ON THE INTEGRABILITY OF STRONG MAXIMAL FUNCTIONS CORRESPONDING TO DIFFERENT FRAMES

G. ONIANI

ABSTRACT. For the frame θ in \mathbb{R}^n , let $B_2(\theta)(x)$ $(x \in \mathbb{R}^n)$ be a family of all *n*-dimensional rectangles containing x and having edges parallel to the straight lines of θ , and let $M_{B_2(\theta)}$ be a maximal operator corresponding to $B_2(\theta)$. The main result of the paper is the following

Theorem. For any function $f \in L(1 + \ln^+ L)(\mathbb{R}^n)$ $(n \geq 2)$ there exists a measure preserving and invertible mapping $\omega : \mathbb{R}^n \to \mathbb{R}^n$ such that

1. $\{x : \omega(x) \neq x\} \subset \operatorname{supp} f;$ 2. $\sup_{\theta \in \theta(\mathbb{R}^n)} \int_{\{M_{B_2(\theta)}(f \circ \omega) > 1\}} M_{B_2(\theta)}(f \circ \omega) < \infty.$

This theorem gives a general solution of M. de Guzmán's problem that was previously studied by various authors.

1. Definitions and the Notation

Let B be a mapping defined on \mathbb{R}^n such that, for every $x \in \mathbb{R}^n$, B(x) is a family of open bounded sets in \mathbb{R}^n containing x. The maximal operator M_B corresponding to B is defined as follows: for $f \in L_{loc}(\mathbb{R}^n)$ and $x \in \mathbb{R}^n$

$$M_B(f)(x) = \sup_{R \in B(x)} \frac{1}{|R|} \int_R |f| \quad \text{if} \quad B(x) \neq \emptyset,$$

and

$$M_B(f)(x) = 0$$
 if $B(x) = \emptyset$.

A frame in \mathbb{R}^n will be called a set whose elements are *n* pairwise orthogonal straight lines passing through the origin *O*. Frames will be denoted by θ , $\theta = \{\theta^1, \ldots, \theta^n\}$. Under θ_0 will be meant a frame $\{Ox^1, \ldots, Ox^n\}$, where Ox^1, \ldots, Ox^n are the coordinate axes of \mathbb{R}^n . A set of all frames in \mathbb{R}^n will be denoted by $\theta(\mathbb{R}^n)$.

149

1072-947X/99/0300-0149\$15.00/0 © 1999 Plenum Publishing Corporation

¹⁹⁹¹ Mathematics Subject Classification. 28A15.

Key words and phrases. Strong maximal operator, rectangle, frame.

A set congruent to a set of the form $I_1 \times \cdots \times I_n$, where I_1, \ldots, I_n are intervals of positive length on the straight line, will be called an *n*-dimensional rectangle or simply a rectangle in \mathbb{R}^n .

The frame $\theta = \{\theta^1, \ldots, \theta^n\}$ for which the sides of the rectangle I are parallel to the corresponding straight lines θ^j $(j = 1, \ldots, n)$ will be called the frame of I which will be denoted by $\theta(I)$.

For a nonempty set $E \subset \theta(\mathbb{R}^n)$ we shall denote by $B_2(E)(x)$ $(x \in \mathbb{R}^n)$ a family of all rectangles I in \mathbb{R}^n with the properties $x \in I$, $\theta(I) \in E$. Instead of $B_2(\{\theta\})$ we shall write $B_2(\theta)$ when $E = \{\theta\}$, and B_2 when $\theta = \theta_0$.

Since M_{B_2} is said to be a strong maximal operator, it is natural to call $M_{B_2(\theta)}$ the strong maximal operator corresponding to the frame θ .

By $B_1(x)$ $(x \in \mathbb{R}^n)$ we denote a family of all cubic intervals in \mathbb{R}^n containing x (for n = 1 a one-dimensional interval is understood here as a square interval).

The support $\{x \in \mathbb{R}^n : f(x) \neq 0\}$ of the function $f : \mathbb{R}^n \to \mathbb{R}$ will be denoted by supp f.

2. Formulation of the Question and the Main Result

The class $L(1 + \ln^+ L)(\mathbb{R}^n)$ was characterized by Guzmán and Welland ([1, 2], Ch. II, §6) by means of the maximal operator M_{B_1} . In particular, they have shown that for $f \in L(\mathbb{R}^n)$ the following conditions are equivalent:

1.
$$f \in L(1 + \ln^+ L)(\mathbb{R}^n),$$

2. $\int_{\{M_{B_1}(f) > 1\}} M_{B_1}(f) < \infty.$

From the strong maximal Jessen–Marcinkiewicz–Zygmund's theorem it follows that if

$$f \in L(1 + \ln^+ L)^n(\mathbb{R}^n), \tag{2.1}$$

then

$$\int_{M_{B_2}(f)>1\}} M_{B_2}(f) < \infty.$$
(2.2)

Guzmán (see [2], Ch. II, §6) posed the question whether it was possible to characterize the class $L(1 + \ln^+ L)^2(\mathbb{R}^2)$ by the operator M_{B_2} as it was done for the class $L(1 + \ln^+ L)(\mathbb{R}^n)$ using the operator M_{B_1} , i.e., whether conditions (2.1) and (2.2) are equivalent for $f \in L(\mathbb{R}^2)$. Gogoladze [4, 5] and Bagby [6] answered this question in the negative.

{

It can be easily verified that much more than (2.2) is fulfilled for $f \in L(1 + \ln^+ L)^n(\mathbb{R}^n)$, in particular,

$$\sup_{\theta \in \theta(\mathbb{R}^n)} \int_{\{M_{B_2(\theta)}(f) > 1\}} M_{B_2(\theta)}(f) < \infty.$$
(2.3)

A question arises if it is possible to characterize the class $L(1+\ln^+ L)^n(\mathbb{R}^n)$ by condition (2.3), i.e., if conditions (2.1) and (2.3) are equivalent for $f \in L(\mathbb{R}^n)$ $(n \ge 2)$.

This question was answered in the negative for n = 2 in [7]. The answer remains negative for an arbitrary n > 2 as well. In particular, the following theorem is valid.

Theorem 1. For any function $f \in L(1+\ln^+ L)(\mathbb{R}^n)$ $(n \ge 2)$ there exists a measure preserving and invertible mapping $\omega : \mathbb{R}^n \to \mathbb{R}^n$ such that

1.
$$\{x : \omega(x) \neq x\} \subset \operatorname{supp} f$$
,
2. $\sup_{\theta \in \theta(\mathbb{R}^n)} \int_{\{M_{B_2(\theta)}(f \circ \omega) > 1\}} M_{B_2(\theta)}(f \circ \omega) < \infty$

Note that we had to use many new arguments to proceed from the case to n = 2 to the case of arbitrary $(n \ge 2)$.

Theorem 1 was first formulated by us in a less general for in [8].

3. AUXILIARY STATEMENTS

Throughout the discussion preceding Lemma 4 we shall consider the spaces \mathbb{R}^n with $n \geq 2$.

We shall call a strip in \mathbb{R}^n an open set bounded by two different parallel hyperplanes, i.e., a set of the form

$$\left\{ x \in \mathbb{R}^n : a < \alpha_1 x^2 + \dots + \alpha_n x^n < b \right\},\$$

where a, b (a > b) and $\alpha_1, \ldots, \alpha_n$ $(\alpha_1^2 + \cdots + \alpha_n^2 > 0)$ are some real numbers, and x^k $(k = 1, \ldots, n)$ here and everywhere below denotes the k-th coordinate of the point $x \in \mathbb{R}^n$. The strip width will be called the distance between the hyperplanes that bound the strip, i.e., the number b - a will be called the strip width.

In the sequel it will always be assumed that χ_A is the characteristic function of the set A.

Lemma 1. For every $x \in \mathbb{R}^n$ let B(x) be a family of open bounded and convex sets in \mathbb{R}^n , containing x, and let S be a strip in \mathbb{R}^n of width δ . Then

$$M_B(\chi_S)(x) < \frac{2^n \delta}{\operatorname{dist}(x,S)}$$
 when $\operatorname{dist}(x,S) \ge \delta$.

Proof. Let dist $(x, S) \ge \delta$ and $R \in B(x), R \cap S \neq \emptyset$.

Among the hyperplanes bounding S we denote by Γ the hyperplane which is the closest to x. It is obvious that $R \cap \Gamma \neq \emptyset$. For every $y \in R \cap \Gamma$ let Δ_y be a segment connecting x and y. It is assumed that $K = \bigcup_{y \in R \cap \Gamma} \Delta_y$. Since

R is convex, we have

$$K \subset R. \tag{3.1}$$

Let H be the homothety centered at x and with the coefficient

$$\alpha = \frac{\operatorname{dist}(x,S) + \delta}{\operatorname{dist}(x,S)}$$

Let us show that

$$R \cap S \subset H(K) \backslash K. \tag{3.2}$$

Indeed, assume that $z \in R \cap S$ and denote by y the point at which the segment connecting x and z intersects with Γ . Since $x, z \in R$, by virtue of the convexity of R we have $y \in R$. Therefore $y \in R \cap \Gamma$. By the definitions of the set K and homothety H we easily obtain $z \in H(\Delta_y) \subset H(K)$. $(R \cap S) \cap K = \emptyset$. Therefore $z \notin K$. Thus $z \in H(K) \setminus K$. Thus, since $z \in R \cap S$ is arbitrary, we have proved (3.2).

Using (3.1), (3.2), the definition of H and obvious inequality $\alpha^n-1<\frac{2^n\delta}{{\rm dist}(x,S)}$ we can write

$$\frac{1}{|R|} \int\limits_R \chi_{\scriptscriptstyle S} = \frac{|R \cap S|}{|R|} \leq \frac{|H(K) \backslash K|}{|K|} = \frac{(\alpha^n - 1)|K|}{|K|} < \frac{2^n \delta}{\operatorname{dist}(x,S)},$$

which, obviously, proves the lemma. \Box

For the rectangle I in \mathbb{R}^n having pairwise orthogonal edges of lengths $\delta_1, \delta_2, \ldots, \delta_n$, where $\delta_1 \leq \delta_2 \leq \cdots \leq \delta_n$, we introduce the notation:

(1) r(I) is a number δ_2/δ_1 ;

(2) when r(I) > 1, for $h \ge 1$, J(I,h) is an open rectangle with the following properties: J(I,h) has the same center and frame as I; the length of the edges of J(I,h) parallel to the edges of I of the length δ_1 is equal to $(2^{n+1}h+1)\delta_1$, while the length of the edges of J(I,h) parallel to the edges of I of length δ_j (j = 2, ..., n) is equal to $3\delta_j$;

(3) for r(I) > 1, ℓ_I is a straight line passing through O and parallel to the edges of I of length δ_1 .

For the straight line ℓ in \mathbb{R}^n and $0 < \varepsilon < \pi/4$ we assume

$$E(\ell,\varepsilon) = \left\{ \theta \in \theta(\mathbb{R}^n) : \angle (\ell,\theta^j) < \pi/2 - \varepsilon, \ j = 1, \dots, n \right\},\$$

where $\angle(\cdot, \cdot)$ is the angle lying between the two straight lines.

Lemma 2. Let I be a rectangle in \mathbb{R}^n , h > 1, $0 < \varepsilon < \pi/4$, $r(I) > \frac{nh}{\sin \varepsilon}$, and $E = E(\ell_I, \varepsilon)$. Then

$$\left\{M_{B_2(E)}(h\chi_I) > 1\right\} \subset J(I,h),$$

and therefore

$$|\{M_{B_2(E)}(h\chi_I) > 1\}| \le 9^n h|I|.$$

Proof. Without loss of generality we assume that

$$I = (-\delta_1/2, \delta_1/2) \times \cdot \times (-\delta_n/2, \delta_n/2),$$

where $\delta_1 < \delta_1 \leq \cdots \leq \delta_n$. We write

$$S_{1} = \left\{ x \in \mathbb{R}^{n} : |x^{1}| < \left(2^{n}h + \frac{1}{2}\right)\delta_{1} \right\},\$$

$$S_{j} = \left\{ x \in \mathbb{R}^{n} : |x^{j}| < 3\delta_{j}/2 \right\} \quad (j = 2, \dots, n).$$

As is easily seen, J(I, h) is the intersection of the strips S_1, \ldots, S_n .

Let $S = \{x \in \mathbb{R}^n : |x^1| < \delta_1/2\}$ and $x \in S_1$. Obviously, dist $(x, S) \ge 2^n h \delta_1$. Now by lemma 1 we write

$$M_{B_{2}(E)}(h\chi_{I})(x) = hM_{B_{2}(E)}(\chi_{I})(x) \le hM_{B_{2}(E)}(\chi_{S})(x) < \frac{h2^{n}\delta_{1}}{\operatorname{dist}(x,S)} \le 1.$$

Hence we conclude that

$$\{M_{B_2(E)}(h\chi_I) > 1\} \subset S_1.$$
(3.3)

Consider arbitrary $2 \leq j \leq n$. Let $x \notin S_j$, $J \in B_2(E)(x)$, and $J \cap I \neq \emptyset$. Obviously, dist $(x, I) \geq \delta_j$, and we have

$$\operatorname{dist}(x, I) \leq \operatorname{diam} I < t_1 + t_2 + \dots + t_n,$$

where t_1, t_2, \ldots, t_n are lengths of orthogonal edges of J. Therefore there exists a side of J with the length greater than δ_j/n . We can represent J as a union of pairwise nonintersecting intervals equal and parallel to abovementioned edge: $J = \bigcup_{\alpha \in T} \Delta_{\alpha}$. Obviously,

$$|\Delta_{\alpha}|_{1} > \delta_{j}/n \quad (\alpha \in T).$$

$$(3.4)$$

(Here and everywhere below, for the set A contained in some k-dimensional (k = 1, ..., n - 1) affine subspace \mathbb{R}^n , we denote by $|A|_k$ k-dimensional measure of A.)

Let us prove that

$$\frac{h|\Delta_{\alpha} \cap I|_1}{|\Delta_{\alpha}|_1} \le 1 \quad (\alpha \in T).$$
(3.5)

Indeed, let ℓ be the straight line containing the segment Δ_{α} . It is easy to see that $|\ell \cap S|_1 = \delta_1 / \cos \angle (\ell, Ox^1)$. $J \in B_2(E)(x)$, Therefore $\angle (\ell, Ox^1) < \delta_1 / \cos \angle (\ell, Ox^1)$.

 $\pi/2 - \varepsilon$. Consequently, $|\ell \cap S|_1 \leq \frac{\delta_1}{\cos(\pi/2-\varepsilon)} = \frac{\delta_1}{\sin\varepsilon}$, which by virtue of (3.4) and the inequality $\delta_j > r(I)\delta_1 \geq \frac{nh\delta_1}{\sin\varepsilon}$ implies

$$\frac{h|\Delta_{\alpha} \cap I|_1}{|\Delta_{\alpha}|_1} \le \frac{h|\ell \cap S|_1}{\delta_j/n} \le \frac{h\delta_1}{\sin\varepsilon} \frac{\sin\varepsilon}{h\delta_1} = 1.$$

It is not difficult to verify that

$$\frac{1}{|J|} \int_{J} h\chi_{I} = \frac{h|J \cap I|}{|J|} \le \sup_{\alpha \in T} \frac{h|\Delta_{\alpha} \cap I|_{1}}{|\Delta_{\alpha}|_{1}}.$$

Hence, by (3.5),

$$\frac{1}{|J|} \int_{I} h\chi_{I} \le 1,$$

which, taking into account the arbitrariness of $J \in B_2(E)(x)$, $L \cap I \neq \emptyset$, allowsus to conclude that

$$M_{B_2(E)}(h\chi_I)(x) \le 1 \quad (x \notin S_j, \quad 2 \le j \le n).$$

This and (3.3) imply

$$\left\{M_{B_2(E)}(h\chi_I) > 1\right\} \subset \bigcap_{j=1}^n S_j = J(I,h). \quad \Box$$

Lemma 3. If among the pairwise different straight lines ℓ_1, \ldots, ℓ_k $(k \ge n)$ in \mathbb{R}^n which pass through the same point none of n lie in the same hyperplane, then there exists $\varepsilon > 0$ such that for every straight line ℓ in \mathbb{R}^n and every $1 \le k_1 < k_2 < \cdots < k_n \le k$

$$\min_{1 \le j \le n} \angle (\ell, \ell_{kj}) < \frac{\pi}{2} - \varepsilon$$

Proof. Let $x_j \in \mathbb{R}^n$, $||x_j|| = 1$ ($||\cdot||$ is the norm in \mathbb{R}^n , $j = 1, \ldots, n$) be the direction vector of the straight line ℓ_j . If we assume the contrary to the assertion of the lemma, then for every $m \in \mathbb{N}$ there exist $y_m \in \mathbb{R}^n$, $||y_m|| = 1$, and numbers $1 \leq k_1(m) < k_2(m) < \cdots k_n(m) \leq k$ such that

$$\operatorname{arccos}\left|(y_m, x_{k_j(m)})\right| > \frac{\pi}{2} - \frac{1}{m}$$

for j = 1, ..., n, where (\cdot, \cdot) is the scalar product in \mathbb{R}^n . Hence by the compactness of the unit sphere in \mathbb{R}^n and the continuity of the scalar product there exist $y \in \mathbb{R}^n$, ||y|| = 1, and $1 \le k_1 < k_2 < \cdots < k_n \le k$ such that

$$(y, x_{k_i}) = 0$$

for j = 1, ..., n. This implies that the points $x_{k_1}, ..., x_{k_n}$ belong to the hyperplane which is orthogonal to y. Thus the straight lines $\ell_{k_1}, ..., \ell_{k_n}$ lie in the same hyperplane which contradicts the condition of the lemma. \Box

Lemma 4. Let f be a continuous function on \mathbb{R}^n , $\theta \in \theta(\mathbb{R}^n)$, $\lambda > 0$, and an open set G contain $\{M_{B_2(\theta)}(f) > \lambda\}$. If for the rectangle I in \mathbb{R}^n with $\theta(I) = \theta$, $I \setminus G \neq \emptyset$, then

$$\int\limits_{I\cap G}|f|\leq \lambda |I\cap G|.$$

Proof. We prove the lemma by induction with respect to n. For n = 1 the proof is obvious. Consider the passage from n-1 to n.

Without loss of generality we assume that $\theta = \theta_0$ and I is closed. Introduce the notation:

$$\Gamma_{t} = \left\{ x \in \mathbb{R}^{n} : x^{1} = t \right\}, \\
I_{t} = I \cap \Gamma_{t}, \quad G_{t} = G \cap \Gamma_{t}, \\
J = \left\{ t \in \mathbb{R}^{n} : I_{t} \neq \varnothing \right\}, \\
S_{1} = \left\{ t \in J : I_{t} \subset G_{t} \right\}, \\
S_{2} = \left\{ t \in J : I_{t} \setminus G_{t} \neq \varnothing \right\}.$$
($t \in \mathbb{R}$)

It is easy to see that S_1 is open by the natural topology on the interval J. Therefore S_1 divides into pairwise nonintersecting intervals $\{\delta_k\}_{k \in T \subset \mathbb{N}}$. Obviously, the *n*-dimensional rectangles $\Delta_k = \bigcup_{t \in \delta_k} I_t$ $(k \in T)$ satisfy the conditions

$$\partial \Delta_k \cap \partial G \neq \emptyset \quad (k \in T),$$
(3.6)

where $\partial \Delta_k$ and ∂G are the boundaries of Δ_k and G, respectively;

$$\theta(\Delta_k) = \theta(I) = \theta_0 \quad \text{and} \quad \Delta_k \subset I \cap G \quad (k \in T),$$
(3.7)

$$\Delta_k \cap \Delta_m = \emptyset \quad (k \neq m). \tag{3.8}$$

By the conditions of the lemma, $M_{B_2}(f)(x) \leq \lambda$ for $x \in \partial G$ and therefore, with (3.6) and (3.7) taken into account, we have

$$\int_{\Delta_k} |f| \le \lambda |\Delta_k| \quad (k \in T),$$

which on account to (3.8) implies

$$\int_{\substack{\bigcup\\k\in T}} |f| \le \lambda \Big| \bigcup_{k\in T} \Delta_k \Big|.$$
(3.9)

Estimate now the integral of |f| on $(I \cap G) \setminus \bigcup_{k \in T} \Delta_k$. Let M be an (n-1)dimensional strong maximal operator. For each $t \in \mathbb{R}$ consider the function $g_t(y) = f(t, y) \ (y \in \mathbb{R}^{n-1})$ and assume that

$$F(t,y) = M(g_t)(y) \quad (t \in \mathbb{R}, \quad y \in \mathbb{R}^{n-1}).$$

For $t \in S_2$ we have

$$\left\{F(t,\cdot) > \lambda\right\} \subset G_t. \tag{3.10}$$

Indeed, assume the contrary, i.e., there exist $t_0 \in S_2$, $y_0 \in \mathbb{R}^{n-1}$ and an (n-1)-dimensional interval R such that $(t_0, y_0) \notin G_{t_0}, R \ni y_0$, and

$$\int\limits_{R} |g_{t_0}(y)| \, dy \ge \lambda |R|_{n-1}.$$

Then by the continuity of f, for a sufficiently small one-dimensional interval $\Delta \ni t_0$ we shall have

$$\int_{\Delta \times R} |f(t,y)| \, dt \, dy > \lambda |\Delta \times R|$$

Hence $M_{B_2}(f)(t_0, y_0) > \lambda$. On the other hand, since $(t_0, y_0) \notin G_{t_0}$, we have $(t_0, y_0) \notin \overline{G} \supset \{M_{B_2}(f) > \lambda\}$. The obtained contradiction proves (3.10). By virtue of (3.10) and the induction assumption we easily obtain

By virtue of
$$(3.10)$$
 and the induction assumption we easily obtain

$$\int_{I_t \cap G_t} |f(t,y)| \, dy \le \lambda |I_t \cap G_t|_{n-1}$$

for $t \in S_2$.

Thus we can immediately write

$$\int_{I\cap G\setminus \bigcup_{k\in T} \Delta_k} |f| = \int_{S_2} \left[\int_{I_t\cap G_t} |f(t,y)| \, dy \right] dt \le \\ \le \int_{S_2} \lambda |I_t \cap G_t| \, dt = \lambda \Big| (I\cap G) \backslash \bigcup_{k\in T} \Delta_k \Big|.$$

whence by (3.7) and (3.9) we conclude that Lemma 4 is valid. \Box

Denote by $\overline{L}(\mathbb{R}^n)$ a class of all functions $f \in L(\mathbb{R}^n)$ for each of which there exists, for $\varepsilon > 0$, a continuous function $g \in L(\mathbb{R}^n)$ on \mathbb{R}^n such that $|g(x)| \leq |f(x)|$ almost everywhere on \mathbb{R}^n , and $||f - g||_1 < \varepsilon$.

Lemma 5. Let $f \in \overline{L}(\mathbb{R}^n)$, $\theta \in \theta(\mathbb{R}^n)$, $\lambda > 0$, and then open set G contain $\{M_{B_2(\theta)}(f) > \lambda\}$. If for the rectangle I in \mathbb{R}^n with $\theta(I) = \theta$, $I \setminus G \neq \emptyset$, then

$$\int_{I\cap G} |f| \le \lambda |I\cap G|$$

Proof. $f \in \overline{L}(\mathbb{R}^n)$. Therefore for arbitrarily given $\varepsilon > 0$ there exists a continuous function $g \in L(\mathbb{R}^n)$ on \mathbb{R}^n such that $|g(x)| \leq |f(x)|$ almost everywhere on \mathbb{R}^n , and $||f - g||_1 < \varepsilon$. It is obvious that

$$\left\{M_{B_2(\theta)}(g) > \lambda\right\} \subset \left\{M_{B_2(\theta)}(f) > \lambda\right\} \subset G.$$

Now by Lemma 4

$$\int_{I\cap G} |g| \le \lambda |I\cap G|,$$

and therefore

$$\int\limits_{I\cap G}|f|-\varepsilon\leq\lambda|I\cap G|,$$

whence by the arbitrariness of $\varepsilon > 0$ we conclude that Lemma 5 is valid. \Box

Lemma 6. Let $f_k \in \overline{L}(\mathbb{R}^n)$, $f_k \ge 0$ $(k \in \mathbb{N})$, $E \subset \theta(\mathbb{R}^n)$, $E \ne \emptyset$, $\lambda > 0$, and let for $k, m \in \mathbb{N}$ and $k \ne m$ the following conditions be fulfilled:

$$\begin{aligned} \sup f_k \cap \sup f_m &= \varnothing, \\ \sup f_k \cap \left\{ M_{B_2(E)}(f_m) > \lambda \right\} &= \varnothing, \\ \left\{ M_{B_2(E)}(f_k) > \lambda \right\} \cap \left\{ M_{B_2(E)}(f_m) > \lambda \right\} &= \varnothing. \end{aligned}$$

Then

$$\left\{M_{B_2(E)}\left(\sum_{k=1}^m f_k\right) > \lambda\right\} = \bigcup_{k=1}^\infty \left\{M_{B_2(E)}(f_k) > \lambda\right\}.$$

Proof. Denote $G_k = \{M_{B_2(E)}(f_k) > \lambda\}, k \in \mathbb{N}$. For each $k \in \mathbb{N}$

$$f_k(x) \le \lambda$$
 almost everywhere on $\mathbb{R}^n \setminus G_k$. (3.11)

Indeed, otherwise, since the differential bases $B_2(\theta)$, $\theta \in \theta(\mathbb{R}^n)$, are dense (see, for e.g., [2], Ch.II, §3), for arbitrary $\theta \in E$ and $A_j = (\mathbb{R}^n \setminus G_k) \cap \{f_k > \lambda + 1/j\}$ $(j \in \mathbb{N})$ we shall have

$$\lim_{I \in B_2(\theta)(x), \text{ diam } I \to 0} \frac{|I \cap A_j|}{|I|} \quad \text{for almost all} \quad x \in A_j.$$

Hence $M_{B_2(E)}(f_k) \ge M_{B_2(\theta)}(f_k) > \lambda$ for almost all $x \in (\mathbb{R}^n \setminus G_k) \cap \{f_k > \lambda\}$, which contradicts the definition of G_k .

By (3.11) and the condition of the lemma we write

$$\sum_{k=1}^{\infty} f_k(x) \le \lambda \quad \text{for almost all} \quad x \notin \bigcup_{k=1}^{\infty} G_k.$$

Hence, by the conditions of the lemma and by Lemma 5, we find that for every $x \notin \bigcup_{k=1}^{\infty} G_k$ and $I \in B_2(E)(x)$

$$\begin{split} \int_{I} \sum_{k=1}^{\infty} f_k &\leq \sum_{k=1}^{\infty} \int_{I \cap G_k} f_k + \int_{I \setminus \bigcup_{k=1}^{\infty} G_k} \sum_{k=1}^{\infty} f_k \leq \\ &\leq \sum_{k=1}^{\infty} \lambda |I \cap G_k| + \lambda \Big| I \setminus \bigcup_{k=1}^{\infty} G_k \Big| = \lambda |I|. \end{split}$$

Therefore

$$M_{B_2(E)}\Big(\sum_{k=1}^{\infty} f_k\Big)(x) \le \lambda \quad \text{for} \quad x \notin \bigcup_{k=1}^{\infty} G_k. \quad \Box$$

The next assertion belongs to Jessen, Marcinkiewicz, and Zygmund and is referred to as the strong maximal theorem (see [3] or [2], Ch. II, §3).

Theorem. If $f \in L(1 + \ln^+ L)^{n-1}(\mathbb{R}^n)$, then

$$\left|\left\{M_{B_2}(f) > \lambda\right\}\right| \le c_1 \int_{\mathbb{R}^n} \frac{|f|}{\lambda} \left(1 + \ln^+ \frac{|f|}{\lambda}\right)^{n-1} \quad (\lambda > 0),$$

where c_1 is the constant depending only on n.

The foollowing lemma is a simple improvement of this result.

Lemma 7. If $f \in L(1 + \ln^+ L)^{n-1}(\mathbb{R}^n)$, then for every $\theta \in \theta(\mathbb{R}^n)$

$$\left|\left\{M_{B_2(\theta)}(f) > \lambda\right\}\right| \le c_2 \int_{\{|f| > \lambda/2\}} \frac{|f|}{\lambda} \left(1 + \ln \frac{2|f|}{\lambda}\right)^{n-1} \quad (\lambda > 0),$$

where the constant c_2 depends only on n.

Proof. For arbitrary fixed $\lambda > 0$ assume $f_* = f \chi_{\{|f| \le \lambda/2\}}$ and $f^* = f \chi_{\{|f| > \lambda/2\}}$. $f = f_* + f^*$. Therefore $M_{B_2}(f) \le M_{B_2}(f_*) + M_{B_2}(f^*)$. Hence

$$\{M_{B_2} > \lambda\} \subset \{M_{B_2}(f_*) > \lambda/2\} \cup \{M_{B_2}(f^*) > \lambda/2\}$$

But $\{M_{B_2}(f_*) > \lambda/2\} = \emptyset$ and therefore by the strong maximal theorem

$$\left|\left\{M_{B_{2}}(f) > \lambda\right\}\right| \leq \left|\left\{M_{B_{2}}(f^{*}) > \lambda/2\right\}\right| \leq c_{1} \int_{\mathbb{R}^{n}} \frac{2|f^{*}|}{\lambda} \left(1 + \ln^{+} \frac{2|f^{*}|}{\lambda}\right)^{n-1} \leq \\ \leq 2c_{1} \int_{\{|f| > \lambda/2\}} \frac{|f|}{\lambda} \left(1 + \ln \frac{2|f|}{\lambda}\right)^{n-1}.$$
(3.12)

Let $\gamma_{\theta}, \theta \in \theta(\mathbb{R}^n)$, be a rotation such that $\theta = \{\gamma_{\theta}(Ox^1), \ldots, \gamma_{\theta}(Ox^n)\}$. In view of the fact that the rotation is a measure preserving mapping, we readily obtain

$$M_{B_2(\theta)}(f)(x) = M_{B_2}(f \circ \gamma_{\theta}) \left(\gamma_{\theta}^{-1}(x)\right) \quad (x \in \mathbb{R}^n)$$
(3.13)

Therefore

$$\left|\left\{M_{B_2(\theta)}(f) > \lambda\right\}\right| = \left|\left\{M_{B_2}(f \circ \gamma_\theta) > \lambda\right\}\right| \quad (\lambda > 0).$$

By this and (3.12) we conclude that the lemma is valid. \Box

Lemma 8. If $f \in L(1 + \ln^+ L)^n(\mathbb{R}^n)$, then for every $\theta \in \theta(\mathbb{R}^n)$

where the constant c_3 depends only on n.

Proof. Let $f \in L(1 + \ln^+ L)^n(\mathbb{R}^n)$ and $\lambda > 0$. We have

$$\int_{\{M_{B_2}(\theta)(f)>\lambda\}} M_{B_2}(f) = -\int_{\lambda}^{\infty} t \, dF(t) = \left[-tF(t)\right]_{\lambda}^{\infty} + \int_{\lambda}^{\infty} F(t) \, dt$$

where $F(t) = |\{M_{B_2}(f) > t\}|$ (t > 0). By Lemma 7

$$tF(t) \le c_2 \int_{\{|f| > t/2\}} |f| \left(1 + \ln \frac{2|f|}{t}\right)^{n-1} \quad (t > 0).$$
(3.14)

Hence

$$\int_{\{M_{B_2}(\theta)(f)>\lambda\}} M_{B_2}(f) = \lambda F(\lambda) + \int_{\lambda}^{\infty} F(t) dt.$$
(3.15)

Lemma 7 yields

$$\int_{\lambda}^{\infty} F(t) dt \le c_2 \int_{\lambda}^{\infty} \int_{\{|f(x)| > t/2\}} \frac{|f(x)|}{t} \left(1 + \ln \frac{2|f(x)|}{t}\right)^{n-1} dx dt =$$

$$= c_2 \int_{\{|f(x)| > \lambda/2\}} \int_{\lambda}^{2|f(x)|} \frac{|f(x)|}{t} \left(1 + \ln \frac{2|f(x)|}{t}\right)^{n-1} dt dx \le$$

$$\le c_2 \int_{\{|f(x)| > \lambda/2\}} \int_{\lambda}^{2|f(x)|} \frac{|f(x)|}{t} \left(1 + \ln \frac{2|f(x)|}{\lambda}\right)^{n-1} dt dx \le$$

$$\le c_2 \int_{\{|f(x)| > \lambda/2\}} |f(x)| \left(1 + \ln \frac{2|f(x)|}{\lambda}\right)^n dx,$$

whence with regard for (3.14) and (3.15) we obtain

$$\int_{\{M_{B_2}(f)>\lambda\}} M_{B_2}(f) \le 2c_2 \int_{\mathbb{R}^n} |f| \left(1 + \ln^+ \frac{2|f|}{\lambda}\right)^n \quad (\lambda > 0)$$
(3.16)

for $f \in L(1 + \ln^+ L)^n(\mathbb{R}^n)$. (3.13) readily implies

$$\int_{\{M_{B_2(\theta)}(f)>\lambda\}} M_{B_2(\theta)}(f) = \int_{\{M_{B_2}(f \circ \gamma_\theta)>\lambda\}} M_{B_2}(f \circ \gamma_\theta) \quad (\lambda > 0) \quad (3.17)$$

for $f \in L(1 + \ln^+ L)^n(\mathbb{R}^n)$ and $\theta \in \theta(\mathbb{R}^n)$.

Since the rotation is the measure preserving mapping, by (3.16) and (3.17) we immediately conclude that Lemma 8 is valid. \Box

Lemma 9. Let $f \in L(1 + \ln^+ L)(\mathbb{R}^n)$, $g : \mathbb{R}^n \to \mathbb{R}$ be a measurable function, and a, b > 0 and $\lambda \ge 0$. If

$$\left|\left\{|g|>t\right\}\right| \le \frac{a}{t} \int_{\{|f|>bt\}} |f| \quad (t \ge \lambda), \tag{3.18}$$

then

$$\int_{\{|g|>\lambda\}} |g| \le a \int_{\mathbb{R}^n} |f| \left(1 + \ln^+ \frac{|f|}{b\lambda}\right).$$

Proof. We have

$$\int_{\{|g|>\lambda\}} |g| = -\int_{\lambda}^{\infty} t \, dF(t) = \left[-tF(t)\right]_{\lambda}^{\infty} + \int_{\lambda}^{\infty} F(t) \, dt,$$

where $F(t) = |\{|g| > t\}|$ $(t \ge 0)$. By (3.18)

$$tF(t) \le a \int_{\{|f| > bt\}} |f| \quad (t \ge \lambda).$$
(3.19)

Hence

$$\int_{\{|g|>\lambda\}} |g| = \lambda F(\lambda) + \int_{\lambda}^{\infty} F(t) dt.$$
(3.20)

By (3.18)

$$\begin{split} & \int_{\lambda}^{\infty} F(t) \, dt \leq a \int_{\lambda}^{\infty} \frac{1}{t} \int_{\{|f(x)| > bt\}} |f(x)| \, dx \, dt = \\ & = a \int_{\{|f(x)| > b\lambda\}} |f(x)| \int_{\lambda}^{|f(x)|/b} \frac{dt}{t} \, dx = a \int_{\{|f(x)| > b\lambda\}} |f(x)| \ln \frac{|f(x)|}{b\lambda} \, dx. \end{split}$$

Hence with (3.19) and (3.20) taken into account, we conclude that Lemma 9 is valid. $\hfill\square$

Lemma 10. Let f_1 and f_2 be the nonnegative measurable functions defined on \mathbb{R}^n . Then

$$\int_{\{f_1+f_2>2\lambda\}} (f_1+f_2) \le (1+\lambda) \left(\int_{\{f_1>\lambda\}} f_1 + \int_{\{f_2>\lambda\}} f_2 \right) \quad (\lambda \ge 0).$$

Proof. The validity of the lemma follows from the following relations easy to verify:

$$(1) \int_{\{f_1+f_2>2\lambda\}} (f_1+f_2) \leq \int_{\{f_1>\lambda\}\cup\{f_2>\lambda\}} (f_1+f_2);$$

$$(2) \int_{\{f_1>\lambda\}\cup\{f_2>\lambda\}} f_j \leq \int_{\{f_j>\lambda\}} f_j + \lambda|\{f_i>\lambda\}|, \text{ where } j, i \in \overline{1,2} \text{ and } j \neq i. \quad \Box$$

The set $E \subset \mathbb{R}^n$ is called elementary if it is a union of a finite number of *n*-dimensional intervals.

Lemma 11. Let A be a subset of \mathbb{R}^n of positive measure. Then for each $\delta_k > 0$ $(k \in \mathbb{N})$ with $\sum_{k=1}^{\infty} \delta_k < |A|$ and $\varepsilon_k > 0$ $(k \in \mathbb{N})$ there exist pairwise nonintersecting elementary sets G_k $(k \in \mathbb{N})$ such that

 $|G_k| = \delta_k$ and $|G_k \setminus A| < \varepsilon_k$.

Proof. Let us construct the sequence $\{G_k\}$ with the needed properties. For this we shall need the following simple facts:

(1) For each measurable set E and number δ with $0 \leq \delta \leq |E|$ there exists a measurable set $E' \subset E$ with $|E'| = \delta$;

(2) For each open set $E \subset \mathbb{R}^n$ and number δ with $0 < \delta < |E|$ there exists an elementary set $E' \subset E$ with $|E'| = \delta$.

By virtue of (1), there exists $E \subset A$ with $|E| = \delta_1$. Let an open set Q be such that $Q \supset E$, $|Q| > |E| = \delta_1$ and $|Q \setminus E| < \varepsilon_1$. According to (2), there exists an elementary set $G_1 \subset Q$ with $|G_1| = \delta_1$. Obviously, $|G_1 \setminus A| \le |Q \setminus E| < \varepsilon_1$.

Suppose the pairwise nonintersecting elementary sets G_1, \ldots, G_k with the properties

$$|G_j| = \delta_j$$
 and $|G_j \setminus A| < \varepsilon_j$ $(j \in \overline{1, k})$

have already been constructed. Then

$$\left|A \setminus \bigcup_{j=1}^{k} (\overline{G}_j \cap A)\right| \ge |A| - \sum_{j=1}^{k} \delta_j > \delta_{k+1},$$

where \overline{G}_j is the closure of G_j . Therefore by (1), there exists

$$E \subset A \backslash \bigcup_{j=1}^{k} (\overline{G}_j \cap A)$$

with $|E| = \delta_{k+1}$. We can easily obtain an open set $Q \supset E$ with the properties

$$Q \cap \bigcup_{j=1}^{\kappa} \overline{G}_j = \emptyset, \quad |Q| > |E| = \delta_{k+1}, \quad |Q \setminus E| < \varepsilon_{k+1}.$$

By (2), we can choose an elementary set $G_{k+1} \subset Q$ such that $|G_{k+1}| = \delta_{k+1}$. By virtue of the properties of Q we have

$$|G_{k+1} \setminus A| \le |Q \setminus E| < \varepsilon_{k+1}$$
$$G_{k+1} \cap \bigcup_{j=1}^{k} G_j = \emptyset,$$

which obviously proves Lemma 11. \Box

We shall need the following simple lemma (see [2], Ch. III, $\S1$).

Lemma 12. Let G be an open bounded set in \mathbb{R}^n , and K be a compact set in \mathbb{R}^n with |K| > 0. Then there exists a sequence $\{K_k\}$ of pairwise nonintersecting sets, homothetic to K, contained in G and such that $|G \setminus \bigcup K_k| = 0$.

We shall also need the following well-known fact from the measure theory (see, e.g., [9], Ch. "Uniform Approximation").

Lemma 13. For every measurable sets $A_1, A_2 \subset \mathbb{R}^n$, $|A_1| = |A_2|$, there exists a measure preserving and invertible mapping $\omega : A_1 \to A_2$.

4. Proof of Theorem 1

Without loss of generality we assume that $f \ge 0$ and $f \notin (1+\ln^+ L)^n (\mathbb{R}^n)$. Denote

$$G = \operatorname{supp} f, \quad A_k = \{k - 1 \le f < k\} \ (k \in \mathbb{N}),$$
$$k_0 = \min\left\{k \ge 2 : \sum_{m=k}^{\infty} 9^m m |A_m| < |G|\right\},$$
$$N = \{k \ge k_0 : |A_k| > 0\}.$$

Choose natural numbers $m_k \ge n \ (k \in N)$ such that

$$\sum_{k \in N} \frac{k(\ln k)^n |A_k|}{m_k} < 1.$$
(4.1)

For $k \in N$, let $\ell_{k,1}, \ldots, \ell_{k,m_k}$ be the straight lines passing through the origin with none of n lying in the same hyperplane. Then by Lemma 2 there exists $\varepsilon_k > 0$ such that

$$\min_{1 \le j \le n} \angle (\ell, \ell_{k,\nu_j}) < \frac{\pi}{2} - \varepsilon_k \tag{4.2}$$

for every $1 \le \nu_1 < \nu_2 < \cdots < \nu_n \le m_k$ and for every straight line ℓ .

For every $k \in N$ and $m \in \overline{1, m_k}$ let us consider the rectangle $I_{k,m}$ with the properties:

$$r(I_{k,m}) \ge \frac{4kn}{\sin \varepsilon_k}, \quad |I_{k,m}| = \frac{|A_k|}{m_k}, \quad \ell_{I_{k,m}} = \ell_{k,m}.$$
 (4.3)

Denote $J_{k,m} = J(I_{k,m}, 4k), E_{k,m} = E(\ell_{k,m}, \varepsilon_k) \ (k \in N, m \in \overline{1, m_k}).$ By Lemma 2

$$\{M_{B_2(E_{k,m})}(4k\chi_{I_{k,m}}) > 1\} \subset J_{k,m}.$$

From the definition of k_0 and $J_{k,m}$ and from (4.3), we conclude by virtue of Lemma 11 that there exist pairwise nonintersecting open sets $Q_{k,m}$ such that

$$Q_{k,m}| = |J_{k,m}|$$
 and $|Q_{k,m} \setminus G| < \frac{1}{2^k m_k}$.

For each $k \in N$ and $m \in \overline{1, m_k}$ we complete $Q_{k,m}$ with pairwise nonintersecting rectangles $\{J_{k,m,q}\}$ which are homothetic to the rectangle $J_{k,m}$ (see Lemma 12), i.e.,

$$\begin{aligned} J_{k,m,q} &= H_{k,m,q}(J_{k,m}), & \text{where } H_{k,m,q} \text{ is the homothety } (q \in \mathbb{N}), \\ J_{k,m,q} &\subset Q_{k,m} \quad (q \in \mathbb{N}), \\ J_{k,m,q} &\cap J_{k,m,q'} = \varnothing \quad (q \neq q'), \\ \left| Q_{k,m} \setminus \bigcup_{q \in \mathbb{N}} J_{k,m,q} \right| = 0. \end{aligned}$$

Let $I_{k,m,q} = H_{k,m,q}(I_{k,m})$ $(k \in N, m \in \overline{1, m_k}, q \in \mathbb{N})$. Because of the homothety properties we can easily see that

$$J_{k,m,q} = J(I_{k,m,q}, 4k), (4.4)$$

$$\{M_{B_2(E_{k,m})}(4k\chi_{I_{k,m,q}}) > 1\} \subset J_{k,m,q}$$
(4.5)

for $k \in N$, $m \in \overline{1, m_k}$, $q \in \mathbb{N}$, and

$$\sum_{q \in \mathbb{N}} |I_{k,m,q}| = |I_{k,m}| = \frac{|A_k|}{m_k}$$
(4.6)

for $k \in N$, $m \in \overline{1, m_k}$.

Denote

$$\begin{split} g_{k,m} &= \sup \left\{ k \chi_{I_{k,m,q}} : q \in \mathbb{N} \right\} \quad (k \in N, \ m \in \overline{1, m_k}), \\ g &= \sup \left\{ g_{k,m} : k \in N, \ m \in \overline{1, m_k} \right\}, \end{split}$$

and prove that

$$\sup_{\theta \in \theta(\mathbb{R}^n)} \int_{\{M_{B_2(\theta)}(g) > 1/2\}} M_{B_2(\theta)}(g) < \infty.$$

$$(4.7)$$

The following estimate is valid:

card
$$S_{\theta,k} < n^2 \quad (\theta \in \theta(\mathbb{R}^n), \quad k \in N),$$
 (4.8)

where $S_{\theta,k} = \{m \in \overline{1, m_k} : \theta \notin E_{k,m}\}$. Indeed, let us assume the contrary, i.e., that $\operatorname{card} S_{\theta,k} \geq n^2$ for some $\theta \in \theta(\mathbb{R}^n)$ and $k \in N$. Then there exist $1 \leq \nu_1 < \cdots < \nu_{n^2} \leq m_k$ such that $\theta \in E_{k,\nu_j}$ $(j \in \overline{1, n^2})$, i.e., $\max_{1 \leq i \leq n} \angle (\theta^i, \ell_{k,\nu_j}) \geq \frac{\pi}{2} - \varepsilon_k$ $(j \in \overline{1, n^2})$. Hence there exist a straight line $\theta^i \in \theta$ and indices $\nu'_1, \ldots, \nu'_n \in \{\nu_1, \ldots, \nu_{n^2}\}$ such that $\angle (\theta^i, \ell_{k,\nu'_j}) \geq \frac{\pi}{2} - \varepsilon_k$ $(j \in \overline{1, n})$, which contradicts (4.2). Therefore (4.8) is proved.

Let us consider an arbitrary frame θ . Suppose

$$g_{\theta} = \begin{cases} \sup\{g_{k,m} : k \in N, \ m \in S_{\theta,k}\} & \text{if } \bigcup_{k \in N} S_{\theta,k} \neq \varnothing, \\ 0 & \text{if } \bigcup_{k \in N} S_{\theta,k} = \varnothing. \end{cases}$$

By Lemma 8, (4.1), (4.3), (4.6) and (4.8) we have

$$\int_{\{M_{\mathbf{I}(\theta)}(g_{\theta})>1/4\}} M_{\mathbf{I}(\theta)}(g_{\theta}) \le c_3 \int_{\mathbb{R}^n} g_{\theta} (1+\ln^+ 4g_{\theta})^n < c_3 \sum_{k \in \mathbb{N}} n^2 k (1+\ln 4k)^n \frac{|A_k|}{m_k} < 5^n n^2 c_3 \sum_{k \in \mathbb{N}} \frac{k(\ln k)^n |A_k|}{m_k} < 5^n n^2 c_3.$$
(4.9)

Denote

$$T = \left\{ (k, m, q) : k \in N, \ m \in \overline{1, m_k} \setminus S_{\theta, k}, \ q \in \mathbb{N} \right\},$$
$$J_{k, m, q}(\lambda) = J(I_{k, m, q}, k/\lambda) \quad \text{for} \quad (k, m, q) \in T \text{ and } 1/4 \le \lambda < k.$$

Obviously,

$$r(I_{k,m,q}) > \frac{4kn}{\sin \varepsilon_k} \ge \frac{kn}{\lambda \sin \varepsilon_k}$$

for $(k,m,q) \in T$ and $1/4 \leq \lambda < k,$ whence on account of (4.4), (4.5) and Lemma 2

$$\left\{ M_{B_2(E_{k,m})}(k\chi_{I_{k,m,q}}) > \lambda \right\} =$$
$$= \left\{ M_{B_2(E_{k,m})}\left(\frac{k}{\lambda}\chi_{I_{k,m,q}}\right) > 1 \right\} \subset J_{k,m,q}(\lambda) \subset J_{k,m,q}.$$

Consequently, since $\theta \in E_{k,m}$, we have

$$\left\{M_{B_2(\theta)}(k\chi_{I_{k,m,q}}) > \lambda\right\} \subset J_{k,m,q}(\lambda) \subset J_{k,m,q}.$$
(4.10)

On the other hand, it is clear that

$$\left\{M_{B_2(\theta)}(k\chi_{I_{k,m,q}}) > \lambda\right\} = \emptyset \tag{4.11}$$

for $(k, m, q) \in T$ and $\lambda \geq k$.

It is easy to see that the functions $k\chi_{I_{k,m,q}}$ belong to the class $\overline{L}(\mathbb{R}^n)$ and therefore, keeping in mind that the rectangles $J_{k,m,q}$ are pairwise nonintersecting and using (4.10), (4.11) and Lemma 6 we have

$$\left\{M_{B_2(\theta)}(g-g_\theta)>\lambda\right\}\subset \bigcup_{(k,m,q)\in T,\ k>\lambda}J_{k,m,q}(\lambda)\quad\text{for}\quad\lambda\geq 1/4.$$

The above inequality, (4.3), (4.6) and the definition of g imply that

$$\left|\left\{M_{B_2(\theta)}(g-g_{\theta}) > \lambda\right\}\right| \le \sum_{(k,m,q)\in T, \ k>\lambda} |J_{k,m,q}(\lambda)| \le \\ \le \sum_{k\in N, \ k>\lambda} \sum_{m=1}^{m_k} \sum_{q=1}^{\infty} 9^n \frac{k}{\lambda} |I_{k,m,q}| = \frac{9^n}{\lambda} \sum_{k\in N, \ k>\lambda} k|A_k| \le \frac{2\cdot 9^n}{\lambda} \int_{\{f>\lambda/2\}} f_{f>\lambda/2}$$

for $\lambda \geq 1/4$.

{

Consequently, by Lemma 9 we obtain

$$\int_{M_{B_2(\theta)}(g-g_{\theta}) > 1/4} M_{B_2(\theta)}(g-g_{\theta}) \le 2 \cdot 9^n \int_{\mathbb{R}^n} f(1+\ln^+ 8f).$$
(4.12)

From (4.9), (4.12) and Lemma 10 we find that

$$\int_{\{M_{B_2(\theta)}(g)>1/2\}} M_{B_2(\theta)}(g) < 2 \cdot 5^n n^2 c_3 + 4 \cdot 9^n \int_{\mathbb{R}^n} f(1 + \ln^+ 8f),$$

whence by virtue of the arbitrariness of θ we conclude that (4.7) is valid. Denote

$$P_k = \bigcup_{m=1}^{m_k} \bigcup_{q=1}^{\infty} (I_{k,m,q} \cap G) \quad (k \in N).$$

By our choice of sets $Q_{k,m}$ we easily see that

$$0 \le |A_k| - |P_k| < \frac{1}{2^k} \quad (k \in N).$$
(4.13)

Let $A'_k \subset A_k$ $(k \in N)$ be some measurable set with $|A'_k| = |P_k|$. By Lemma 13 there exists a measure preserving and invertible mapping ω : $\mathbb{R}^n \to \mathbb{R}^n$ such that

$$\omega(P_k) = A'_k \quad (k \in N), \quad \omega\left(G \setminus \bigcup_{k \in N} P_k\right) = G \setminus \bigcup_{k \in N} A'_k,$$
$$\omega(x) = x \quad (x \in \mathbb{R}^n \backslash G). \tag{4.14}$$

Suppose

$$\varphi_1 = (f \circ \omega) \chi_{\bigcup_{k \in N} P_k} \quad \text{and} \quad \varphi_2 = (f \circ \omega) \chi_{\mathbb{R}^n \setminus \bigcup_{k \in N} P_k}.$$

Obviously, $f \circ \omega = \varphi_1 + \varphi_2$. We have

$$\int_{\mathbb{R}^n} \varphi_2 (1 + \ln^+ \varphi_2)^n = \int_{\mathbb{R}^n \setminus \bigcup_{k \in N} A'_k} f(1 + \ln^+ f)^n =$$

$$= \int_{\{0 \le f < k_0 - 1\}} f(1 + \ln^+ f)^n + \sum_{k \in N} \int_{A_k \setminus A'_k} f(1 + \ln^+ f)^n = \alpha_1 + \alpha_2.$$

It can be seen that $\alpha_1 < \infty$, and by (4.13)

$$\alpha_2 \le \sum_{k \in N} \frac{k(1 + \ln k)^n}{2^k} < \infty$$

Thus $\varphi_2 \in L(1 + \ln^+ L)^n(\mathbb{R}^n)$. Therefore, by the obvious inequality $\varphi_1 \leq g$, (4.7) and Lemmas 8 and 10, we conclude that

$$\sup_{\theta\in \theta(\mathbb{R}^n)} \int_{\{M_{B_2(\theta)}(f\circ\omega)>1\}} M_{B_2(\theta)}(f\circ\omega) < \infty,$$

which together with (4.14) completes the proof of Theorem 1.

5. Remarks

(1) By the equality $M_{B_2(\theta)}(\alpha f) = \alpha M_{B_2(\theta)}(f)$ ($\alpha > 0$), we can easily verify that Theorem 1 remains valid if instead of $\{M_{B_2(\theta)}(f \circ \omega) > 1\}$ we shall take the integrals on $\{M_{B_2(\theta)}(f \circ \omega) > \lambda\}$, where $\lambda > 0$ is an arbitrarily fixed number.

(2) Theorem 1 immediately yields the following improvement:

Theorem 2. For every function $f \in L(1 + \ln^+ L)(\mathbb{R}^n)$ $(n \geq 2)$ and measurable sets $G_1, G_2 \in \mathbb{R}^n$ such that $f\chi_{\mathbb{R}^n \setminus G_1} \in L(1 + \ln^+ L)^n(\mathbb{R}^n)$ and $|G_1| = |G_2|$ there exists a measure preserving and invertible mapping $\omega : \mathbb{R}^n \to \mathbb{R}^n$ such that

1)
$$\omega(G_1) = G_2$$
 and $\{x : \omega(x) \neq x\} \subset G_1 \cup G_2,$
2) $\sup_{\theta \in \theta(\mathbb{R}^n)} \int_{\{M_{B_2(\theta)}(f \circ \omega) > 1\}} M_{B_2(\theta)}(f \circ \omega) < \infty.$

Proof. Let $\omega_1 : \mathbb{R}^n \to \mathbb{R}^n$ be a measure preserving and invertible mapping such that (see Lemma 12) $\omega_1(G_1) = G_2$ and $\{x : \omega(x) \neq x\} \subset G_1 \cup G_2$. Consider the function $g = (f \circ \omega_1)\chi_{G_2}$. Then $\operatorname{supp} g \subset G_2$, and by virtue of Theorem 1 (see Remark (1)) there exists a measure preserving and invertible mapping $\omega_2 : \mathbb{R}^n \to \mathbb{R}^n$ such that

$$\{x: \omega_2(x) \neq x\} \subset \operatorname{supp} g \subset G_2 \text{ and } \sup_{\theta \in \theta(\mathbb{R}^n)} \int_{\{M_{B_2(\theta)}(g \circ \omega_2) > 1/2\}} M_{B_2(\theta)}(g \circ \omega_2) < \infty.$$

Obviously, $(f \circ \omega_1)\chi_{\mathbb{R}^n \setminus G_2} \in L(1 + \ln^+ L)^n(\mathbb{R}^n)$. Therefore, by Lemmas 8 and 10, one can take $\omega_2 \circ \omega_1$ as ω . \Box

(3) For arbitrary $\varepsilon > 0$, a mapping ω "correcting" the function $f \in L(1 + \ln^+ L)(\mathbb{R}^n)$ can be chosen so that

$$|\{f \circ \omega \neq f\}| < \varepsilon.$$

For this it is enough in Theorem 2 to take G_1 and G_2 with measures less than $\varepsilon/2$.

(4) When $G_1 = \{|f| > 1\}$, and G_2 is a cubic interval, Theorem 2 has been proved for n = 2 in [7] and announced for $n \ge 2$ in [8].

References

1. M. de Guzmán and G. V. Welland, On the differentiation of integrals. *Rev. Un. Mat. Argentina* **25**(1971), 253–276.

2. M. de Guzmán, Differentiation of integrals in \mathbb{R}^n . Lecture Notes in Mathematics 481, Springer, 1975.

3. B. Jessen, J. Marcinkiewicz, and A. Zygmund, Note on the differentiability of multiple integrals. *Fund. Math.* **25**(1935), 217–234.

4. L. D. Gogoladze, On maximal Hardy–Littlewood functions. (Russian) Soobshch. Akad. Nauk Gruz. SSR 3(1983), 257–259.

5. L. D. Gogoladze, On the summation of multiple trigonometric series and conjugate functions. (Russian) *Dissertation for the Doctor of Science Degree*, *Tbilisi*, 1984.

6. R. J. Bagby, A note on the strong maximal function. *Proc. Amer. Math. Soc.* 88(1983), 648–650.

7. G. Oniani, On strong maximal operators corresponding to different frames. *Georgian Math. J.* **3**(1996), No. 1, 81–96.

8. G. Oniani, On the integrability of maximal functions $M_{B_2(\theta)}(f)$. Georgian Bull. Acad. Sci. **156**(1997), No. 1, 5–6.

9. P. R. Halmos, Lectures on the ergodic theory. *Math. Soc. Japan, Tokyo*, 1956.

(Received 20.06.1997)

Author's address:

A. Tsereteli Kutaisi State University 55, Queen Tamar St., Kutaisi 384000 Georgia