BOUNDARY VALUE PROBLEMS OF THE THEORY OF ANALYTIC FUNCTIONS WITH DISPLACEMENTS

R. BANTSURI

ABSTRACT. Integral representations are constructed for functions holomorphic in a strip. Using these representations an effective solution of Carleman type problem is given for a strip.

INTRODUCTION

In studying some problems of the theory of elasticity and mathematical physics there arise boundary value problems of the theory of analytic functions for a strip [1, 2, 3, 4] when a linear combination of function values is given at a point t of the lower strip boundary and at a point t + a of the upper boundary.

We refer this problem to Carleman type problem for a strip. To solve this problem, in §1 we construct integral representations which play the same role in its solution as a Cauchy type integral plays in solving a linear conjugation problem. In §2 a solution is obtained for a Carleman type problem for a strip with continuous coefficients and in §3 a solution is given for a Carleman type problem for a strip with a coefficient polynomially increasing at infinity. In §4 a conjugation problem with a displacement is investigated.

When the coefficient is a meromorphic function, a Carleman type homogeneous problem was solved by E. W. Barens in [5] by means of Euler's gamma-functions (provided that the poles and zeros of the coefficient are known). Later various particular cases were studied in [1] and [6].

$\$ 1. Integral Representations of Holomorphic Functions in a $$\rm Strip$$

Let a function $\Phi(z)$, z = x + iy, be holomorphic in a strip $\{a < y < b, -\infty < x < \infty\}$, continuous in a closed strip $\{a \le y \le b, -\infty < x < \infty\}$

213

1072-947X/99/0500-0213\$12.50/0 © 1997 Plenum Publishing Corporation

¹⁹⁹¹ Mathematics Subject Classification. 30E25.

 $Key\ words\ and\ phrases.$ Carleman type problem, conjugation problem with a displacement.

and satisfy the condition $\Phi(z)e^{\mu|z|} \to 0$ for $|z| \to \infty$, $\mu \ge 0$. The class of functions satisfying these conditions will be denoted by $A_a^b(\mu)$.

Let

$$\Phi_k(z) \in A_0^\beta(\mu_k), \quad \mu_k < \frac{\pi\beta[3+(-1)^k]}{2(\alpha^2+\beta^2)}, \quad k = 1, 2,$$
(1.1)

where α and β are real numbers, $\beta > 0$. Then the following formulas are valid:

$$\Phi_{1}(z) = \frac{1}{2a} \int_{-\infty}^{+\infty} \frac{\Phi_{1}(t) + \Phi_{1}(t+a)}{\sinh p(t-z)} dt, \quad 0 < \mathcal{I}_{m}z < \beta,$$
(1.2)

$$\Phi_2(z) = \frac{\cosh pz}{2a} \int\limits_{-\infty}^{\infty} \frac{\Phi_2(t) - \Phi_2(t+a)}{\cosh pt \sinh p(t-z)} dt + \Phi_2\left(\frac{a}{2}\right), \ 0 < \mathcal{I}_m z < \beta,$$
(1.3)

where $p = \frac{\pi i}{a}$, $a = \alpha + i\beta$.

The above formulas are obtained using the theorem on residues. If $\Phi_k(z)$ has a form

$$\Phi_k(z) = \Psi_k(z) + \sum_{j=1}^n A_j \left(z - \frac{a}{2} \right)^{-j}, \quad \Psi_k(z) \in A_0^\beta(\mu_k), \quad k = 1, 2,$$

then we shall have

$$\Phi_1(z) = \frac{1}{2a} \int_{-\infty}^{+\infty} \frac{\Phi_1(t) + \Phi_1(t+a)}{\sinh p(t-z)} dt - \sum_{j=1}^n \frac{(-p)^j A_j}{j!} \left(\frac{1}{\cosh pz}\right)^{(j-1)},$$
$$0 < \mathcal{I}_m z < \beta, \tag{1.4}$$

$$\Phi_{2}(z) = \frac{\cosh pz}{2a} \int_{-\infty}^{+\infty} \frac{\Phi_{2}(t) - \Phi_{2}(t+a)}{\cosh pt \sinh p(t-z)} dt - \sum_{j=1}^{n} \frac{A_{j}(-p)^{j}}{j!} (\tanh pz)^{(j-1)} + \Phi_{2}\left(\frac{a}{2}\right), \ 0 < \mathcal{I}_{m}z < \beta.$$
(1.5)

Let further F_k , k = 1, 2, be functions given on the real axis L and having the form $F_k(x) = f_k(x)e^{\mu_k |x|}$, $f_k(\pm \infty) = 0$, where f_k are functions satisfying the Hölder condition everywhere on L, μ_k are numbers satisfying inequality (1.1).

Consider the integrals

$$\Phi_1(z) = \frac{1}{2a} \int_{-\infty}^{+\infty} \frac{F_1(t)dt}{\sinh p(t-z)}, \quad 0 < \mathcal{I}_m z < \beta,$$
(1.6)

$$\Phi_2(z) = \frac{\cosh pz}{2a} \int_{-\infty}^{+\infty} \frac{F_2(t)dt}{\cosh pt \sinh p(t-z)}, \quad 0 < \mathcal{I}_m z < \beta.$$
(1.7)

It is obvious that the functions are holomorphic in a strip $0 < y < \beta$.

Using the Sohotski–Plemelj formulas we can show that the boundary values of Φ_1 and Φ_2 are expressed by the formulas

$$\Phi_{1}(t_{0}) = \frac{F_{1}(t_{0})}{2} + \frac{1}{2a} \int_{-\infty}^{+\infty} \frac{F_{1}(t)dt}{\sinh p(t-t_{0})},$$

$$\Phi_{1}(t_{0}+a) = \frac{F_{1}(t_{0})}{2} - \frac{1}{2a} \int_{-\infty}^{+\infty} \frac{F_{1}(t)dt}{\sinh p(t-t_{0})};$$

$$\Phi_{2}(t_{0}) = \frac{F_{2}(t_{0})}{2} + \frac{\cosh pz}{2a} \int_{-\infty}^{+\infty} \frac{F_{2}(t)dt}{\cosh pt \sinh p(t-t_{0})},$$

$$\Phi_{2}(t_{0}+a) = -\frac{F_{2}(t_{0})}{2} + \frac{\cosh pt_{0}}{2a} \int_{-\infty}^{+\infty} \frac{F_{2}(t)dt}{\cosh pt \sinh p(t-t_{0})}.$$
(1.8)
(1.8)
(1.8)
(1.8)
(1.8)
(1.8)
(1.8)
(1.8)
(1.8)
(1.8)
(1.8)
(1.8)
(1.8)
(1.8)
(1.8)
(1.8)
(1.8)
(1.8)
(1.8)
(1.8)
(1.8)
(1.8)
(1.8)
(1.8)
(1.8)
(1.8)
(1.8)
(1.8)
(1.8)
(1.8)
(1.8)
(1.8)
(1.8)
(1.8)
(1.8)
(1.8)
(1.8)
(1.8)
(1.8)
(1.8)
(1.8)
(1.8)
(1.8)
(1.8)
(1.8)
(1.8)
(1.8)
(1.8)
(1.8)
(1.8)
(1.8)
(1.8)
(1.8)
(1.8)
(1.8)
(1.8)
(1.8)
(1.8)
(1.8)
(1.8)
(1.8)
(1.8)
(1.8)
(1.8)
(1.8)
(1.8)
(1.8)
(1.8)
(1.8)
(1.8)
(1.8)
(1.8)
(1.8)
(1.8)
(1.8)
(1.8)
(1.8)
(1.8)
(1.8)
(1.8)
(1.8)
(1.8)
(1.8)
(1.8)
(1.8)
(1.8)
(1.8)
(1.8)
(1.8)
(1.8)
(1.8)
(1.8)
(1.8)
(1.8)
(1.8)
(1.8)
(1.8)
(1.8)
(1.8)
(1.8)
(1.8)
(1.8)
(1.8)
(1.8)
(1.8)
(1.8)
(1.8)
(1.8)
(1.8)
(1.8)
(1.8)
(1.8)
(1.8)
(1.8)
(1.8)
(1.8)
(1.8)
(1.8)
(1.8)
(1.8)
(1.8)
(1.8)
(1.8)
(1.8)
(1.8)
(1.8)
(1.8)
(1.8)
(1.8)
(1.8)
(1.8)
(1.8)
(1.8)
(1.8)
(1.8)
(1.8)
(1.8)
(1.8)
(1.8)
(1.8)
(1.8)
(1.8)
(1.8)
(1.8)
(1.8)
(1.8)
(1.8)
(1.8)
(1.8)
(1.8)
(1.8)
(1.8)
(1.8)
(1.8)
(1.8)
(1.8)
(1.8)
(1.8)
(1.8)
(1.8)
(1.8)
(1.8)
(1.8)
(1.8)
(1.8)
(1.8)
(1.8)
(1.8)
(1.8)
(1.8)
(1.8)
(1.8)
(1.8)
(1.8)
(1.8)
(1.8)
(1.8)
(1.8)
(1.8)
(1.8)
(1.8)
(1.8)
(1.8)
(1.8)
(1.8)
(1.8)
(1.8)
(1.8)
(1.8)
(1.8)
(1.8)
(1.8)
(1.8)
(1.8)
(1.8)
(1.8)
(1.8)
(1.8)
(1.8)
(1.8)
(1.8)
(1.8)
(1.8)
(1.8)
(1.8)
(1.8)
(1.8)
(1.8)
(1.8)
(1.8)
(1.8)
(1.8)
(1.8)
(1.8)
(1.8)
(1.8)
(1.8)
(1.8)
(1.8)
(1.8)
(1.8)
(1.8)
(1.8)
(1.8)
(1.8)
(1.8)
(1.8)
(1.8)
(1.8)
(1.8)
(1.8)
(1.8)
(1.8)
(1.8)
(1.8)
(1.8)
(1.8)
(1.8)
(1.8)
(1.8)
(1.8)
(1.8)
(1.8)
(1.8)
(1.8)
(1.8)
(1.8)
(1.8)
(1.8)
(1.8)
(1.8)
(1.8)
(1.8)
(1.8)
(1.8)
(1.8)
(1.8)
(1.8)
(1.8)
(1.8)
(1.8)
(1.8)
(1.8)
(1.8)
(1.8)
(1.8)
(1.8)
(1.8)
(1.8)
(1.8)
(1.8)
(1.8)
(1.8)
(1.8)
(1.8)
(1.8)
(1.8)
(1.8)

It follows from Plemelj–Privalov's theorem that that the boundary values of Φ_1 and Φ_2 satisfy the Hölder condition on a finite part of the boundary.

Let us investigate the behavior of these functions in the neighbourhood of a point at infinity. We begin by considering the case with $\mu_k = 0, k = 1, 2$.

Rewrite formula (1.6) as

$$\Phi_{1}(z) = \frac{1}{2a} \int_{-\infty}^{+\infty} \left[\frac{1}{\sinh p(t-z)} - \frac{a}{p} \frac{1}{(t-z)(t+a-z)} \right] F_{1}(t) dt + \frac{1}{2ap} \int_{-\infty}^{+\infty} \frac{F_{1}(t)}{t-z} dt - \frac{1}{2ap} \int_{-\infty}^{+\infty} \frac{F_{1}(t) dt}{t+a-z}, \quad 0 < \mathcal{I}_{m}z < \beta.$$

Here the first term is holomorphic in the closed strip $0 \leq \mathcal{I}_m z \leq \beta$ and tends to zero at infinity. The second and the third term are analytic in the strip $0 < \mathcal{I}_m z < \beta$, vanish at infinity and their boundary values satisfy the Hölder condition, including points at infinity [7].

Therefore $\Phi_1 \in A_0^{\beta}(0)$.

Now let us consider the function $\Phi_2(z)$. Rewrite formula (1.7) as

$$\Phi_2(z) = \frac{1}{2a} \int_{-\infty}^{+\infty} \frac{(\cosh pz - \cosh pt)F_2(t)dt}{\cosh pt \sinh p(t-z)} + \frac{1}{2a} \int_{-\infty}^{+\infty} \frac{F_2(t)dt}{\sinh p(t-z)}.$$

As we have shown, the second term here belongs to the class $A_0^\beta(0)$. Denote the first term by \mathcal{I} and rewrite it as

$$\begin{aligned} \mathcal{I} &= -\frac{1}{2a} \int_{-\infty}^{+\infty} \frac{\sinh \frac{p}{2}(t+z)F(t)}{\cosh pt \sinh \frac{p}{2}(t-z)} dt = \\ &= -\frac{1}{2a} \int_{-\infty}^{+\infty} \frac{\sinh \frac{p}{2}(2x-\tau+iy)F_2(x-\tau)}{\cosh p(x-\tau)\cosh \frac{p}{2}(\tau+iy)} d\tau = \\ &= -\frac{1}{2a} \left(\int_{-\infty}^{0} + \int_{0}^{+\infty} \right) \frac{\sinh \frac{p}{2}(2x-\tau+iy)F_2(x-\tau)}{\cosh p(x-\tau)\cosh \frac{p}{2}(\tau+iy)} d\tau. \end{aligned}$$

Let x > 0. Then the first integral will be bounded in the strip $0 \leq \mathcal{I}_m z < \beta$, since $2x - \tau < 2(x - \tau)$.

Rewrite the second integral as

$$\frac{1}{2a} \int_{0}^{+\infty} \frac{\sinh \frac{p}{2}(2x - \tau + iy)F_2(x - \tau)}{\cosh p(x - \tau)\cosh \frac{p}{2}(\tau + iy)} d\tau = \\ = \left(\frac{1}{2a} \int_{-\infty}^{0} +\frac{1}{2a} \int_{0}^{x}\right) \frac{\sinh \frac{p}{2}(x + t + iy)F_2(t)dt}{\cosh pt\cosh \frac{p}{2}(x - t + iy)}.$$

The first term is bounded, since x + t < x - t. The second term can be written in the form

$$\frac{1}{2a} \int_{0}^{x} \frac{\sinh \frac{p}{2}([(x-t+iy)+2t]F_{2}(t)dt}{\cosh pt \cosh \frac{p}{2}(x-t+iy)} = \frac{1}{2a} \int_{0}^{x} \tanh \frac{p}{2}(x-t+iy)F_{2}(t)dt + \frac{1}{2a} \int_{0}^{x} \tanh ptF_{2}(t)dt.$$
(1.10)

Since the function $\tanh \frac{p}{2}z = \tanh \frac{|p|^2}{2\pi}(\beta + \alpha i)z$ is holomorphic in the strip $0 \leq \mathcal{I}_m z \leq \delta < \beta$ and $|\tanh \frac{p}{2}z| \to 1$, the estimate

$$|\Phi_2(z)| < |\Phi_0(x)| + \varepsilon |x|$$
(1.11)

holds for the function Φ_2 when x are large in the closed strip $0 \leq \mathcal{I}_m z \leq \delta$. $\Phi_0(x)$ is bounded for x > 0 and $\varepsilon < 0$ is an arbitrarily small number. A similar estimate is also true for the case x < 0. In the same manner one can obtain an estimate of the form (1.11) in the strip $0 < \delta \leq \mathcal{I}_m z \leq \beta$ provided that the function $\Phi_2(z)$ is represented as

$$\Phi_2(z) = \frac{1}{2a} \int_{-\infty}^{+\infty} \frac{\cosh pz + \cosh pt}{\cosh pt \sinh p(t-z)} F_2(t)dt - \frac{1}{2a} \int_{-\infty}^{+\infty} \frac{F_2(t)dt}{\sinh p(t-z)}.$$

Now let us consider the case with $\mu_k > 0, k = 1, 2$. Rewrite (1.6) as follows:

$$\Phi_1(z) = \frac{1}{2a} \int_{-\infty}^{+\infty} \frac{\cosh \mu_1 t \varphi_1(t) dt}{\sinh p(t-z)}, \quad \varphi_1(t) \equiv f_1(t) / \cosh \mu_1 t.$$

It is obvious that $\varphi_1(t)$ satisfies the Hölder condition in the neighbourhood of a point at infinity.

We write the function Φ_1 in the form

$$\Phi_{1}(z) = \frac{1}{2a} \int_{-\infty}^{+\infty} \frac{\varphi_{1}(t) \cosh[\mu_{1}(t-z) + \mu_{1}z]}{\sinh p(t-z)} dt =$$
$$= \frac{\cosh \mu_{1}z}{2a} \int_{-\infty}^{+\infty} \frac{\cosh \mu_{1}(t-z)}{\sinh p(t-z)} \varphi_{1}(t) dt + \frac{\sinh \mu_{1}z}{2a} \int_{-\infty}^{+\infty} \frac{\sinh(t-z)\mu_{1}}{\sinh p(t-z)} \varphi_{1}(t) dt.$$

Since $\mu_1 < \pi\beta/(\alpha^2 + \beta^2) = \operatorname{Re} p$, we have $\Phi_1 \in A_0^\beta(\mu_1)$. Taking this into account and applying the arguments used in investigating the behavior of the function $\Phi_2(z)$ in the case with $F_2(\pm \infty) = 0$, we show that

$$\Phi_2 \in A_0^\beta(\beta_2)$$

Let us formulate the results obtained above.

Theorem 1. If the functions $F_k(x)e^{-\mu_k|x|}$, (k = 1, 2), satisfy the Hölder condition everywhere on L and $F_k(x)e^{-\mu_k|x|} \to 0$ for $|x| \to +\infty$, where μ_k are some numbers satisfying inequality (1.1), then $\Phi_k \in A_0^\beta(\mu_k)$ for $\mu_1 \ge 0$, $\mu_2 > 0$, $\exp \Phi_2 \in A_0^\beta(\varepsilon)$ for $\mu_2 = 0$, where ε is an arbitrarily small positive number.

Formulas (1.8) and (1.9) imply

$$\Phi_1(t) + \Phi_1(t+a) = F_1(t), \quad t \in (-\infty, \infty), \tag{1.12}$$

$$\Phi_2(t) - \Phi_2(t+a) = F_2(t), \quad t \in (-\infty, \infty), \tag{1.13}$$

i.e., $\Phi_1(z)$ and $\Phi_2(z)$ defined by (1.6) and (1.7) are solutions of boundary value problems (1.12) and (1.13) of the class $A_0^\beta(\mu_k)$, k = 1, 2. Clearly, if the function $\Phi_2(z)$ is a solution of problem (1.13), then the

Clearly, if the function $\Phi_2(z)$ is a solution of problem (1.13), then the function $W(z) = c + \Phi_2(z)$ will also be a solution. We shall show that problems (1.12) and (1.13) do not have other solutions of the class $A_0^\beta(\mu_k)$, k = 1, 2. For this we should prove

Theorem 2. If $F_2(t) \in L(-\infty, \infty)$, then for a solution of problem (1.13) of the class $A_0^{\beta}(0)$ to exist it is necessary and sufficient that the condition

$$\int_{-\infty}^{\infty} F_2(t)dt = 0$$

be fulfilled.

Proof. We can rewrite formula (1.7) as

$$\Phi_2(z) = \frac{1}{2a} \int_{-\infty}^{\infty} \coth p(t-z) F_2(t) dt - \frac{1}{2a} \int_{-\infty}^{\infty} \tanh pt F_2(t) dt.$$
(1.14)

It is obvious that the limits of $\Phi_2(z)$ exist for $x \to \pm \infty$, $0 \le y \le \beta$, and

$$C + \Phi_2(\pm \infty + iy) = \pm \frac{1}{2a} \int_{-\infty}^{\infty} F_2(t) dt - \frac{1}{2a} \int_{-\infty}^{\infty} \tanh p t F_2(t) dt + C. \quad (1.15)$$

Taking

$$C = \frac{1}{2a} \int_{-\infty}^{\infty} F_2(t) \tanh pt \ dt$$

and setting

$$\int_{-\infty}^{\infty} F_2(t)dt = 0, \qquad (1.16)$$

we find by virtue of (1.15) and (1.16) that the solution of problem (1.13) has the form

$$W(z) = \frac{1}{2a} \int_{-\infty}^{\infty} \coth p(t-z) F_2(t) dt$$
(1.17)

and belongs to the class $A_0^{\beta}(0)$.

The necessity is proved by integrating equality (1.13) and applying the Cauchy theorem. $\hfill\square$

It remains to prove

Theorem 3. If the function $\varphi \in A_0^{\beta}\left(\frac{\pi\beta(3+\lambda)}{2(\alpha^2+\beta^2)}\right)$, $\lambda = \pm 1$, and satisfies the condition $\varphi(z) = \lambda \varphi(x+a)$, then it is constant and, for $\lambda = -1$, equal to zero.

Proof. Let $\lambda = -1$ and

$$\Psi(z) = \frac{\varphi(z)}{\cosh pz} + \varphi\left(\frac{a}{2}\right) \frac{a}{\pi(z - \frac{a}{2})}.$$
(1.18)

The function $\Psi(z)\in A_0^\beta(0)$ and satisfies the condition

$$\Psi(x) - \Psi(x+a) = \frac{2a^2}{\pi} \varphi\left(\frac{a}{2}\right) \frac{1}{x^2 - a^2/4}.$$
(1.19)

Since $\Psi(z)$ is a solution of problem (1.19) of the class $A_0^\beta(0)$, the condition

$$\frac{2a^2}{\pi}\varphi\left(\frac{a}{2}\right)\int\limits_{-\infty}^{\infty}\frac{dx}{x^2-a^2/4} = 4ai\varphi\left(\frac{a}{2}\right) = 0$$

is fulfilled on account of Theorem 2. Thus $\Psi(z)$ is a solution of the homogeneous problem

$$\Psi(x) - \Psi(x+a) = 0, \quad -\infty < x < +\infty.$$

If we introduce the function

$$\Psi_1(z) = \frac{\Psi(z) - \Psi\left(\frac{a}{2}\right)}{\cosh pz},$$

then we shall have

$$\Psi_1(x) + \Psi_1(x+a) = 0, \quad -\infty < x < +\infty.$$

By applying the Fourier transform to the latter equality we obtain

$$\widehat{\Psi}_1(1+e^{i\alpha t}) \equiv 0.$$

Hence we have $\widehat{\Psi}_1(t) \equiv 0$, $\Psi_1(z) = 0$. Therefore by (1.18) $\varphi(z) = 0$. We have thereby proved the theorem for $\lambda = -1$.

Let $\lambda = 1$. Then

$$\varphi(x) - \varphi(x+a) = 0.$$

The function

$$\Psi(z) = \varphi(z) - \varphi\left(\frac{3}{4}a\right) \tag{1.20}$$

also satisfies this condition and $\varphi\left(\frac{3}{4}a\right) = 0$.

We introduce the notation

$$\Psi_0(z) = \frac{\Psi(z)}{\cosh 2pz} + \frac{a}{2\pi} \frac{\Psi\left(\frac{a}{4}\right)}{z - \frac{a}{4}}$$

Now, repeating the above arguments, we find that $\Psi\left(\frac{a}{4}\right) = 0$, i. e., $\Psi_0(z) \in A_0^\beta(0)$ and satisfies the condition

$$\Psi_0(x) - \Psi_0(x+a) = 0.$$

But, as shown above, in that case $\Psi_0(z) = \Psi(z) = 0$ and therefore equality (1.20) implies

$$\varphi(z) = \varphi\Big(\frac{3}{4}a\Big),$$

which proves the theorem. \Box

§ 2. A CARLEMAN TYPE PROBLEM WITH A CONTINUOUS COEFFICIENT FOR A STRIP

Let us consider the following problem: find a function Φ of the class $A_0^\beta(\mu)$ by the boundary condition

$$\Phi(x) = \lambda G(x)\Phi(x+a) + F(x), \quad -\infty < x < +\infty, \tag{2.1}$$

where $a = \alpha + i\beta$, $\beta > 0$, $\mu < \pi\beta(3 + \lambda)/2(\alpha^2 + \beta^2)$, F and G are the given functions satisfying the Hölder condition including a point at infinity, $G \neq 0$ and $F(\pm \infty) = 0$, $G(-\infty) = G(\infty) = 1$, the constant λ takes the value 1 or -1.

The integer number $\varkappa = \frac{1}{2\pi} [\arg G(x)]_{-\infty}^{+\infty}$, where $[\arg G(x)]_{-\infty}^{+\infty}$ denotes an increment of the function $\arg G(x)$ when x runs over the entire real axis from $-\infty$ to ∞ , is called the index of the function G(x). The index of $G_0(x) = G(x)[(x - a/2)/(x + a/2)]^{\varkappa}$ is equal to zero and therefore any branch of the function $\ln G_0(x)$ is continuous all over the real axis. We choose a branch that vanishes at infinity. By formulas (1.7) and (1.9) G(x)can be represented as

$$G(x) = \frac{X(x)}{X(x+a)},\tag{2.2}$$

where

$$X(z) = \left(z - \frac{a}{2}\right)^{\varkappa} X_0(z),$$

$$X_0(z) = \exp\left(\frac{\cosh pz}{2a} \int_{-\infty}^{+\infty} \frac{\ln G_0(t)dt}{\cosh pt \sinh p(t-z)}\right).$$
(2.3)

By virtue of Theorem 1 $X_0(z)$ and $[X_0(z)]^{-1} \in A_0^\beta(\varepsilon)$, where ε is an arbitrarily small positive number.

Using (2.2), we rewrite condition (2.1) as

$$\frac{\Phi(x)}{X(x)} = \lambda \frac{\Phi(x+a)}{X(x+a)} + \frac{F(x)}{X(x)}, \quad -\infty < x < \infty.$$

$$(2.4)$$

The function $\Phi(z)/X(z)$ is holomorphic in the strip $0 < \mathcal{I}_m z < \beta$ except perhaps of the point $z = \frac{a}{2}$, at which it may have a pole of order \varkappa , for $\varkappa > 0$, and satisfies the condition

 $(\Phi(z)/X(z))e^{-\mu|z|}\to 0 \quad \text{for} \quad |x|\to\infty \quad \text{and} \quad 0\leq y\leq\beta,$

where $0 < \mu < \pi\beta(3+\lambda)/2(\alpha^2+\beta^2)$. By (1.4) and (1.5) condition (2.4) implies

$$\Phi(z) = \frac{X(z)}{2a} \int_{-\infty}^{+\infty} \frac{F(t)dt}{X(t)\sinh p(t-z)} + X(z)\varphi_1(z) \text{ for } \lambda = -1, \quad (2.5)$$

$$\Phi(z) = \frac{X(z)\cosh pz}{2a} \int_{-\infty}^{+\infty} \frac{F(t)dt}{X(t)\cosh pt\sinh p(t-z)} + X(z)\varphi_2(z) \quad \text{for} \quad \lambda = 1,$$
(2.6)

where

$$\varphi_1(z) = \begin{cases} 0, & \varkappa \le 0, \\ \sum_{k=1}^{\varkappa - 1} C_k (1/\cosh pz)^{(k)}, & \varkappa > 0, \end{cases}$$
(2.7)

$$\varphi_2(z) = \begin{cases} 0, & \varkappa < 0, \\ \sum_{k=1}^{\varkappa} C_k (\tanh pz)^{(k)}, & \varkappa \ge 0, \end{cases}$$
(2.8)

 C_k are arbitrary constants.

Let us investigate the behavior of the function

$$\varphi(z) = \frac{X(z)}{2a} \int_{-\infty}^{+\infty} \frac{F(t)dt}{X(t)\sinh p(t-z)}, \quad 0 \le \mathcal{I}_m z \le \beta,$$
(2.9)

in the neighbourhood of a point at infinity. The function X(z) can be represented as

$$X(z) = \left(z - \frac{a}{2}\right)^{\varkappa} \exp \Gamma_1(z) \cdot \exp \Gamma_2(z),$$

where

$$\Gamma_1(z) = -\frac{1}{2a} \int_{-\infty}^{\infty} \frac{\sinh \frac{p}{2}(z+t) \ln G_0(t)}{\cosh pt \cosh \frac{p}{2}(t-z)} dt,$$

$$\Gamma_2(z) = \frac{1}{2a} \int_{-\infty}^{\infty} \frac{\ln G_0(t) dt}{\sinh p(t-z)}.$$

As we have shown, $\Gamma_2 \in A_0^{\beta}(0)$, i. e., $(\exp \Gamma_2(z) - 1) \in A_0^{\beta}(0)$. By differentiating the function $\Gamma_1(z)$ we obtain

$$\Gamma_1'(z) = \frac{1}{2a} \int_{-\infty}^{\infty} \frac{\ln G_0(t)dt}{\cosh \frac{p}{2}(t-z)}, \quad 0 \le \mathcal{I}_m z \le \beta_0 < \beta.$$

It is easy to verify that $\Gamma_1'(z) \to 0$ for $|z| \to \infty$ and therefore for any there is a number N such that

$$|\Gamma'_1(x+iy)| < \varepsilon \quad \text{for} \quad |x| > N, \quad 0 \le y \le \beta_0 < \beta. \tag{2.10}$$

We represent $\varphi(z)$ as

$$\varphi(z) = \frac{X(z)}{2a} \int_{-N}^{N} \frac{F(t)}{X(t)} \cdot \frac{dt}{\sinh p(t-z)} + \frac{X(z)}{2a} \left(\int_{-\infty}^{N} + \int_{N}^{\infty} \right) \frac{F(t)dt}{X(t)\sinh p(t-z)}, \quad 0 \le \mathcal{I}_m z \le \beta_0.$$

It is easy to show that the first and the second term vanish for $x \to +\infty$. We shall show that the third term also tends to zero for $x \to +\infty$, $0 \le y \le \beta_0 < \beta$. This term will be denoted by \mathcal{I} .

$$\mathcal{I} = \int_{N}^{\infty} \frac{\exp(\Gamma_2(z) - \Gamma_2(t)) \exp(\Gamma_1(z) - \Gamma_1(t))(z - \frac{a}{2})^{\varkappa} F(t)}{(t - \frac{a}{2})^{\varkappa} \sinh p(t - z)} dt.$$

Assume that $\varkappa \geq 0$ and represent the function $\left(z - \frac{a}{2}\right)^{\varkappa}$ as

$$\left(z - \frac{a}{2}\right)^{\varkappa} = \varkappa! \sum_{n=1}^{\varkappa} \frac{(t - \frac{a}{2})^{\varkappa - n} (z - t)^n}{(\varkappa - n)! \, n!} + \left(t - \frac{a}{2}\right)^{\varkappa}.$$
 (2.11)

Inequality (2.10) implies that

$$|\Gamma_1(z) - \Gamma_1(t)| \le \Big| \int_t^z \Gamma'(s) ds \Big| \le \varepsilon |t - z|, \quad t < N, \quad \varkappa > N, \quad 0 \le y \le \beta_0,$$

i.e., $\operatorname{Re}(\Gamma_1(t) - \Gamma_1(z)) - \varepsilon |t - z| < 0$. Thus we have

$$|\exp[\Gamma_1(t) - \Gamma_1(z)) - \varepsilon |t - z| - 1| < A|t - z|, \quad t > N, \quad x > N.$$

The latter inequality and formula (2.11) imply

$$\begin{aligned} |\mathcal{I}| &\leq c \sum_{n=1}^{\varkappa} \int_{N}^{\infty} \frac{e^{\varepsilon |x-t|} |x-t+iy|^n |F(t)| dt}{(\varkappa -n)! n! |\sinh p(x-t+iy)| |t-\frac{a}{2}|^n} + \\ &+ c_1 \int_{N}^{\infty} \frac{e^{\varepsilon |x-t|} [A|x-t| + (1-e^{-\varepsilon |x-t|})] |F(t)| dt}{|\sinh p(x-t+iy)|} + \bigg| \int_{N}^{\infty} \frac{F(t) dt}{2|a| \sinh p(t-z)} \bigg|. \end{aligned}$$

where, as shown above, the third term is the modulus of a function of the class $A_0^{\beta}(0)$. Since ε is an arbitrarily small number and $F(\infty) = F(-\infty) = 0$, the first two terms are the convolutions of functions summable with functions tending to zero for $\to \infty$. Therefore they tend to zero for $x \to \infty$, $0 \le y \le \beta_0 < \beta$.

It can be shown in a similar manner that $\varphi(z) \to 0$ for $x \to -\infty$, $0 \le y \le \beta_0$, as well. It is not difficult to prove that the function $\varphi(z)$ tends to zero for $|x| \to \infty$, $\beta_0 \le \mathcal{I}_m z \le \beta$. When $\varkappa < 0$, one can use the same reasoning to show that $\varphi(z) \to 0$ for $|x| \to \infty$, $0 \le y \le \beta$, provided that z and t are exchanged in equality (2.11). Thus the function Φ represented by (2.5) tends to zero for $|x| \to +\infty$, $0 \le y \le \beta$. Quite similarly, it is proved that for the function Φ defined by (2.6) we have $\Phi(z)e^{-\varepsilon|z|} \to 0$ for $|x| \to \infty$, $0 \le y \le \beta$.

For $\varkappa < 0$ the function X(z) has a pole of order $-\varkappa$ at the point $z = \frac{a}{2}$. In that case the solution exists only if the following conditions are fulfilled:

$$\int_{-\infty}^{\infty} \frac{F(t)}{X(t)} \left(\frac{1}{\cosh pt}\right)^{(k)} dt = 0, \quad k = 0, \dots, (-\varkappa - 1), \text{ for } \lambda = -1, \quad (2.12)$$
$$\int_{-\infty}^{\infty} \frac{F(t)}{X(t)} \left(\frac{e^{pt}}{\cosh pt}\right)^{(k)} dt = 0, \quad k = 1, \dots, (-\varkappa - 1), \text{ for } \lambda = 1. \quad (2.13)$$

The results obtained can be formulated as

Theorem 4. For $\lambda = -1$ and $\varkappa \geq 0$ problem (2.1) is solvable in the class $A_0^{\beta}(0)$ and a general solution is given by (2.5) with formula (2.7) taken

into account. If $\varkappa < 0$, then the problem is solvable if condition (2.12) is fulfilled. In these conditions problem (2.1) has a unique solution in the class $A_0^{\beta}(0)$ which is given by formula (2.5) for $\varphi_1 = 0$.

Theorem 5. if $\lambda = 1$ and $\varkappa \geq -1$, the problem (2.1) is solvable in the class $A_0^{\beta}(\varepsilon)$ and the solution is given by (2.6) with (2.8) taken into account; for $\varkappa < -1$ the solution exists provided that condition (2.13) is fulfilled. If these conditions are fulfilled, then problem (2.1) has a unique solution in the class $A_0^{\beta}(\varepsilon)$. This solution is given by (2.6), where $\varphi_2 = 0$.

§ 3. A Carleman Type Problem with Unbounded Coefficients for a Strip

Problems of the elasticity theory can often be reduced to a Carleman type problem with coefficients polynomially increasing or decreasing at infinity. We shall consider such a case below.

We write the boundary condition of the problem in the form

$$\Phi(x) = P_n(x)G(x)\Phi(x+i\beta) + F(x), \quad -\infty < x < \infty, \tag{3.1}$$

where G(x) and F(x) satisfy the conditions discussed in §2, and $P_n(x)$ is a polynomial without real zeros. Condition (3.1) can be rewritten as

$$\Phi(x) = q[x^2 + 4\beta^2]^{[\frac{n}{2}]} (2\beta - ix)^{\delta(n)} G_0(x) \Phi(x + i\beta) + F(x), \quad (3.2)$$

where $\delta(n) = 0$ for even n and $\delta(n) = 1$ for odd n; q is a complex number; $G_0(x)$ is a Hölder class function including a point at infinity $G_0(-\infty) = G_0(\infty) = 1$.

As shown above, the function $G_0(x)$ can be represented as

$$G_0(x) = \frac{X_0(x)}{X_0(x+i\beta)}, \quad -\infty < x < \infty,$$
(3.3)

where

$$X_0(z) = \left(z - \frac{i\beta}{2}\right)^{\varkappa} \exp\left(\frac{\cosh pz}{2i\beta} \int_{-\infty}^{\infty} \frac{\ln\left[G_0(t)(\frac{t+i\beta/2}{t-i\beta/2})^{\varkappa}\right]}{\cosh pt \sinh p(t-z)} dt\right).$$
(3.4)

Write the function $[x^2 + 4\beta^2]^{\left[\frac{n}{2}\right]}(2\beta - ix)^{\delta(n)}$ in form (3.3). We shall find solutions of the problems

$$X_1(x) = (2\beta + ix)X_1(x + i\beta), \quad -\infty < x < +\infty, \tag{3.5}$$

$$X_2(x+i\beta) = (2\beta - ix)X_2(x), \quad -\infty < x < +\infty.$$
(3.6)

Applying the Fourier transformation to conditions (3.5) and (3.6), we obtain the differential equations

$$(f_1(t)e^{\beta t})' = (1 - 2\beta e^{\beta t})f_1(t), \quad -\infty < t < +\infty,$$

$$f'_2(t) = (2\beta - e^{-\beta t})f_2(t), \quad -\infty < t < +\infty,$$

where $f_1(t)$ and $f_2(t)$ denote the Fourier transforms of the functions $X_1(x)$ and $X_2(x)$.

By performing the reverse Fourier transformation of the solutions of these equations we obtain the solutions of problems (3.5) and (3.6):

$$X_1(z) = \int_{-\infty}^{+\infty} \exp\left(-\frac{1}{\beta}e^{\beta t} + 3\beta z + itz\right) dt, \quad 0 < \mathcal{I}_m z < \beta, \qquad (3.7)$$
$$X_2(z) = \int_{-\infty}^{+\infty} \exp\left(-\frac{1}{\beta}e^{-\beta t} - 2\beta t + itz\right) dt, \quad 0 < \mathcal{I}_m z < \beta. \qquad (3.8)$$

On substituting $e^{\beta t} = \beta \tau$, we have

$$X_{1}(z) = \beta^{2} \beta^{\frac{iz}{\beta}} \int_{0}^{\infty} e^{-\tau} \tau^{2+\frac{iz}{\beta}} d\tau = \beta^{2} \beta^{\frac{iz}{\beta}} \Gamma\left(3+\frac{iz}{\beta}\right),$$

$$X_{2}(z) = \beta^{-\frac{iz}{\beta}} \int_{0}^{\infty} e^{-\tau} \tau^{1-\frac{iz}{\beta}} d\tau = \beta \beta^{-\frac{iz}{\beta}} \Gamma\left(2-\frac{iz}{\beta}\right).$$
(3.9)

We introduce the notation

$$X_3(z) = \left[\frac{X_1(z)}{X_2(z)}\right]^{\left[\frac{n}{2}\right]} (X_2(z))^{-\delta(n)}, \quad 0 < \mathcal{I}_m z < \beta.$$
(3.10)

Using Stirling's formulas [11], we obtain from (3.9) and (3.10) the following representations of the functions $X_1(z)$ and $X_2(z)$ in the neighbourhood of a point at infinity:

$$|X_1(z)| = C_1(y)e^{-\frac{\pi}{2\beta}|x|}|x|^{\frac{5}{2}-\frac{y}{\beta}}\left(1+O\left(\frac{1}{x}\right)\right), \quad 0 \le y \le \beta,$$

$$|X_2(z)| = C_2(y)e^{-\frac{\pi}{2\beta}|x|}|x|^{\frac{3}{2}+\frac{y}{\beta}}\left(1+O\left(\frac{1}{x}\right)\right), \quad 0 \le y \le \beta,$$

where $C_1(y)$, $C_2(y)$ are the bounded functions that do not vanish.

By virtue of these formulas, for sufficiently large values of |z| (3.10) implies

$$|X_3(z)| = C(y) \left(|x|^{\frac{\beta-2y}{\beta}} \right)^{\left[\frac{n}{2}\right]} \left(e^{-\frac{\pi}{2\beta}|x|} |x|^{\frac{3}{2}+\frac{y}{\beta}} \right)^{-\delta(n)} \left(1 + O\left(\frac{1}{x}\right) \right).$$
(3.11)

Using equalities (3.3) and (3.11), we rewrite condition (3.2) as

$$\frac{\Phi(x)}{X(x)} - q \frac{\Phi(x+i\beta)}{X(x+i\beta)} = \frac{F(x)}{X(x)}, \quad -\infty < x < \infty, \tag{3.12}$$

where $X(z) = X_0(z)X_3(z)$.

The function $\Phi(z)/X(z)$ is holomorphic in the strip $0 < \mathcal{I}_m z < \beta$ except perhaps for the point $z = i\beta/2$, where for $\varkappa > 0$ it may have a pole of order not higher than \varkappa , and satisfies the condition

$$(\Phi(z)/X(z))e^{-\mu|z|} \to 0 \text{ for } |z| \to \infty, \quad \mu < \frac{\pi}{2\beta} + \varepsilon.$$

Write q in the form

$$q = \frac{X_4(x)}{X_4(x+i\beta)}, \quad X_4(z) = \exp\left(\frac{iz}{\beta}\ln q\right).$$

From (2.7) and (2.5) it follows that if q is not a real positive number, then a general solution of problem (3.1) is given by the formula

$$\Phi(z) = \frac{X(z)}{2i\beta} \int_{-\infty}^{\infty} \frac{\exp\left(\frac{\pi - \delta + i\gamma}{\beta}(z - t)\right)}{X(t)\sinh p(t - z)} F(t)dt + X(z)\varphi(z), \quad (3.13)$$

where $\gamma = \ln |q|, \ \delta = \arg q, \ 0 < \delta < 2\pi.$

$$\varphi(z) = \sum_{j=0}^{\varkappa -1} C_j \frac{d^j}{dz^j} \Big(\exp \frac{(\pi - \delta + i\gamma)z}{\beta} / \cosh pz \Big).$$
(3.14)

For $\varkappa \geq 0$ the solution of problem (3.1) is given by formulas (3.13) and (3.14). Note that for $\varkappa \leq 0$ it is assumed that $\varphi(z) \equiv 0$. For $\varkappa < 0$ the function X(z) has, at the point $z = \frac{i\beta}{2}$, a pole of order $-\varkappa$ and therefore the bounded solution exists in the finite part of the strip only if the conditions $\varphi(z) = 0$;

$$\int_{-\infty}^{\infty} F(t)\Psi_j(t) = 0, \quad \Psi_j(t) = \frac{d^j}{dt^j} \left(\frac{\exp(\frac{\delta - \pi - ij}{\beta})t}{\cosh pt}\right),$$
$$j = 0, \dots, (-1 - \varkappa), \tag{3.15}$$

are fulfilled. Thus, like in §2, one can easily prove that in the case of even n problem (3.1) has a solution $\Phi(z) \in A_0^{\beta}(0)$ for any $\delta \in (0, 2\pi)$, while in the case of odd n it has a solution $\Phi(z) \in A_0^{\beta}\left(\frac{\pi-2\delta}{2\beta} + \varepsilon\right)$ for $\delta \in \left(0, \frac{\pi}{2}\right]$; $\Phi(z) \in A_0^{\beta}(0)$ for $\delta \in \left(\frac{\pi}{2}, \frac{3}{2}\pi\right)$; $\Phi(z) \in A_0^{\beta}\left(\frac{2\delta-3\pi}{2\beta} + \varepsilon\right)$ for $\delta \in \left[\frac{3}{2}\pi, 2\pi\right)$, where $\varepsilon > 0$ is an arbitrarily small number.

When q > 0, by substituting

$$\Phi(z) = X_4(x)\Psi(t)$$

condition (3.12) can be reduced to the condition

$$\frac{\Psi(x)}{X(x)} - \frac{\Psi(x+i\beta)}{X(x+i\beta)} = \frac{F(x)X_4(x)}{X(x)}, \quad -\infty < x < \infty.$$
(3.16)

By virtue of formula (3.15) a general solution of problem (3.1) has the form

$$\Phi(z) = \frac{X^*(z)}{2i\beta} \int_{-\infty}^{\infty} \frac{F(t)dt}{X^*(t)\sinh p(t-z)} + X^*(z)\varphi_2(z), \qquad (3.17)$$

where $X^*(z) = X(z) \cosh p z X_4(z)$,

$$\varphi_{2}(z) = \begin{cases} \sum_{j=0}^{\varkappa -1} C_{j} \frac{d^{j}}{dz^{j}} (\tanh pz) + Cx, & \text{for } \varkappa > 0, \\ C, & \text{for } \varkappa = 0, \\ 0, & \text{for } \varkappa \leq -1, \end{cases}$$
(3.18)

 $C, C_j, j = 0, \ldots, (\varkappa - 1)$, are arbitrary constants. If $\varkappa < -1$, then the solution exists only provided that the condition

$$\int_{-\infty}^{\infty} \frac{F(t)}{X^*(z)} \cdot \frac{d^j}{dt^j} \left(\frac{1}{\cosh pt}\right) dt = 0, \quad j = 0, \dots, (-\varkappa - 2),$$

is fulfilled.

One can prove that $\Phi(z) \in A_0^\beta(\varepsilon)$ for an even n and $\Phi(z) \in A_0^\beta(\pi/(2\beta) + \varepsilon)$ for odd n; here ε is a small positive integer.

Remark 1. Formulas (3.8) and (3.9) can be obtained by applying formulas (3.3) and (3.4).

Indeed, if in formula (3.4) $G_0(t)$ is replaced by the function $(2\beta - ix)^{-1}$, then we shall have

$$X_2(z) = \exp\left(\frac{\cosh pz}{2i\beta} \int_{-\infty}^{\infty} \frac{\ln i - \ln(x + 2i\beta)}{\cosh px \sinh p(x - z)} dx\right).$$
(3.19)

By the function $\ln z$ we understand $\ln z = \ln |z| + \arg z, -\pi < \arg z < \pi$. After rewriting $\ln(x + 2i\beta)$ as

$$\ln(x+2i\beta) = \sum_{k=0}^{n} \left[\ln(x+i\beta(k+2)) - \ln(x+i\beta(k+3)) \right] + \ln(x+i\beta(3+n))$$

and substituting this expression into (3.19), by virtue of (1.3) we obtain

$$\omega(z) = \frac{\cosh pz}{2i\beta} \int_{-\infty}^{\infty} \frac{\ln i - \ln(x + 2i\beta)}{\cosh px \sinh p(x - z)} dx =$$
$$= \sum_{k=0}^{n} \left[\ln(x + i\beta(k+2)) - \ln\left(\frac{5i\beta}{2} + ki\beta\right) \right] +$$
$$+ \frac{\cosh pz}{2i\beta} \int_{-\infty}^{\infty} \frac{\ln(1+n)\beta}{\cosh pt \sinh p(t-z)} dt + O\left(\frac{1}{n}\right).$$

If we perform some simple transformations and calculate the latter integral by the formula

$$\frac{\cosh pt}{2i\beta} \int_{-\infty}^{\infty} \frac{\ln[(n+1)\beta]dx}{\cosh px \sinh p(x-z)} = \ln[(1+n)\beta] \Big(\frac{iz}{\beta} + \frac{1}{2}\Big).$$

then we shall have

~

$$\omega(z) = \sum_{k=1}^{n} \ln\left[\left(1 + \frac{\zeta}{k}\right)e^{-\frac{\zeta}{k}}\right] - \zeta\left(\ln(n+1) - \sum_{k=1}^{n}\frac{1}{k}\right) - \ln\beta^{\zeta} - \frac{5}{2}\left(\ln(n+1) - \sum_{k=1}^{n}\frac{1}{k}\right) + \ln\zeta + C_{n}, \quad \zeta = \frac{z + 2i\beta}{i\beta}.$$

Passing to the limit as $n \to +\infty$, by virtue of (3.19) we obtain

$$X_2(z) = A\zeta \prod_{1}^{\infty} \left(1 + \frac{\zeta}{k}\right) e^{-\frac{\zeta}{k}} e^{-c\zeta} \beta^{\zeta} = A\Gamma\left(2 - \frac{iz}{\beta}\right) \beta^{2-\frac{iz}{\beta}}.$$

§ 4. On a Conjugation Boundary Value Problem with Displacements

As an application of the results obtained in §2 we shall consider one kind of a conjugation problem with displacements, when the boundary is a real axis. Denote by S^+ and S^- the upper and the lower half-planes, respectively.

Consider the following problem:

Find a piecewise-holomorphic function bounded throughout the plane using the boundary condition

$$\Phi^{+}(x) = G(x)\Phi^{-}[\alpha(x)] + f(x), \quad -\infty < x < +\infty,$$
(4.1)

where G(x) and f(x) are the given functions satisfying the Hölder condition, $G(x) \neq 0, \ G(\infty) = G(-\infty) = 1, \ f(+\infty) = f(-\infty) = 0,$

$$\alpha(x) = \begin{cases} x, & x < 0, \\ bx, & x \ge 0, \end{cases}$$

b is a constant.

If we denote by \varkappa the index of the function G(x), then G(x) can be represented as [7]

$$G(x) = \frac{X^{+}(x)}{X^{-}(x)}, \quad X(z) = \begin{cases} \exp \omega(z), & z \in S^{+}, \\ \left(\frac{z+i}{z-i}\right)^{\varkappa} \exp \omega(z), & z \in S^{-}, \end{cases}$$
(4.2)
$$\omega(z) = \frac{1}{2\pi i} \int_{-\infty}^{+\infty} \frac{\ln G_{0}(t)dt}{t-z}, \quad G_{0}(x) = G(x) \left(\frac{x+i}{x-i}\right)^{\varkappa}.$$

On putting the value of G(x) into (4.1), we obtain

$$\frac{\Phi^+(x)}{X^+(x)} - \frac{\Phi^-(\alpha(x))}{X^-(x)} = \frac{f(x)}{X^+(x)}, \quad -\infty < x < +\infty.$$
(4.3)

For x < 0 condition (4.3) takes the form

$$\frac{\Phi^+(x)}{X^+(x)} - \frac{\Phi^-(x)}{X^-(x)} = \frac{f(x)}{X^+(x)}.$$
(4.4)

A general solution of problem (4.4) can be written as

$$\Phi(z) = \frac{X(z)}{2\pi i} \int_{-\infty}^{0} \frac{f(t)dt}{X^{+}(t)(t-z)} + X(z)\Phi_{0}(z).$$
(4.5)

The function $\Phi(z)$ is holomorphic on the plane cut along the positive semi-axis except perhaps for the neighbourhood of the point z = -i at which it has a pole of order \varkappa for $\varkappa > 0$.

For $\varkappa < 0$ the function X(z) has a pole of order $-\varkappa$ at the point z = -i. Therefore for a bounded solution to exist it is necessary that the condition

$$\Phi_0^{(k)}(-i) + \frac{k!}{2\pi i} \int_{-\infty}^0 \frac{f(t)dt}{X^+(t)(t+i)^{k+1}} = 0, \quad k = 0, 1, \dots, (-\varkappa - 1), (4.6)$$

be fulfilled.

If we put the value of $\Phi(z)$ into (4.3), then we have

$$\Phi_0^+(x) = G_1(x)\Phi_0^-(bx) + f_0(x), \quad 0 < x < \infty, \tag{4.7}$$

where $G_1(x) = \frac{X^-(bx)}{X^-(x)}, f_0(x) = \frac{f(x)}{X^+(x)} - A^+(x) + G_1(x)A^-(bx),$ $A(z) = \frac{1}{2\pi i} \int_{-\infty}^0 \frac{f(t)dt}{X^+(t)(t-z)}.$

The function $z = e^{\zeta}$, $\zeta = \xi + i\eta$, maps the strip $0 < \eta < 2\pi$ onto the plane having a cut along the axis x > 0.

On introducing the notation $\Phi_0(e^{\zeta}) = \Psi_0(\zeta), \ 0 < \eta < 2\pi$, we obtain

$$\Phi_0^+(x) = \Psi_0(\xi), \quad \Phi_0^-(bx) = \Psi_0(\xi + \ln b + 2\pi i), \quad -\infty < \xi < +\infty.$$
 (4.8)

Thus problem (4.7) is reduced to the problem considered in §2

$$\Psi_0(\xi) = G^+(\xi)\Psi_0(\xi + \ln b + 2\pi i) + F_0(\xi), \quad -\infty < \xi < +\infty, \quad (4.9)$$

where $G^+(\xi) = G_1(e^{\xi}), F_0(\xi) = f_0(e^{\xi}), G^*(-\infty) = G^*(\infty) = 1,$

$$\mathcal{J}_n dG^* = 0, \quad F_0(+\infty) = 0, \quad F_0(-\infty) = \frac{f(0)}{X^+(0)}$$

Since for $\varkappa > 0$ the function $\Phi_0(z)$ can have a pole of order \varkappa at the point z = -i, we seek a solution Ψ_0 of problem (4.9) in the class of functions satisfying the condition

$$\Psi_0(\zeta) \left(\frac{\zeta - \frac{3}{2}\pi i}{\zeta + \frac{3}{2}\pi i} \right)^{\varkappa} \in A_0^\beta(\mu), \quad \mu < \frac{4\pi^2}{4\pi^2 + \ln b}.$$
(4.10)

By virtue of formula (2.6) it is easy to show that a general solution of problem (4.9) is given by the formula

$$\Psi_0(\zeta) = \frac{X^*(\zeta)\cosh p\zeta}{2a} \int_{-\infty}^{+\infty} \frac{F_0(t)dt}{X^+(t)\cosh pt\sinh p(t-\zeta)} + X^*(\zeta)\Psi(\zeta), (4.11)$$

where $a = \ln b + 2\pi i$, $p = \frac{\pi i}{a}$,

$$\psi(\zeta) = \begin{cases} \sum_{k=0}^{\varkappa} c_k \coth^k p\left(\zeta - \frac{3}{2}\pi i\right), & \varkappa \ge 0, \\ c_{-1}, & \varkappa = -1 \\ 0, & \varkappa < -1 \end{cases}$$

$$X^*(\zeta) = \exp\left(\frac{\cosh p\zeta}{2a} \int_{-\infty}^{+\infty} \frac{\ln G^*(t)dt}{\cosh pt \sinh p(t-\zeta)}\right)$$

Returning to the variable z, we obtain

$$\Psi_{0}(\zeta) = \frac{X_{0}(z)}{a} \int_{0}^{+\infty} \frac{t^{2p-1} f_{0}(t) dt}{(t^{2p} - z^{2p}) X_{0}^{+}(t)} + X_{0}(z)(\varphi_{0}(z) - A), \quad (4.12)$$
$$X_{0}(z) = \exp\left(\frac{1}{a} \int_{0}^{\infty} \frac{\ln G_{1}(t) t^{2p-1}}{t^{2p} - z^{2p}} dt\right), \quad A = \frac{1}{a} \int_{0}^{\infty} \frac{t^{2p-1} f_{0}(t)}{(t^{2p} + 1) X_{0}^{*}(t)} dt.$$

With (4.5) and (4.12) taken into account we conclude that a general solution of problem (4.1) has the form

$$\Phi(z) = X(z) \left[\frac{1}{2\pi i} \int_{-\infty}^{0} \frac{f(t)dt}{X^{+}(t)(t-z)} + \frac{X_{0}(z)}{a} \int_{0}^{\infty} \frac{t^{2p-1}f_{0}(t)dt}{X_{0}^{+}(t)(t^{2p}-z^{2p})} + X_{0}(z)(\varphi_{0}(z)-A) \right],$$
(4.13)

$$\varphi_0(z) = \begin{cases} \sum_{k=0}^{\varkappa} c_k \left(\frac{z^{2p} + (-i)^{2p}}{z^{2p} - (-i)^{2p}} \right)^k, & \varkappa \ge 0, \\ c_{-1}, & \varkappa = -1, \\ 0, & \varkappa < -1. \end{cases}$$
(4.14)

The function z^{2p} is holomorphic on the plane cut along the positive axis if by this function we mean the branch for which the limit as $z \to 1$ from the upper half-plane is equal to 1 while t^{2p} denotes the function value, at the point t, of the upper edge of the cut.

For $\varkappa = -1$ the function $X_0(z)$ has a pole of first order at the point z = -i. In that case $\varphi_0(z) = C_{-1}$ and $X_0(-i) \neq 0$ and therefore the constant c_1 can be chosen so that for z = -i the expression in square brackets on the right-hand side of (4.13) would vanish. Hence when $\varkappa \geq -1$ problem (4.1) has a bounded solution for an arbitrary right-hand side. When $\varkappa < -1$, for a bounded solution to exist it is necessary and sufficient that the conditions

$$\frac{d^k}{dz^k} \Big[\frac{1}{2\pi i} \int\limits_{-\infty}^0 \frac{f(t)dt}{X^+(t)(t-z)} + \frac{X_0(z)}{a} \int\limits_0^\infty \frac{t^{2p-1} f_0(t)dt}{X_0^+(t)(t^{2p}-z^{2p})} - AX_0(z) \Big] = 0,$$

$$z = -i, \quad k = 1, \dots, -\varkappa,$$

be fulfilled. Then the solution is given by formula (4.13).

For b = 1 we have $p = \frac{1}{2}$, $X_0(z) \equiv 1$, $f_0(t) \equiv f(t)$ and formulas (4.13) and (4.14) give a solution of the conjugation problem.

Conjugation problems with displacements are investigated in [8–10] in the case with $\alpha'(t)$ belonging to the Hölder class.

References

1. R. D. Bantsuri, A contact problem for a wedge with an elastic fixing. (Russian) *Dokl. Akad. Nauk SSSR* **211**(1973), No. 4, 777–780.

2. B. A. Vasil'yev, Solution of a stationary problem of the heat conductivity theory for wedge-shaped bodies with a boundary condition of third kind. (Russian) *Differentsial'nye Uravneniya* 6(1970), No. 3, 531–537.

3. N. N. Lebedev and I. P. Skalskaya, A new method of solution of the problem of electromagnetic wave diffraction on a wedge of finite conductivity. (Russian) *Zh. Tekhn. Fiz.* **32**(1962), No. 10, 1174–1183.

4. B. V. Nuller, Deformation of an elastic wedge supported by a beam. (Russian) *Prikl. Mat. Mekh.* **38**(1975), No. 5, 876–882.

5. E. W. Barens, The linear finite differences equations of the first order. *Proc. London, Math. Soc. Ser.* 2 2(1904), 15–21.

6. Yu. I. Cherski, Normally solvable equations of smooth transition. (Russian) *Dokl. Akad. Nauk SSSR* **190**(1970), No. 1, 57–60.

7. N. I. Muskhelishvili, Singular integral equations. Boundary problems of the theory of functions and some of their applications in mathematical physics. (Russian) 3rd ed. *Nauka, Moscow*, 1968; English translation from 1st Russian ed. (1946): *P. Noordhoff, Groningen*, 1953, corrected reprint *Dover Publications, Inc., N.Y.*, 1992.

8. D. A. Kveselava, Solution of one boundary value problem of the theory of functions. (Russian) *Dokl. Akad. Nauk SSSR* **53**(1946), No. 8, 683–686.

9. D. A. Kveselava, Some boundary value problems of the theory of functions. (Russian) *Trudy Tbiliss. Mat. Inst. Razmadze* **16**(1948), 39–90.

10. G. F. Manjavidze, A boundary value problem of linear conjugation with displacements. (Russian) *Trudy Tbiliss. Mat. Inst. Razmadze* **33**(1967), 77–81.

11. V. I. Smirnov, A course on higher mathematics vol. 3, part II. (Russian) Gostekhizdat, Moscow-Leningrad, 1949.

(Received 21.04.1997)

Author's address:

A.Razmadze Mathematical Institute

Georgian Academy of Sciences 1, Aleksidze St., Tbilisi 380093

Georgia