin{equation*}
\frac{\Phi(x)}{X(x)}-q \frac{\Phi(x+i \beta)}{X(x+i \beta)}=\frac{F(x)}{X(x)}, \quad-\infty<x<\infty \tag{3.12}
\end{equation*}
$$

where $X(z)=X_{0}(z) X_{3}(z)$.
The function $\Phi(z) / X(z)$ is holomorphic in the strip $0<\mathcal{I}_{m} z<\beta$ except perhaps for the point $z=i \beta / 2$, where for $\varkappa>0$ it may have a pole of order not higher than $\varkappa$, and satisfies the condition

$$
(\Phi(z) / X(z)) e^{-\mu|z|} \rightarrow 0 \quad \text { for } \quad|z| \rightarrow \infty, \quad \mu<\frac{\pi}{2 \beta}+\varepsilon
$$

Write $q$ in the form

$$
q=\frac{X_{4}(x)}{X_{4}(x+i \beta)}, \quad X_{4}(z)=\exp \left(\frac{i z}{\beta} \ln q\right)
$$

From (2.7) and (2.5) it follows that if $q$ is not a real positive number, then a general solution of problem (3.1) is given by the formula

$$
\begin{equation*}
\Phi(z)=\frac{X(z)}{2 i \beta} \int_{-\infty}^{\infty} \frac{\exp \left(\frac{\pi-\delta+i \gamma}{\beta}(z-t)\right)}{X(t) \sinh p(t-z)} F(t) d t+X(z) \varphi(z) \tag{3.13}
\end{equation*}
$$

where $\gamma=\ln |q|, \delta=\arg q, 0<\delta<2 \pi$.

$$
\begin{equation*}
\varphi(z)=\sum_{j=0}^{\varkappa-1} C_{j} \frac{d^{j}}{d z^{j}}\left(\exp \frac{(\pi-\delta+i \gamma) z}{\beta} / \cosh p z\right) \tag{3.14}
\end{equation*}
$$

For $\varkappa \geq 0$ the solution of problem (3.1) is given by formulas (3.13) and (3.14). Note that for $\varkappa \leq 0$ it is assumed that $\varphi(z) \equiv 0$. For $\varkappa<0$ the function $X(z)$ has, at the point $z=\frac{i \beta}{2}$, a pole of order $-\varkappa$ and therefore the bounded solution exists in the finite part of the strip only if the conditions $\varphi(z)=0$;

$$
\begin{gather*}
\int_{-\infty}^{\infty} F(t) \Psi_{j}(t)=0, \quad \Psi_{j}(t)=\frac{d^{j}}{d t^{j}}\left(\frac{\exp \left(\frac{\delta-\pi-i j}{\beta}\right) t}{\cosh p t}\right), \\
j=0, \ldots,(-1-\varkappa) \tag{3.15}
\end{gather*}
$$

are fulfilled. Thus, like in $\S 2$, one can easily prove that in the case of even $n$ problem (3.1) has a solution $\Phi(z) \in A_{0}^{\beta}(0)$ for any $\delta \in(0,2 \pi)$, while in the case of odd $n$ it has a solution $\Phi(z) \in A_{0}^{\beta}\left(\frac{\pi-2 \delta}{2 \beta}+\varepsilon\right)$ for $\delta \in\left(0, \frac{\pi}{2}\right]$; $\Phi(z) \in A_{0}^{\beta}(0)$ for $\delta \in\left(\frac{\pi}{2}, \frac{3}{2} \pi\right) ; \Phi(z) \in A_{0}^{\beta}\left(\frac{2 \delta-3 \pi}{2 \beta}+\varepsilon\right)$ for $\delta \in\left[\frac{3}{2} \pi, 2 \pi\right)$, where $\varepsilon>0$ is an arbitrarily small number.

When $q>0$, by substituting

$$
\Phi(z)=X_{4}(x) \Psi(t)
$$

condition (3.12) can be reduced to the condition

$$
\begin{equation*}
\frac{\Psi(x)}{X(x)}-\frac{\Psi(x+i \beta)}{X(x+i \beta)}=\frac{F(x) X_{4}(x)}{X(x)}, \quad-\infty<x<\infty \tag{3.16}
\end{equation*}
$$

By virtue of formula (3.15) a general solution of problem (3.1) has the form

$$
\begin{equation*}
\Phi(z)=\frac{X^{*}(z)}{2 i \beta} \int_{-\infty}^{\infty} \frac{F(t) d t}{X^{*}(t) \sinh p(t-z)}+X^{*}(z) \varphi_{2}(z) \tag{3.17}
\end{equation*}
$$

where $X^{*}(z)=X(z) \cosh p z X_{4}(z)$,

$$
\varphi_{2}(z)= \begin{cases}\sum_{j=0}^{\varkappa-1} C_{j} \frac{d^{j}}{d z^{j}}(\tanh p z)+C x, & \text { for } \varkappa>0  \tag{3.18}\\ C, & \text { for } \varkappa=0 \\ 0, & \text { for } \varkappa \leq-1\end{cases}
$$

$C, C_{j}, j=0, \ldots,(\varkappa-1)$, are arbitrary constants. If $\varkappa<-1$, then the solution exists only provided that the condition

$$
\int_{-\infty}^{\infty} \frac{F(t)}{X^{*}(z)} \cdot \frac{d^{j}}{d t^{j}}\left(\frac{1}{\cosh p t}\right) d t=0, \quad j=0, \ldots,(-\varkappa-2)
$$

is fulfilled.
One can prove that $\Phi(z) \in A_{0}^{\beta}(\varepsilon)$ for an even $n$ and $\Phi(z) \in A_{0}^{\beta}(\pi /(2 \beta)+\varepsilon)$ for odd $n$; here $\varepsilon$ is a small positive integer.

Remark 1. Formulas (3.8) and (3.9) can be obtained by applying formulas (3.3) and (3.4).

Indeed, if in formula (3.4) $G_{0}(t)$ is replaced by the function $(2 \beta-i x)^{-1}$, then we shall have

$$
\begin{equation*}
X_{2}(z)=\exp \left(\frac{\cosh p z}{2 i \beta} \int_{-\infty}^{\infty} \frac{\ln i-\ln (x+2 i \beta)}{\cosh p x \sinh p(x-z)} d x\right) \tag{3.19}
\end{equation*}
$$

By the function $\ln z$ we understand $\ln z=\ln |z|+\arg z,-\pi<\arg z<\pi$. After rewriting $\ln (x+2 i \beta)$ as
$\ln (x+2 i \beta)=\sum_{k=0}^{n}[\ln (x+i \beta(k+2))-\ln (x+i \beta(k+3))]+\ln (x+i \beta(3+n))$
and substituting this expression into (3.19), by virtue of (1.3) we obtain

$$
\begin{aligned}
\omega(z) & =\frac{\cosh p z}{2 i \beta} \int_{-\infty}^{\infty} \frac{\ln i-\ln (x+2 i \beta)}{\cosh p x \sinh p(x-z)} d x= \\
& =\sum_{k=0}^{n}\left[\ln (x+i \beta(k+2))-\ln \left(\frac{5 i \beta}{2}+k i \beta\right)\right]+ \\
& +\frac{\cosh p z}{2 i \beta} \int_{-\infty}^{\infty} \frac{\ln (1+n) \beta)}{\cosh p t \sinh p(t-z)} d t+O\left(\frac{1}{n}\right) .
\end{aligned}
$$

If we perform some simple transformations and calculate the latter integral by the formula

$$
\frac{\cosh p t}{2 i \beta} \int_{-\infty}^{\infty} \frac{\ln [(n+1) \beta] d x}{\cosh p x \sinh p(x-z)}=\ln [(1+n) \beta]\left(\frac{i z}{\beta}+\frac{1}{2}\right)
$$

then we shall have

$$
\begin{aligned}
\omega(z)= & \sum_{k=1}^{n} \ln \left[\left(1+\frac{\zeta}{k}\right) e^{-\frac{\varsigma}{k}}\right]-\zeta\left(\ln (n+1)-\sum_{k=1}^{n} \frac{1}{k}\right)-\ln \beta^{\zeta}- \\
& -\frac{5}{2}\left(\ln (n+1)-\sum_{k=1}^{n} \frac{1}{k}\right)+\ln \zeta+C_{n}, \quad \zeta=\frac{z+2 i \beta}{i \beta}
\end{aligned}
$$

Passing to the limit as $n \rightarrow+\infty$, by virtue of (3.19) we obtain

$$
X_{2}(z)=A \zeta \prod_{1}^{\infty}\left(1+\frac{\zeta}{k}\right) e^{-\frac{\zeta}{k}} e^{-c \zeta} \beta^{\zeta}=A \Gamma\left(2-\frac{i z}{\beta}\right) \beta^{2-\frac{i z}{\beta}}
$$

## § 4. On a Conjugation Boundary Value Problem with Displacements

As an application of the results obtained in $\S 2$ we shall consider one kind of a conjugation problem with displacements, when the boundary is a real axis. Denote by $S^{+}$and $S^{-}$the upper and the lower half-planes, respectively.

Consider the following problem:
Find a piecewise-holomorphic function bounded throughout the plane using the boundary condition

$$
\begin{equation*}
\Phi^{+}(x)=G(x) \Phi^{-}[\alpha(x)]+f(x), \quad-\infty<x<+\infty \tag{4.1}
\end{equation*}
$$

where $G(x)$ and $f(x)$ are the given functions satisfying the Hölder condition, $G(x) \neq 0, G(\infty)=G(-\infty)=1, f(+\infty)=f(-\infty)=0$,

$$
\alpha(x)= \begin{cases}x, & x<0 \\ b x, & x \geq 0\end{cases}
$$

$b$ is a constant.
If we denote by $\varkappa$ the index of the function $G(x)$, then $G(x)$ can be represented as [7]

$$
\begin{gather*}
G(x)=\frac{X^{+}(x)}{X^{-}(x)}, \quad X(z)= \begin{cases}\exp \omega(z), & z \in S^{+} \\
\left(\frac{z+i}{z-i}\right)^{\varkappa} \exp \omega(z), & z \in S^{-}\end{cases}  \tag{4.2}\\
\omega(z)=\frac{1}{2 \pi i} \int_{-\infty}^{+\infty} \frac{\ln G_{0}(t) d t}{t-z}, \quad G_{0}(x)=G(x)\left(\frac{x+i}{x-i}\right)^{\varkappa} .
\end{gather*}
$$

On putting the value of $G(x)$ into (4.1), we obtain

$$
\begin{equation*}
\frac{\Phi^{+}(x)}{X^{+}(x)}-\frac{\Phi^{-}(\alpha(x))}{X^{-}(x)}=\frac{f(x)}{X^{+}(x)}, \quad-\infty<x<+\infty \tag{4.3}
\end{equation*}
$$

For $x<0$ condition (4.3) takes the form

$$
\begin{equation*}
\frac{\Phi^{+}(x)}{X^{+}(x)}-\frac{\Phi^{-}(x)}{X^{-}(x)}=\frac{f(x)}{X^{+}(x)} \tag{4.4}
\end{equation*}
$$

A general solution of problem (4.4) can be written as

$$
\begin{equation*}
\Phi(z)=\frac{X(z)}{2 \pi i} \int_{-\infty}^{0} \frac{f(t) d t}{X^{+}(t)(t-z)}+X(z) \Phi_{0}(z) \tag{4.5}
\end{equation*}
$$

The function $\Phi(z)$ is holomorphic on the plane cut along the positive semi-axis except perhaps for the neighbourhood of the point $z=-i$ at which it has a pole of order $\varkappa$ for $\varkappa>0$.

For $\varkappa<0$ the function $X(z)$ has a pole of order $-\varkappa$ at the point $z=-i$. Therefore for a bounded solution to exist it is necessary that the condition

$$
\begin{equation*}
\Phi_{0}^{(k)}(-i)+\frac{k!}{2 \pi i} \int_{-\infty}^{0} \frac{f(t) d t}{X^{+}(t)(t+i)^{k+1}}=0, \quad k=0,1, \ldots,(-\varkappa-1) \tag{4.6}
\end{equation*}
$$

be fulfilled.
If we put the value of $\Phi(z)$ into (4.3), then we have

$$
\begin{equation*}
\Phi_{0}^{+}(x)=G_{1}(x) \Phi_{0}^{-}(b x)+f_{0}(x), \quad 0<x<\infty \tag{4.7}
\end{equation*}
$$

where $G_{1}(x)=\frac{X^{-}(b x)}{X^{-}(x)}, f_{0}(x)=\frac{f(x)}{X^{+}(x)}-A^{+}(x)+G_{1}(x) A^{-}(b x)$,

$$
A(z)=\frac{1}{2 \pi i} \int_{-\infty}^{0} \frac{f(t) d t}{X^{+}(t)(t-z)}
$$

The function $z=e^{\zeta}, \zeta=\xi+i \eta$, maps the strip $0<\eta<2 \pi$ onto the plane having a cut along the axis $x>0$.

On introducing the notation $\Phi_{0}\left(e^{\zeta}\right)=\Psi_{0}(\zeta), 0<\eta<2 \pi$, we obtain

$$
\begin{equation*}
\Phi_{0}^{+}(x)=\Psi_{0}(\xi), \quad \Phi_{0}^{-}(b x)=\Psi_{0}(\xi+\ln b+2 \pi i), \quad-\infty<\xi<+\infty \tag{4.8}
\end{equation*}
$$

Thus problem (4.7) is reduced to the problem considered in $\S 2$

$$
\begin{equation*}
\Psi_{0}(\xi)=G^{+}(\xi) \Psi_{0}(\xi+\ln b+2 \pi i)+F_{0}(\xi), \quad-\infty<\xi<+\infty \tag{4.9}
\end{equation*}
$$

where $G^{+}(\xi)=G_{1}\left(e^{\xi}\right), F_{0}(\xi)=f_{0}\left(e^{\xi}\right), G^{*}(-\infty)=G^{*}(\infty)=1$,

$$
\mathcal{J}_{n} d G^{*}=0, \quad F_{0}(+\infty)=0, \quad F_{0}(-\infty)=\frac{f(0)}{X^{+}(0)}
$$

Since for $\varkappa>0$ the function $\Phi_{0}(z)$ can have a pole of order $\varkappa$ at the point $z=-i$, we seek a solution $\Psi_{0}$ of problem (4.9) in the class of functions satisfying the condition

$$
\begin{equation*}
\Psi_{0}(\zeta)\left(\frac{\zeta-\frac{3}{2} \pi i}{\zeta+\frac{3}{2} \pi i}\right)^{\varkappa} \in A_{0}^{\beta}(\mu), \quad \mu<\frac{4 \pi^{2}}{4 \pi^{2}+\ln b} \tag{4.10}
\end{equation*}
$$

By virtue of formula (2.6) it is easy to show that a general solution of problem (4.9) is given by the formula

$$
\begin{equation*}
\Psi_{0}(\zeta)=\frac{X^{*}(\zeta) \cosh p \zeta}{2 a} \int_{-\infty}^{+\infty} \frac{F_{0}(t) d t}{X^{+}(t) \cosh p t \sinh p(t-\zeta)}+X^{*}(\zeta) \Psi(\zeta) \tag{4.11}
\end{equation*}
$$

where $a=\ln b+2 \pi i, p=\frac{\pi i}{a}$,

$$
\begin{gathered}
\psi(\zeta)= \begin{cases}\sum_{k=0}^{\varkappa} c_{k} \operatorname{coth}^{k} p\left(\zeta-\frac{3}{2} \pi i\right), & \varkappa \geq 0 \\
c_{-1}, & \varkappa=-1 \\
0, & \varkappa<-1\end{cases} \\
X^{*}(\zeta)=\exp \left(\frac{\cosh p \zeta}{2 a} \int_{-\infty}^{+\infty} \frac{\ln G^{*}(t) d t}{\cosh p t \sinh p(t-\zeta)}\right)
\end{gathered}
$$

Returning to the variable $z$, we obtain

$$
\begin{gather*}
\Psi_{0}(\zeta)=\frac{X_{0}(z)}{a} \int_{0}^{+\infty} \frac{t^{2 p-1} f_{0}(t) d t}{\left(t^{2 p}-z^{2 p}\right) X_{0}^{+}(t)}+X_{0}(z)\left(\varphi_{0}(z)-A\right)  \tag{4.12}\\
X_{0}(z)=\exp \left(\frac{1}{a} \int_{0}^{\infty} \frac{\ln G_{1}(t) t^{2 p-1}}{t^{2 p}-z^{2 p}} d t\right), \quad A=\frac{1}{a} \int_{0}^{\infty} \frac{t^{2 p-1} f_{0}(t)}{\left(t^{2 p}+1\right) X_{0}^{*}(t)} d t
\end{gather*}
$$

With (4.5) and (4.12) taken into account we conclude that a general solution of problem (4.1) has the form

$$
\begin{align*}
& \Phi(z)= X(z)\left[\frac{1}{2 \pi i} \int_{-\infty}^{0} \frac{f(t) d t}{X^{+}(t)(t-z)}+\frac{X_{0}(z)}{a} \int_{0}^{\infty} \frac{t^{2 p-1} f_{0}(t) d t}{X_{0}^{+}(t)\left(t^{2 p}-z^{2 p}\right)}+\right. \\
&\left.+X_{0}(z)\left(\varphi_{0}(z)-A\right)\right],  \tag{4.13}\\
& \varphi_{0}(z)= \begin{cases}\sum_{k=0}^{\varkappa} c_{k}\left(\frac{z^{2 p}+(-i)^{2 p}}{z^{2 p}-(-i)^{2 p}}\right)^{k}, & \varkappa \geq 0 \\
c_{-1}, & \varkappa=-1 \\
0, & \varkappa<-1\end{cases} \tag{4.14}
\end{align*}
$$

The function $z^{2 p}$ is holomorphic on the plane cut along the positive axis if by this function we mean the branch for which the limit as $z \rightarrow 1$ from the upper half-plane is equal to 1 while $t^{2 p}$ denotes the function value, at the point $t$, of the upper edge of the cut.

For $\varkappa=-1$ the function $X_{0}(z)$ has a pole of first order at the point $z=-i$. In that case $\varphi_{0}(z)=C_{-1}$ and $X_{0}(-i) \neq 0$ and therefore the constant $c_{1}$ can be chosen so that for $z=-i$ the expression in square brackets on the right-hand side of (4.13) would vanish. Hence when $\varkappa \geq-1$ problem (4.1) has a bounded solution for an arbitrary right-hand side. When $\varkappa<-1$, for a bounded solution to exist it is necessary and sufficient that the conditions

$$
\begin{gathered}
\frac{d^{k}}{d z^{k}}\left[\frac{1}{2 \pi i} \int_{-\infty}^{0} \frac{f(t) d t}{X^{+}(t)(t-z)}+\frac{X_{0}(z)}{a} \int_{0}^{\infty} \frac{t^{2 p-1} f_{0}(t) d t}{X_{0}^{+}(t)\left(t^{2 p}-z^{2 p}\right)}-A X_{0}(z)\right]=0 \\
z=-i, \quad k=1, \ldots,-\varkappa
\end{gathered}
$$

be fulfilled. Then the solution is given by formula (4.13).
For $b=1$ we have $p=\frac{1}{2}, X_{0}(z) \equiv 1, f_{0}(t) \equiv f(t)$ and formulas (4.13) and (4.14) give a solution of the conjugation problem.

Conjugation problems with displacements are investigated in [8-10] in the case with $\alpha^{\prime}(t)$ belonging to the Hölder class.

## References

1. R. D. Bantsuri, A contact problem for a wedge with an elastic fixing. (Russian) Dokl. Akad. Nauk SSSR 211(1973), No. 4, 777-780.
2. B. A. Vasil'yev, Solution of a stationary problem of the heat conductivity theory for wedge-shaped bodies with a boundary condition of third kind. (Russian) Differentsial'nye Uravneniya 6(1970), No. 3, 531-537.
3. N. N. Lebedev and I. P. Skalskaya, A new method of solution of the problem of electromagnetic wave diffraction on a wedge of finite conductivity. (Russian) Zh. Tekhn. Fiz. 32(1962), No. 10, 1174-1183.
4. B. V. Nuller, Deformation of an elastic wedge supported by a beam. (Russian) Prikl. Mat. Mekh. 38(1975), No. 5, 876-882.
5. E. W. Barens, The linear finite differences equations of the first order. Proc. London, Math. Soc. Ser. 2 2(1904), 15-21.
6. Yu. I. Cherski, Normally solvable equations of smooth transition. (Russian) Dokl. Akad. Nauk SSSR 190(1970), No. 1, 57-60.
7. N. I. Muskhelishvili, Singular integral equations. Boundary problems of the theory of functions and some of their applications in mathematical physics. (Russian) 3rd ed. Nauka, Moscow, 1968; English translation from 1st Russian ed. (1946): P. Noordhoff, Groningen, 1953, corrected reprint Dover Publications, Inc., N. Y., 1992.
8. D. A. Kveselava, Solution of one boundary value problem of the theory of functions. (Russian) Dokl. Akad. Nauk SSSR 53(1946), No. 8, 683-686.
9. D. A. Kveselava, Some boundary value problems of the theory of functions. (Russian) Trudy Tbiliss. Mat. Inst. Razmadze 16(1948), 39-90.
10. G. F. Manjavidze, A boundary value problem of linear conjugation with displacements. (Russian) Trudy Tbiliss. Mat. Inst. Razmadze 33(1967), 77-81.
11. V. I. Smirnov, A course on higher mathematics vol. 3, part II. (Russian) Gostekhizdat, Moscow-Leningrad, 1949.
(Received 21.04.1997)
Author's address:
A.Razmadze Mathematical Institute

Georgian Academy of Sciences
1, Aleksidze St., Tbilisi 380093
Georgia


[^0]:    1991 Mathematics Subject Classification. 30E25.
    Key words and phrases. Carleman type problem, conjugation problem with a displacement.

