ON THE INTEGRABILITY OF STRONG MAXIMAL FUNCTIONS CORRESPONDING TO DIFFERENT FRAMES

G. ONIANI

Abstract

For the frame θ in \mathbb{R}^{n}, let $B_{2}(\theta)(x)\left(x \in \mathbb{R}^{n}\right)$ be a family of all n-dimensional rectangles containing x and having edges parallel to the straight lines of θ, and let $M_{B_{2}(\theta)}$ be a maximal operator corresponding to $B_{2}(\theta)$. The main result of the paper is the following

Theorem. For any function $f \in L\left(1+\ln ^{+} L\right)\left(\mathbb{R}^{n}\right)(n \geq 2)$ there exists a measure preserving and invertible mapping $\omega: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ such that 1. $\{x: \omega(x) \neq x\} \subset \operatorname{supp} f ;$ 2. $\sup _{\theta \in \theta\left(\mathbb{R}^{n}\right)} \int_{\left\{M_{B_{2}}(\theta)(f \circ \omega)>1\right\}} M_{B_{2}(\theta)}(f \circ \omega)<\infty$.

This theorem gives a general solution of M. de Guzmán's problem that was previously studied by various authors.

1. Definitions and the Notation

Let B be a mapping defined on \mathbb{R}^{n} such that, for every $x \in \mathbb{R}^{n}, B(x)$ is a family of open bounded sets in \mathbb{R}^{n} containing x. The maximal operator M_{B} corresponding to B is defined as follows: for $f \in L_{l o c}\left(\mathbb{R}^{n}\right)$ and $x \in \mathbb{R}^{n}$

$$
M_{B}(f)(x)=\sup _{R \in B(x)} \frac{1}{|R|} \int_{R}|f| \quad \text { if } \quad B(x) \neq \varnothing
$$

and

$$
M_{B}(f)(x)=0 \quad \text { if } \quad B(x)=\varnothing .
$$

A frame in \mathbb{R}^{n} will be called a set whose elements are n pairwise orthogonal straight lines passing through the origin O. Frames will be denoted by $\theta, \theta=\left\{\theta^{1}, \ldots, \theta^{n}\right\}$. Under θ_{0} will be meant a frame $\left\{O x^{1}, \ldots, O x^{n}\right\}$, where $O x^{1}, \ldots, O x^{n}$ are the coordinate axes of \mathbb{R}^{n}. A set of all frames in \mathbb{R}^{n} will be denoted by $\theta\left(\mathbb{R}^{n}\right)$.

[^0]A set congruent to a set of the form $I_{1} \times \cdots \times I_{n}$, where I_{1}, \ldots, I_{n} are intervals of positive length on the straight line, will be called an n dimensional rectangle or simply a rectangle in \mathbb{R}^{n}.

The frame $\theta=\left\{\theta^{1}, \ldots, \theta^{n}\right\}$ for which the sides of the rectangle I are parallel to the corresponding straight lines $\theta^{j}(j=1, \ldots, n)$ will be called the frame of I which will be denoted by $\theta(I)$.

For a nonempty set $E \subset \theta\left(\mathbb{R}^{n}\right)$ we shall denote by $B_{2}(E)(x)\left(x \in \mathbb{R}^{n}\right)$ a family of all rectangles I in \mathbb{R}^{n} with the properties $x \in I, \theta(I) \in E$. Instead of $B_{2}(\{\theta\})$ we shall write $B_{2}(\theta)$ when $E=\{\theta\}$, and B_{2} when $\theta=\theta_{0}$.

Since $M_{B_{2}}$ is said to be a strong maximal operator, it is natural to call $M_{B_{2}(\theta)}$ the strong maximal operator corresponding to the frame θ.

By $B_{1}(x)\left(x \in \mathbb{R}^{n}\right)$ we denote a family of all cubic intervals in \mathbb{R}^{n} containing x (for $n=1$ a one-dimensional interval is understood here as a square interval).

The support $\left\{x \in \mathbb{R}^{n}: f(x) \neq 0\right\}$ of the function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ will be denoted by supp f.

2. Formulation of the Question and the Main Result

The class $L\left(1+\ln ^{+} L\right)\left(\mathbb{R}^{n}\right)$ was characterized by Guzmán and Welland ($[1,2]$, Ch. II, $\S 6$) by means of the maximal operator $M_{B_{1}}$. In particular, they have shown that for $f \in L\left(\mathbb{R}^{n}\right)$ the following conditions are equivalent:

$$
\begin{aligned}
& \text { 1. } f \in L\left(1+\ln ^{+} L\right)\left(\mathbb{R}^{n}\right), \\
& \text { 2. } \quad \int_{\left\{M_{B_{1}}(f)>1\right\}} M_{B_{1}}(f)<\infty .
\end{aligned}
$$

From the strong maximal Jessen-Marcinkiewicz-Zygmund's theorem it follows that if

$$
\begin{equation*}
f \in L\left(1+\ln ^{+} L\right)^{n}\left(\mathbb{R}^{n}\right) \tag{2.1}
\end{equation*}
$$

then

$$
\begin{equation*}
\int_{\left\{M_{B_{2}}(f)>1\right\}} M_{B_{2}}(f)<\infty \tag{2.2}
\end{equation*}
$$

Guzmán (see [2], Ch. II, §6) posed the question whether it was possible to characterize the class $L\left(1+\ln ^{+} L\right)^{2}\left(\mathbb{R}^{2}\right)$ by the operator $M_{B_{2}}$ as it was done for the class $L\left(1+\ln ^{+} L\right)\left(\mathbb{R}^{n}\right)$ using the operator $M_{B_{1}}$, i.e., whether conditions (2.1) and (2.2) are equivalent for $f \in L\left(\mathbb{R}^{2}\right)$. Gogoladze [4, 5] and Bagby [6] answered this question in the negative.

It can be easily verified that much more than (2.2) is fulfilled for $f \in$ $L\left(1+\ln ^{+} L\right)^{n}\left(\mathbb{R}^{n}\right)$, in particular,

$$
\begin{equation*}
\sup _{\theta \in \theta\left(\mathbb{R}^{n}\right)} \int_{\left\{M_{B_{2}}(\theta)\right.} \int_{\left.B_{2}(f)>1\right\}}(f)<\infty \tag{2.3}
\end{equation*}
$$

A question arises if it is possible to characterize the class $L\left(1+\ln ^{+} L\right)^{n}\left(\mathbb{R}^{n}\right)$ by condition (2.3), i.e., if conditions (2.1) and (2.3) are equivalent for $f \in L\left(\mathbb{R}^{n}\right)(n \geq 2)$.

This question was answered in the negative for $n=2$ in [7]. The answer remains negative for an arbitrary $n>2$ as well. In particular, the following theorem is valid.

Theorem 1. For any function $f \in L\left(1+\ln ^{+} L\right)\left(\mathbb{R}^{n}\right)(n \geq 2)$ there exists a measure preserving and invertible mapping $\omega: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ such that

1. $\{x: \omega(x) \neq x\} \subset \operatorname{supp} f$,
2. $\sup _{\theta \in \theta\left(\mathbb{R}^{n}\right)} \int_{\left\{M_{B_{2}(\theta)}(f \circ \omega)>1\right\}} M_{B_{2}(\theta)}(f \circ \omega)<\infty$.

Note that we had to use many new arguments to proceed from the case to $n=2$ to the case of arbitrary $(n \geq 2)$.

Theorem 1 was first formulated by us in a less general for in [8].

3. Auxiliary Statements

Throughout the discussion preceding Lemma 4 we shall consider the spaces \mathbb{R}^{n} with $n \geq 2$.

We shall call a strip in \mathbb{R}^{n} an open set bounded by two different parallel hyperplanes, i.e., a set of the form

$$
\left\{x \in \mathbb{R}^{n}: a<\alpha_{1} x^{2}+\cdots+\alpha_{n} x^{n}<b\right\}
$$

where $a, b(a>b)$ and $\alpha_{1}, \ldots, \alpha_{n}\left(\alpha_{1}^{2}+\cdots+\alpha_{n}^{2}>0\right)$ are some real numbers, and $x^{k}(k=1, \ldots, n)$ here and everywhere below denotes the k-th coordinate of the point $x \in \mathbb{R}^{n}$. The strip width will be called the distance between the hyperplanes that bound the strip, i.e., the number $b-a$ will be called the strip width.

In the sequel it will always be assumed that χ_{A} is the characteristic function of the set A.

Lemma 1. For every $x \in \mathbb{R}^{n}$ let $B(x)$ be a family of open bounded and convex sets in \mathbb{R}^{n}, containing x, and let S be a strip in \mathbb{R}^{n} of width δ. Then

$$
M_{B}\left(\chi_{S}\right)(x)<\frac{2^{n} \delta}{\operatorname{dist}(x, S)} \quad \text { when } \quad \operatorname{dist}(x, S) \geq \delta
$$

Proof. Let $\operatorname{dist}(x, S) \geq \delta$ and $R \in B(x), R \cap S \neq \varnothing$.
Among the hyperplanes bounding S we denote by Γ the hyperplane which is the closest to x. It is obvious that $R \cap \Gamma \neq \varnothing$. For every $y \in R \cap \Gamma$ let Δ_{y} be a segment connecting x and y. It is assumed that $K=\bigcup_{y \in R \cap \Gamma} \Delta_{y}$. Since R is convex, we have

$$
\begin{equation*}
K \subset R \tag{3.1}
\end{equation*}
$$

Let H be the homothety centered at x and with the coefficient

$$
\alpha=\frac{\operatorname{dist}(x, S)+\delta}{\operatorname{dist}(x, S)}
$$

Let us show that

$$
\begin{equation*}
R \cap S \subset H(K) \backslash K \tag{3.2}
\end{equation*}
$$

Indeed, assume that $z \in R \cap S$ and denote by y the point at which the segment connecting x and z intersects with Γ. Since $x, z \in R$, by virtue of the convexity of R we have $y \in R$. Therefore $y \in R \cap \Gamma$. By the definitions of the set K and homothety H we easily obtain $z \in H\left(\Delta_{y}\right) \subset H(K)$. $(R \cap S) \cap K=\varnothing$. Therefore $z \notin K$. Thus $z \in H(K) \backslash K$. Thus, since $z \in R \cap S$ is arbitrary, we have proved (3.2).

Using (3.1), (3.2), the definition of H and obvious inequality $\alpha^{n}-1<$ $\frac{2^{n} \delta}{\operatorname{dist}(x, S)}$ we can write

$$
\frac{1}{|R|} \int_{R} \chi_{S}=\frac{|R \cap S|}{|R|} \leq \frac{|H(K) \backslash K|}{|K|}=\frac{\left(\alpha^{n}-1\right)|K|}{|K|}<\frac{2^{n} \delta}{\operatorname{dist}(x, S)}
$$

which, obviously, proves the lemma.
For the rectangle I in \mathbb{R}^{n} having pairwise orthogonal edges of lengths $\delta_{1}, \delta_{2}, \ldots, \delta_{n}$, where $\delta_{1} \leq \delta_{2} \leq \cdots \leq \delta_{n}$, we introduce the notation:
(1) $r(I)$ is a number δ_{2} / δ_{1};
(2) when $r(I)>1$, for $h \geq 1, J(I, h)$ is an open rectangle with the following properties: $J(I, h)$ has the same center and frame as I; the length of the edges of $J(I, h)$ parallel to the edges of I of the length δ_{1} is equal to $\left(2^{n+1} h+1\right) \delta_{1}$, while the length of the edges of $J(I, h)$ parallel to the edges of I of length $\delta_{j}(j=2, \ldots, n)$ is equal to $3 \delta_{j}$;
(3) for $r(I)>1, \ell_{I}$ is a straight line passing through O and parallel to the edges of I of length δ_{1}.

For the straight line ℓ in \mathbb{R}^{n} and $0<\varepsilon<\pi / 4$ we assume

$$
E(\ell, \varepsilon)=\left\{\theta \in \theta\left(\mathbb{R}^{n}\right): \angle\left(\ell, \theta^{j}\right)<\pi / 2-\varepsilon, j=1, \ldots, n\right\}
$$

where $\angle(\cdot, \cdot)$ is the angle lying between the two straight lines.

Lemma 2. Let I be a rectangle in $\mathbb{R}^{n}, h>1,0<\varepsilon<\pi / 4, r(I)>\frac{n h}{\sin \varepsilon}$, and $E=E\left(\ell_{I}, \varepsilon\right)$. Then

$$
\left\{M_{B_{2}(E)}\left(h \chi_{I}\right)>1\right\} \subset J(I, h)
$$

and therefore

$$
\left|\left\{M_{B_{2}(E)}\left(h \chi_{I}\right)>1\right\}\right| \leq 9^{n} h|I| .
$$

Proof. Without loss of generality we assume that

$$
I=\left(-\delta_{1} / 2, \delta_{1} / 2\right) \times \cdot \times\left(-\delta_{n} / 2, \delta_{n} / 2\right),
$$

where $\delta_{1}<\delta_{1} \leq \cdots \leq \delta_{n}$. We write

$$
\begin{aligned}
& S_{1}=\left\{x \in \mathbb{R}^{n}:\left|x^{1}\right|<\left(2^{n} h+\frac{1}{2}\right) \delta_{1}\right\} \\
& S_{j}=\left\{x \in \mathbb{R}^{n}:\left|x^{j}\right|<3 \delta_{j} / 2\right\} \quad(j=2, \ldots, n)
\end{aligned}
$$

As is easily seen, $J(I, h)$ is the intersection of the strips S_{1}, \ldots, S_{n}.
Let $S=\left\{x \in \mathbb{R}^{n}:\left|x^{1}\right|<\delta_{1} / 2\right\}$ and $x \in S_{1}$. Obviously, $\operatorname{dist}(x, S) \geq$ $2^{n} h \delta_{1}$. Now by lemma 1 we write

$$
M_{B_{2}(E)}\left(h \chi_{I}\right)(x)=h M_{B_{2}(E)}\left(\chi_{I}\right)(x) \leq h M_{B_{2}(E)}\left(\chi_{S}\right)(x)<\frac{h 2^{n} \delta_{1}}{\operatorname{dist}(x, S)} \leq 1
$$

Hence we conclude that

$$
\begin{equation*}
\left\{M_{B_{2}(E)}\left(h \chi_{I}\right)>1\right\} \subset S_{1} \tag{3.3}
\end{equation*}
$$

Consider arbitrary $2 \leq j \leq n$. Let $x \notin S_{j}, J \in B_{2}(E)(x)$, and $J \cap I \neq \varnothing$. Obviously, $\operatorname{dist}(x, I) \geq \delta_{j}$, and we have

$$
\operatorname{dist}(x, I) \leq \operatorname{diam} I<t_{1}+t_{2}+\cdots+t_{n}
$$

where $t_{1}, t_{2}, \ldots, t_{n}$ are lengths of orthogonal edges of J. Therefore there exists a side of J with the length greater than δ_{j} / n. We can represent J as a union of pairwise nonintersecting intervals equal and parallel to abovementioned edge: $J=\bigcup_{\alpha \in T} \Delta_{\alpha}$. Obviously,

$$
\begin{equation*}
\left|\Delta_{\alpha}\right|_{1}>\delta_{j} / n \quad(\alpha \in T) \tag{3.4}
\end{equation*}
$$

(Here and everywhere below, for the set A contained in some k-dimensional $(k=1, \ldots, n-1)$ affine subspace \mathbb{R}^{n}, we denote by $|A|_{k} k$-dimensional measure of A.)

Let us prove that

$$
\begin{equation*}
\frac{h\left|\Delta_{\alpha} \cap I\right|_{1}}{\left|\Delta_{\alpha}\right|_{1}} \leq 1 \quad(\alpha \in T) \tag{3.5}
\end{equation*}
$$

Indeed, let ℓ be the straight line containing the segment Δ_{α}. It is easy to see that $|\ell \cap S|_{1}=\delta_{1} / \cos \angle\left(\ell, O x^{1}\right) . J \in B_{2}(E)(x)$, Therefore $\angle\left(\ell, O x^{1}\right)<$
$\pi / 2-\varepsilon$. Consequently, $|\ell \cap S|_{1} \leq \frac{\delta_{1}}{\cos (\pi / 2-\varepsilon)}=\frac{\delta_{1}}{\sin \varepsilon}$, which by virtue of (3.4) and the inequality $\delta_{j}>r(I) \delta_{1} \geq \frac{n h \delta_{1}}{\sin \varepsilon}$ implies

$$
\frac{h\left|\Delta_{\alpha} \cap I\right|_{1}}{\left|\Delta_{\alpha}\right|_{1}} \leq \frac{h|\ell \cap S|_{1}}{\delta_{j} / n} \leq \frac{h \delta_{1}}{\sin \varepsilon} \frac{\sin \varepsilon}{h \delta_{1}}=1
$$

It is not difficult to verify that

$$
\frac{1}{|J|} \int_{J} h \chi_{I}=\frac{h|J \cap I|}{|J|} \leq \sup _{\alpha \in T} \frac{h\left|\Delta_{\alpha} \cap I\right|_{1}}{\left|\Delta_{\alpha}\right|_{1}}
$$

Hence, by (3.5),

$$
\frac{1}{|J|} \int_{J} h \chi_{I} \leq 1
$$

which, taking into account the arbitrariness of $J \in B_{2}(E)(x), L \cap I \neq \varnothing$, allowsus to conclude that

$$
M_{B_{2}(E)}\left(h \chi_{I}\right)(x) \leq 1 \quad\left(x \notin S_{j}, \quad 2 \leq j \leq n\right)
$$

This and (3.3) imply

$$
\left\{M_{B_{2}(E)}\left(h \chi_{I}\right)>1\right\} \subset \bigcap_{j=1}^{n} S_{j}=J(I, h)
$$

Lemma 3. If among the pairwise different straight lines $\ell_{1}, \ldots, \ell_{k}(k \geq$ $n)$ in \mathbb{R}^{n} which pass through the same point none of n lie in the same hyperplane, then there exists $\varepsilon>0$ such that for every straight line ℓ in \mathbb{R}^{n} and every $1 \leq k_{1}<k_{2}<\cdots<k_{n} \leq k$

$$
\min _{1 \leq j \leq n} \angle\left(\ell, \ell_{k j}\right)<\frac{\pi}{2}-\varepsilon .
$$

Proof. Let $x_{j} \in \mathbb{R}^{n},\left\|x_{j}\right\|=1\left(\|\cdot\|\right.$ is the norm in $\left.\mathbb{R}^{n}, j=1, \ldots, n\right)$ be the direction vector of the straight line ℓ_{j}. If we assume the contrary to the assertion of the lemma, then for every $m \in \mathbb{N}$ there exist $y_{m} \in \mathbb{R}^{n}$, $\left\|y_{m}\right\|=1$, and numbers $1 \leq k_{1}(m)<k_{2}(m)<\cdots k_{n}(m) \leq k$ such that

$$
\arccos \left|\left(y_{m}, x_{k_{j}(m)}\right)\right|>\frac{\pi}{2}-\frac{1}{m}
$$

for $j=1, \ldots, n$, where (\cdot, \cdot) is the scalar product in \mathbb{R}^{n}. Hence by the compactness of the unit sphere in \mathbb{R}^{n} and the continuity of the scalar product there exist $y \in \mathbb{R}^{n},\|y\|=1$, and $1 \leq k_{1}<k_{2}<\cdots<k_{n} \leq k$ such that

$$
\left(y, x_{k_{j}}\right)=0
$$

for $j=1, \ldots, n$. This implies that the points $x_{k_{1}}, \ldots, x_{k_{n}}$ belong to the hyperplane which is orthogonal to y. Thus the straight lines $\ell_{k_{1}}, \ldots, \ell_{k_{n}}$ lie in the same hyperplane which contradicts the condition of the lemma.

Lemma 4. Let f be a continuous function on $\mathbb{R}^{n}, \theta \in \theta\left(\mathbb{R}^{n}\right), \lambda>0$, and an open set G contain $\left\{M_{B_{2}(\theta)}(f)>\lambda\right\}$. If for the rectangle I in \mathbb{R}^{n} with $\theta(I)=\theta, I \backslash G \neq \varnothing$, then

$$
\int_{I \cap G}|f| \leq \lambda|I \cap G|
$$

Proof. We prove the lemma by induction with respect to n. For $n=1$ the proof is obvious. Consider the passage from $n-1$ to n.

Without loss of generality we assume that $\theta=\theta_{0}$ and I is closed.
Introduce the notation:

$$
\begin{aligned}
\Gamma_{t} & =\left\{x \in \mathbb{R}^{n}: x^{1}=t\right\}, \\
I_{t} & =I \cap \Gamma_{t}, \quad G_{t}=G \cap \Gamma_{t}, \quad(t \in \mathbb{R}) \\
J & =\left\{t \in \mathbb{R}^{n}: I_{t} \neq \varnothing\right\}, \\
S_{1} & =\left\{t \in J: I_{t} \subset G_{t}\right\}, \\
S_{2} & =\left\{t \in J: I_{t} \backslash G_{t} \neq \varnothing\right\} .
\end{aligned}
$$

It is easy to see that S_{1} is open by the natural topology on the interval J. Therefore S_{1} divides into pairwise nonintersecting intervals $\left\{\delta_{k}\right\}_{k \in T \subset \mathbb{N}}$. Obviously, the n-dimensional rectangles $\Delta_{k}=\bigcup_{t \in \delta_{k}} I_{t}(k \in T)$ satisfy the conditions

$$
\begin{equation*}
\partial \Delta_{k} \cap \partial G \neq \varnothing \quad(k \in T), \tag{3.6}
\end{equation*}
$$

where $\partial \Delta_{k}$ and ∂G are the boundaries of Δ_{k} and G, respectively;

$$
\begin{align*}
& \theta\left(\Delta_{k}\right)=\theta(I)=\theta_{0} \quad \text { and } \quad \Delta_{k} \subset I \cap G \quad(k \in T) \tag{3.7}\\
& \Delta_{k} \cap \Delta_{m}=\varnothing \quad(k \neq m) \tag{3.8}
\end{align*}
$$

By the conditions of the lemma, $M_{B_{2}}(f)(x) \leq \lambda$ for $x \in \partial G$ and therefore, with (3.6) and (3.7) taken into account, we have

$$
\int_{\Delta_{k}}|f| \leq \lambda\left|\Delta_{k}\right| \quad(k \in T)
$$

which on account to (3.8) implies

$$
\begin{equation*}
\bigcup_{k \in T}|f| \leq \lambda\left|\bigcup_{k \in T} \Delta_{k}\right| \tag{3.9}
\end{equation*}
$$

Estimate now the integral of $|f|$ on $(I \cap G) \backslash \bigcup_{k \in T} \Delta_{k}$. Let M be an $(n-1)$ dimensional strong maximal operator. For each $t \in \mathbb{R}$ consider the function $g_{t}(y)=f(t, y)\left(y \in \mathbb{R}^{n-1}\right)$ and assume that

$$
F(t, y)=M\left(g_{t}\right)(y) \quad\left(t \in \mathbb{R}, \quad y \in \mathbb{R}^{n-1}\right)
$$

For $t \in S_{2}$ we have

$$
\begin{equation*}
\{F(t, \cdot)>\lambda\} \subset G_{t} \tag{3.10}
\end{equation*}
$$

Indeed, assume the contrary, i.e., there exist $t_{0} \in S_{2}, y_{0} \in \mathbb{R}^{n-1}$ and an ($n-1$)-dimensional interval R such that $\left(t_{0}, y_{0}\right) \notin G_{t_{0}}, R \ni y_{0}$, and

$$
\int_{R}\left|g_{t_{0}}(y)\right| d y \geq \lambda|R|_{n-1}
$$

Then by the continuity of f, for a sufficiently small one-dimensional interval $\Delta \ni t_{0}$ we shall have

$$
\int_{\Delta \times R}|f(t, y)| d t d y>\lambda|\Delta \times R| .
$$

Hence $M_{B_{2}}(f)\left(t_{0}, y_{0}\right)>\lambda$. On the other hand, since $\left(t_{0}, y_{0}\right) \notin G_{t_{0}}$, we have $\left(t_{0}, y_{0}\right) \notin G \supset\left\{M_{B_{2}}(f)>\lambda\right\}$. The obtained contradiction proves (3.10).

By virtue of (3.10) and the induction assumption we easily obtain

$$
\int_{I_{t} \cap G_{t}}|f(t, y)| d y \leq \lambda\left|I_{t} \cap G_{t}\right|_{n-1}
$$

for $t \in S_{2}$.
Thus we can immediately write

$$
\begin{aligned}
& \int_{I \cap G \backslash}|f|=\bigcup_{k \in T} \Delta_{k}\left[\int_{S_{2}}|f(t, y)| d y\right] d t \leq \\
\leq & \int_{S_{2} \cap G_{t}} \lambda\left|I_{t} \cap G_{t}\right| d t=\lambda\left|(I \cap G) \backslash \bigcup_{k \in T} \Delta_{k}\right| .
\end{aligned}
$$

whence by (3.7) and (3.9) we conclude that Lemma 4 is valid.
Denote by $\bar{L}\left(\mathbb{R}^{n}\right)$ a class of all functions $f \in L\left(\mathbb{R}^{n}\right)$ for each of which there exists, for $\varepsilon>0$, a continuous function $g \in L\left(\mathbb{R}^{n}\right)$ on \mathbb{R}^{n} such that $|g(x)| \leq|f(x)|$ almost everywhere on \mathbb{R}^{n}, and $\|f-g\|_{1}<\varepsilon$.

Lemma 5. Let $f \in \bar{L}\left(\mathbb{R}^{n}\right), \theta \in \theta\left(\mathbb{R}^{n}\right), \lambda>0$, and then open set G contain $\left\{M_{B_{2}(\theta)}(f)>\lambda\right\}$. If for the rectangle I in \mathbb{R}^{n} with $\theta(I)=\theta$, $I \backslash G \neq \varnothing$, then

$$
\int_{I \cap G}|f| \leq \lambda|I \cap G|
$$

Proof. $f \in \bar{L}\left(\mathbb{R}^{n}\right)$. Therefore for arbitrarily given $\varepsilon>0$ there exists a continuous function $g \in L\left(\mathbb{R}^{n}\right)$ on \mathbb{R}^{n} such that $|g(x)| \leq|f(x)|$ almost everywhere on \mathbb{R}^{n}, and $\|f-g\|_{1}<\varepsilon$. It is obvious that

$$
\left\{M_{B_{2}(\theta)}(g)>\lambda\right\} \subset\left\{M_{B_{2}(\theta)}(f)>\lambda\right\} \subset G
$$

Now by Lemma 4

$$
\int_{I \cap G}|g| \leq \lambda|I \cap G|,
$$

and therefore

$$
\int_{I \cap G}|f|-\varepsilon \leq \lambda|I \cap G|
$$

whence by the arbitrariness of $\varepsilon>0$ we conclude that Lemma 5 is valid.
Lemma 6. Let $f_{k} \in \bar{L}\left(\mathbb{R}^{n}\right), f_{k} \geq 0(k \in \mathbb{N}), E \subset \theta\left(\mathbb{R}^{n}\right), E \neq \varnothing, \lambda>0$, and let for $k, m \in \mathbb{N}$ and $k \neq m$ the following conditions be fulfilled:

$$
\begin{aligned}
& \operatorname{supp} f_{k} \cap \operatorname{supp} f_{m}=\varnothing \\
& \operatorname{supp} f_{k} \cap\left\{M_{B_{2}(E)}\left(f_{m}\right)>\lambda\right\}=\varnothing \\
& \left\{M_{B_{2}(E)}\left(f_{k}\right)>\lambda\right\} \cap\left\{M_{B_{2}(E)}\left(f_{m}\right)>\lambda\right\}=\varnothing
\end{aligned}
$$

Then

$$
\left\{M_{B_{2}(E)}\left(\sum_{k=1}^{m} f_{k}\right)>\lambda\right\}=\bigcup_{k=1}^{\infty}\left\{M_{B_{2}(E)}\left(f_{k}\right)>\lambda\right\} .
$$

Proof. Denote $G_{k}=\left\{M_{B_{2}(E)}\left(f_{k}\right)>\lambda\right\}, k \in \mathbb{N}$. For each $k \in \mathbb{N}$

$$
\begin{equation*}
f_{k}(x) \leq \lambda \quad \text { almost everywhere on } \quad \mathbb{R}^{n} \backslash G_{k} \tag{3.11}
\end{equation*}
$$

Indeed, otherwise, since the differential bases $B_{2}(\theta), \theta \in \theta\left(\mathbb{R}^{n}\right)$, are dense (see, for e.g., [2], Ch.II, §3), for arbitrary $\theta \in E$ and $A_{j}=\left(\mathbb{R}^{n} \backslash G_{k}\right) \cap\left\{f_{k}>\right.$ $\lambda+1 / j\}(j \in \mathbb{N})$ we shall have

$$
\lim _{I \in B_{2}(\theta)(x), \operatorname{diam} I \rightarrow 0} \frac{\left|I \cap A_{j}\right|}{|I|} \quad \text { for almost all } \quad x \in A_{j} .
$$

Hence $M_{B_{2}(E)}\left(f_{k}\right) \geq M_{B_{2}(\theta)}\left(f_{k}\right)>\lambda$ for almost all $x \in\left(\mathbb{R}^{n} \backslash G_{k}\right) \cap\left\{f_{k}>\right.$ $\lambda\}$, which contradicts the definition of G_{k}.

By (3.11) and the condition of the lemma we write

$$
\sum_{k=1}^{\infty} f_{k}(x) \leq \lambda \quad \text { for almost all } \quad x \notin \bigcup_{k=1}^{\infty} G_{k}
$$

Hence, by the conditions of the lemma and by Lemma 5, we find that for every $x \notin \bigcup_{k=1}^{\infty} G_{k}$ and $I \in B_{2}(E)(x)$

$$
\begin{gathered}
\int_{I} \sum_{k=1}^{\infty} f_{k} \leq \sum_{k=1}^{\infty} \int_{I \cap G_{k}} f_{k}+\int_{I \backslash \bigcup_{k=1}^{\infty} G_{k}} \sum_{k=1}^{\infty} f_{k} \leq \\
\leq \sum_{k=1}^{\infty} \lambda\left|I \cap G_{k}\right|+\lambda\left|I \backslash \bigcup_{k=1}^{\infty} G_{k}\right|=\lambda|I| .
\end{gathered}
$$

Therefore

$$
M_{B_{2}(E)}\left(\sum_{k=1}^{\infty} f_{k}\right)(x) \leq \lambda \quad \text { for } \quad x \notin \bigcup_{k=1}^{\infty} G_{k}
$$

The next assertion belongs to Jessen, Marcinkiewicz, and Zygmund and is referred to as the strong maximal theorem (see [3] or [2], Ch. II, $\S 3$).

Theorem. If $f \in L\left(1+\ln ^{+} L\right)^{n-1}\left(\mathbb{R}^{n}\right)$, then

$$
\left|\left\{M_{B_{2}}(f)>\lambda\right\}\right| \leq c_{1} \int_{\mathbb{R}^{n}} \frac{|f|}{\lambda}\left(1+\ln ^{+} \frac{|f|}{\lambda}\right)^{n-1} \quad(\lambda>0)
$$

where c_{1} is the constant depending only on n.
The foollowing lemma is a simple improvement of this result.
Lemma 7. If $f \in L\left(1+\ln ^{+} L\right)^{n-1}\left(\mathbb{R}^{n}\right)$, then for every $\theta \in \theta\left(\mathbb{R}^{n}\right)$

$$
\left|\left\{M_{B_{2}(\theta)}(f)>\lambda\right\}\right| \leq c_{2} \int_{\{|f|>\lambda / 2\}} \frac{|f|}{\lambda}\left(1+\ln \frac{2|f|}{\lambda}\right)^{n-1} \quad(\lambda>0)
$$

where the constant c_{2} depends only on n.
Proof. For arbitrary fixed $\lambda>0$ assume $f_{*}=f \chi_{\{|f| \leq \lambda / 2\}}$ and $f^{*}=f \chi_{\{|f|>\lambda / 2\}}$. $f=f_{*}+f^{*}$. Therefore $M_{B_{2}}(f) \leq M_{B_{2}}\left(f_{*}\right)+M_{B_{2}}\left(f^{*}\right)$. Hence

$$
\left\{M_{B_{2}}>\lambda\right\} \subset\left\{M_{B_{2}}\left(f_{*}\right)>\lambda / 2\right\} \cup\left\{M_{B_{2}}\left(f^{*}\right)>\lambda / 2\right\}
$$

But $\left\{M_{B_{2}}\left(f_{*}\right)>\lambda / 2\right\}=\varnothing$ and therefore by the strong maximal theorem

$$
\begin{align*}
&\left|\left\{M_{B_{2}}(f)>\lambda\right\}\right| \leq\left|\left\{M_{B_{2}}\left(f^{*}\right)>\lambda / 2\right\}\right| \leq c_{1} \int_{\mathbb{R}^{n}} \frac{2\left|f^{*}\right|}{\lambda}\left(1+\ln ^{+} \frac{2\left|f^{*}\right|}{\lambda}\right)^{n-1} \leq \\
& \leq 2 c_{1} \int_{\{|f|>\lambda / 2\}} \frac{|f|}{\lambda}\left(1+\ln \frac{2|f|}{\lambda}\right)^{n-1} \tag{3.12}
\end{align*}
$$

Let $\gamma_{\theta}, \theta \in \theta\left(\mathbb{R}^{n}\right)$, be a rotation such that $\theta=\left\{\gamma_{\theta}\left(O x^{1}\right), \ldots, \gamma_{\theta}\left(O x^{n}\right)\right\}$. In view of the fact that the rotation is a measure preserving mapping, we readily obtain

$$
\begin{equation*}
M_{B_{2}(\theta)}(f)(x)=M_{B_{2}}\left(f \circ \gamma_{\theta}\right)\left(\gamma_{\theta}^{-1}(x)\right) \quad\left(x \in \mathbb{R}^{n}\right) \tag{3.13}
\end{equation*}
$$

Therefore

$$
\left|\left\{M_{B_{2}(\theta)}(f)>\lambda\right\}\right|=\left|\left\{M_{B_{2}}\left(f \circ \gamma_{\theta}\right)>\lambda\right\}\right| \quad(\lambda>0)
$$

By this and (3.12) we conclude that the lemma is valid.
Lemma 8. If $f \in L\left(1+\ln ^{+} L\right)^{n}\left(\mathbb{R}^{n}\right)$, then for every $\theta \in \theta\left(\mathbb{R}^{n}\right)$

$$
\int_{\left\{M_{B_{2}(\theta)}(f)>\lambda\right\}} M_{B_{2}(\theta)}(f) \leq c_{3} \int_{\mathbb{R}^{n}}|f|\left(1+\ln ^{+} \frac{|f|}{\lambda}\right)^{n} \quad(\lambda>0),
$$

where the constant c_{3} depends only on n.
Proof. Let $f \in L\left(1+\ln ^{+} L\right)^{n}\left(\mathbb{R}^{n}\right)$ and $\lambda>0$. We have

$$
\int_{\left\{M_{B_{2}(\theta)}(f)>\lambda\right\}} M_{B_{2}}(f)=-\int_{\lambda}^{\infty} t d F(t)=[-t F(t)]_{\lambda}^{\infty}+\int_{\lambda}^{\infty} F(t) d t
$$

where $F(t)=\left|\left\{M_{B_{2}}(f)>t\right\}\right|(t>0)$. By Lemma 7

$$
\begin{equation*}
t F(t) \leq c_{2} \int_{\{|f|>t / 2\}}|f|\left(1+\ln \frac{2|f|}{t}\right)^{n-1} \quad(t>0) \tag{3.14}
\end{equation*}
$$

Hence

$$
\begin{equation*}
\int_{\left\{M_{B_{2}(\theta)}(f)>\lambda\right\}} M_{B_{2}}(f)=\lambda F(\lambda)+\int_{\lambda}^{\infty} F(t) d t \tag{3.15}
\end{equation*}
$$

Lemma 7 yields

$$
\begin{gathered}
\int_{\lambda}^{\infty} F(t) d t \leq c_{2} \int_{\lambda}^{\infty} \int_{\{|f(x)|>t / 2\}} \frac{|f(x)|}{t}\left(1+\ln \frac{2|f(x)|}{t}\right)^{n-1} d x d t= \\
=c_{2} \int_{\{|f(x)|>\lambda / 2\}} \int_{\lambda}^{2|f(x)|} \frac{|f(x)|}{t}\left(1+\ln \frac{2|f(x)|}{t}\right)^{n-1} d t d x \leq \\
\leq c_{2} \int_{\{|f(x)|>\lambda / 2\}} \int_{\lambda}^{2|f(x)|} \frac{|f(x)|}{t}\left(1+\ln \frac{2|f(x)|}{\lambda}\right)^{n-1} d t d x \leq \\
\leq c_{2} \int_{\{|f(x)|>\lambda / 2\}}|f(x)|\left(1+\ln \frac{2|f(x)|}{\lambda}\right)^{n} d x
\end{gathered}
$$

whence with regard for (3.14) and (3.15) we obtain

$$
\begin{equation*}
\int_{\left\{M_{B_{2}}(f)>\lambda\right\}} M_{B_{2}}(f) \leq 2 c_{2} \int_{\mathbb{R}^{n}}|f|\left(1+\ln ^{+} \frac{2|f|}{\lambda}\right)^{n} \quad(\lambda>0) \tag{3.16}
\end{equation*}
$$

for $f \in L\left(1+\ln ^{+} L\right)^{n}\left(\mathbb{R}^{n}\right)$.
(3.13) readily implies

$$
\begin{equation*}
\int_{\left\{M_{B_{2}(\theta)}(f)>\lambda\right\}} M_{B_{2}(\theta)}(f)=\int_{\left\{M_{B_{2}}\left(f \circ \gamma_{\theta}\right)>\lambda\right\}} M_{B_{2}}\left(f \circ \gamma_{\theta}\right) \quad(\lambda>0) \tag{3.17}
\end{equation*}
$$

for $f \in L\left(1+\ln ^{+} L\right)^{n}\left(\mathbb{R}^{n}\right)$ and $\theta \in \theta\left(\mathbb{R}^{n}\right)$.
Since the rotation is the measure preserving mapping, by (3.16) and (3.17) we immediately conclude that Lemma 8 is valid.

Lemma 9. Let $f \in L\left(1+\ln ^{+} L\right)\left(\mathbb{R}^{n}\right), g: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a measurable function, and $a, b>0$ and $\lambda \geq 0$. If

$$
\begin{equation*}
|\{|g|>t\}| \leq \frac{a}{t} \int_{\{|f|>b t\}}|f| \quad(t \geq \lambda) \tag{3.18}
\end{equation*}
$$

then

$$
\int_{\{|g|>\lambda\}}|g| \leq a \int_{\mathbb{R}^{n}}|f|\left(1+\ln ^{+} \frac{|f|}{b \lambda}\right) .
$$

Proof. We have

$$
\int_{\{|g|>\lambda\}}|g|=-\int_{\lambda}^{\infty} t d F(t)=[-t F(t)]_{\lambda}^{\infty}+\int_{\lambda}^{\infty} F(t) d t
$$

where $F(t)=|\{|g|>t\}|(t \geq 0)$. By (3.18)

$$
\begin{equation*}
t F(t) \leq a \int_{\{|f|>b t\}}|f| \quad(t \geq \lambda) . \tag{3.19}
\end{equation*}
$$

Hence

$$
\begin{equation*}
\int_{\{|g|>\lambda\}}|g|=\lambda F(\lambda)+\int_{\lambda}^{\infty} F(t) d t \tag{3.20}
\end{equation*}
$$

By (3.18)

$$
\begin{gathered}
\int_{\lambda}^{\infty} F(t) d t \leq a \int_{\lambda}^{\infty} \frac{1}{t} \int_{\{|f(x)|>b t\}}|f(x)| d x d t= \\
=a \quad \int_{\{|f(x)|>b \lambda\}}|f(x)| \int_{\lambda}^{|f(x)| / b} \frac{d t}{t} d x=a \int_{\{|f(x)|>b \lambda\}}|f(x)| \ln \frac{|f(x)|}{b \lambda} d x .
\end{gathered}
$$

Hence with (3.19) and (3.20) taken into account, we conclude that Lemma 9 is valid.

Lemma 10. Let f_{1} and f_{2} be the nonnegative measurable functions defined on \mathbb{R}^{n}. Then

$$
\int_{\left\{f_{1}+f_{2}>2 \lambda\right\}}\left(f_{1}+f_{2}\right) \leq(1+\lambda)\left(\int_{\left\{f_{1}>\lambda\right\}} f_{1}+\int_{\left\{f_{2}>\lambda\right\}} f_{2}\right) \quad(\lambda \geq 0) .
$$

Proof. The validity of the lemma follows from the following relations easy to verify:

$$
\begin{align*}
& \text { (1) } \int_{\left\{f_{1}+f_{2}>2 \lambda\right\}}\left(f_{1}+f_{2}\right) \leq \int_{\left\{f_{1}>\lambda\right\} \cup\left\{f_{2}>\lambda\right\}}\left(f_{1}+f_{2}\right) ; \\
& \text { (2) } \quad \int_{\left\{f_{1}>\lambda\right\} \cup\left\{f_{2}>\lambda\right\}} f_{j} \leq \int_{\left\{f_{j}>\lambda\right\}} f_{j}+\lambda\left|\left\{f_{i}>\lambda\right\}\right|, \text { where } j, i \in \overline{1,2} \text { and } j \neq i . \tag{2}
\end{align*}
$$

The set $E \subset \mathbb{R}^{n}$ is called elementary if it is a union of a finite number of n-dimensional intervals.

Lemma 11. Let A be a subset of \mathbb{R}^{n} of positive measure. Then for each $\delta_{k}>0(k \in \mathbb{N})$ with $\sum_{k=1}^{\infty} \delta_{k}<|A|$ and $\varepsilon_{k}>0(k \in \mathbb{N})$ there exist pairwise nonintersecting elementary sets $G_{k}(k \in \mathbb{N})$ such that

$$
\left|G_{k}\right|=\delta_{k} \quad \text { and } \quad\left|G_{k} \backslash A\right|<\varepsilon_{k}
$$

Proof. Let us construct the sequence $\left\{G_{k}\right\}$ with the needed properties. For this we shall need the following simple facts:
(1) For each measurable set E and number δ with $0 \leq \delta \leq|E|$ there exists a measurable set $E^{\prime} \subset E$ with $\left|E^{\prime}\right|=\delta$;
(2) For each open set $E \subset \mathbb{R}^{n}$ and number δ with $0<\delta<|E|$ there exists an elementary set $E^{\prime} \subset E$ with $\left|E^{\prime}\right|=\delta$.

By virtue of (1), there exists $E \subset A$ with $|E|=\delta_{1}$. Let an open set Q be such that $Q \supset E,|Q|>|E|=\delta_{1}$ and $|Q \backslash E|<\varepsilon_{1}$. According to (2), there exists an elementary set $G_{1} \subset Q$ with $\left|G_{1}\right|=\delta_{1}$. Obviously, $\left|G_{1} \backslash A\right| \leq|Q \backslash E|<\varepsilon_{1}$.

Suppose the pairwise nonintersecting elementary sets G_{1}, \ldots, G_{k} with the properties

$$
\left|G_{j}\right|=\delta_{j} \quad \text { and } \quad\left|G_{j} \backslash A\right|<\varepsilon_{j} \quad(j \in \overline{1, k})
$$

have already been constructed. Then

$$
\left|A \backslash \bigcup_{j=1}^{k}\left(\bar{G}_{j} \cap A\right)\right| \geq|A|-\sum_{j=1}^{k} \delta_{j}>\delta_{k+1}
$$

where \bar{G}_{j} is the closure of G_{j}. Therefore by (1), there exists

$$
E \subset A \backslash \bigcup_{j=1}^{k}\left(\bar{G}_{j} \cap A\right)
$$

with $|E|=\delta_{k+1}$. We can easily obtain an open set $Q \supset E$ with the properties

$$
Q \cap \bigcup_{j=1}^{k} \bar{G}_{j}=\varnothing, \quad|Q|>|E|=\delta_{k+1}, \quad|Q \backslash E|<\varepsilon_{k+1}
$$

By (2), we can choose an elementary set $G_{k+1} \subset Q$ such that $\left|G_{k+1}\right|=$ δ_{k+1}. By virtue of the properties of Q we have

$$
\begin{aligned}
& \left|G_{k+1} \backslash A\right| \leq|Q \backslash E|<\varepsilon_{k+1} \\
& G_{k+1} \cap \bigcup_{j=1}^{k} G_{j}=\varnothing
\end{aligned}
$$

which obviously proves Lemma 11.
We shall need the following simple lemma (see [2], Ch. III, §1).

Lemma 12. Let G be an open bounded set in \mathbb{R}^{n}, and K be a compact set in \mathbb{R}^{n} with $|K|>0$. Then there exists a sequence $\left\{K_{k}\right\}$ of pairwise nonintersecting sets, homothetic to K, contained in G and such that $\left|G \backslash \bigcup_{k} K_{k}\right|=0$.

We shall also need the following well-known fact from the measure theory (see, e.g., [9], Ch. "Uniform Approximation").

Lemma 13. For every measurable sets $A_{1}, A_{2} \subset \mathbb{R}^{n},\left|A_{1}\right|=\left|A_{2}\right|$, there exists a measure preserving and invertible mapping $\omega: A_{1} \rightarrow A_{2}$.

4. Proof of Theorem 1

Without loss of generality we assume that $f \geq 0$ and $f \notin\left(1+\ln ^{+} L\right)^{n}\left(\mathbb{R}^{n}\right)$. Denote

$$
\begin{aligned}
& G=\operatorname{supp} f, \quad A_{k}=\{k-1 \leq f<k\} \quad(k \in \mathbb{N}) \\
& k_{0}=\min \left\{k \geq 2: \sum_{m=k}^{\infty} 9^{n} m\left|A_{m}\right|<|G|\right\} \\
& N=\left\{k \geq k_{0}:\left|A_{k}\right|>0\right\}
\end{aligned}
$$

Choose natural numbers $m_{k} \geq n(k \in N)$ such that

$$
\begin{equation*}
\sum_{k \in N} \frac{k(\ln k)^{n}\left|A_{k}\right|}{m_{k}}<1 \tag{4.1}
\end{equation*}
$$

For $k \in N$, let $\ell_{k, 1}, \ldots, \ell_{k, m_{k}}$ be the straight lines passing through the origin with none of n lying in the same hyperplane. Then by Lemma 2 there exists $\varepsilon_{k}>0$ such that

$$
\begin{equation*}
\min _{1 \leq j \leq n} \angle\left(\ell, \ell_{k, \nu_{j}}\right)<\frac{\pi}{2}-\varepsilon_{k} \tag{4.2}
\end{equation*}
$$

for every $1 \leq \nu_{1}<\nu_{2}<\cdots<\nu_{n} \leq m_{k}$ and for every straight line ℓ.
For every $k \in N$ and $m \in \overline{1, m_{k}}$ let us consider the rectangle $I_{k, m}$ with the properties:

$$
\begin{equation*}
r\left(I_{k, m}\right) \geq \frac{4 k n}{\sin \varepsilon_{k}}, \quad\left|I_{k, m}\right|=\frac{\left|A_{k}\right|}{m_{k}}, \quad \ell_{I_{k, m}}=\ell_{k, m} \tag{4.3}
\end{equation*}
$$

Denote $J_{k, m}=J\left(I_{k, m}, 4 k\right), E_{k, m}=E\left(\ell_{k, m}, \varepsilon_{k}\right)\left(k \in N, m \in \overline{1, m_{k}}\right)$. By Lemma 2

$$
\left\{M_{B_{2}\left(E_{k, m}\right)}\left(4 k \chi_{I_{k, m}}\right)>1\right\} \subset J_{k, m}
$$

From the definition of k_{0} and $J_{k, m}$ and from (4.3), we conclude by virtue of Lemma 11 that there exist pairwise nonintersecting open sets $Q_{k, m}$ such that

$$
\left|Q_{k, m}\right|=\left|J_{k, m}\right| \quad \text { and } \quad\left|Q_{k, m} \backslash G\right|<\frac{1}{2^{k} m_{k}}
$$

For each $k \in N$ and $m \in \overline{1, m_{k}}$ we complete $Q_{k, m}$ with pairwise nonintersecting rectangles $\left\{J_{k, m, q}\right\}$ which are homothetic to the rectangle $J_{k, m}$ (see Lemma 12), i.e.,

$$
\begin{aligned}
& J_{k, m, q}=H_{k, m, q}\left(J_{k, m}\right), \quad \text { where } H_{k, m, q} \text { is the homothety }(q \in \mathbb{N}), \\
& J_{k, m, q} \subset Q_{k, m} \quad(q \in \mathbb{N}), \\
& J_{k, m, q} \cap J_{k, m, q^{\prime}}=\varnothing \quad\left(q \neq q^{\prime}\right) \\
& \left|Q_{k, m} \backslash \bigcup_{q \in \mathbb{N}} J_{k, m, q}\right|=0 .
\end{aligned}
$$

Let $I_{k, m, q}=H_{k, m, q}\left(I_{k, m}\right)\left(k \in N, m \in \overline{1, m_{k}}, q \in \mathbb{N}\right)$. Because of the homothety properties we can easily see that

$$
\begin{align*}
& J_{k, m, q}=J\left(I_{k, m, q}, 4 k\right) \tag{4.4}\\
& \left\{M_{B_{2}\left(E_{k, m}\right)}\left(4 k \chi_{I_{k, m, q}}\right)>1\right\} \subset J_{k, m, q} \tag{4.5}
\end{align*}
$$

for $k \in N, m \in \overline{1, m_{k}}, q \in \mathbb{N}$, and

$$
\begin{equation*}
\sum_{q \in \mathbb{N}}\left|I_{k, m, q}\right|=\left|I_{k, m}\right|=\frac{\left|A_{k}\right|}{m_{k}} \tag{4.6}
\end{equation*}
$$

for $k \in N, m \in \overline{1, m_{k}}$.
Denote

$$
\begin{aligned}
g_{k, m} & =\sup \left\{k \chi_{I_{k, m, q}}: q \in \mathbb{N}\right\} \quad\left(k \in N, \quad m \in \overline{1, m_{k}}\right), \\
g & =\sup \left\{g_{k, m}: k \in N, \quad m \in \overline{1, m_{k}}\right\},
\end{aligned}
$$

and prove that

$$
\begin{equation*}
\sup _{\theta \in \theta\left(\mathbb{R}^{n}\right)} \int_{\left\{M_{B_{2}(\theta)}(g)>1 / 2\right\}} M_{B_{2}(\theta)}(g)<\infty . \tag{4.7}
\end{equation*}
$$

The following estimate is valid:

$$
\begin{equation*}
\operatorname{card} S_{\theta, k}<n^{2} \quad\left(\theta \in \theta\left(\mathbb{R}^{n}\right), \quad k \in N\right) \tag{4.8}
\end{equation*}
$$

where $S_{\theta, k}=\left\{m \in \overline{1, m_{k}}: \theta \notin E_{k, m}\right\}$. Indeed, let us assume the contrary, i.e., that card $S_{\theta, k} \geq n^{2}$ for some $\theta \in \theta\left(\mathbb{R}^{n}\right)$ and $k \in N$. Then there exist $1 \leq \nu_{1}<\cdots<\nu_{n^{2}} \leq m_{k}$ such that $\theta \in E_{k, \nu_{j}}\left(j \in \overline{1, n^{2}}\right)$, i.e., $\max _{1 \leq i \leq n} \angle\left(\theta^{i}, \ell_{k, \nu_{j}}\right) \geq \frac{\pi}{2}-\varepsilon_{k}\left(j \in \overline{1, n^{2}}\right)$. Hence there exist a straight line $\theta^{i} \in \theta$ and indices $\nu_{1}^{\prime}, \ldots, \nu_{n}^{\prime} \in\left\{\nu_{1}, \ldots, \nu_{n^{2}}\right\}$ such that $\angle\left(\theta^{i}, \ell_{k, \nu_{j}^{\prime}}\right) \geq \frac{\pi}{2}-\varepsilon_{k}$ $(j \in \overline{1, n})$, which contradicts (4.2). Therefore (4.8) is proved.

Let us consider an arbitrary frame θ. Suppose

$$
g_{\theta}=\left\{\begin{array}{cl}
\sup \left\{g_{k, m}: k \in N, m \in S_{\theta, k}\right\} & \text { if } \bigcup_{k \in N} S_{\theta, k} \neq \varnothing \\
0 & \text { if } \bigcup_{k \in N} S_{\theta, k}=\varnothing
\end{array}\right.
$$

By Lemma 8, (4.1), (4.3), (4.6) and (4.8) we have

$$
\begin{gather*}
\int_{\left\{M_{\mathbf{I}(\theta)}\left(g_{\theta}\right)>1 / 4\right\}} M_{\mathbf{I}(\theta)}\left(g_{\theta}\right) \leq c_{3} \int_{\mathbb{R}^{n}} g_{\theta}\left(1+\ln ^{+} 4 g_{\theta}\right)^{n}< \\
<c_{3} \sum_{k \in N} n^{2} k(1+\ln 4 k)^{n} \frac{\left|A_{k}\right|}{m_{k}}<5^{n} n^{2} c_{3} \sum_{k \in N} \frac{k(\ln k)^{n}\left|A_{k}\right|}{m_{k}}<5^{n} n^{2} c_{3} . \tag{4.9}
\end{gather*}
$$

Denote

$$
\begin{aligned}
& T=\left\{(k, m, q): k \in N, \quad m \in \overline{1, m_{k}} \backslash S_{\theta, k}, \quad q \in \mathbb{N}\right\} \\
& J_{k, m, q}(\lambda)=J\left(I_{k, m, q}, k / \lambda\right) \text { for }(k, m, q) \in T \text { and } 1 / 4 \leq \lambda<k .
\end{aligned}
$$

Obviously,

$$
r\left(I_{k, m, q}\right)>\frac{4 k n}{\sin \varepsilon_{k}} \geq \frac{k n}{\lambda \sin \varepsilon_{k}}
$$

for $(k, m, q) \in T$ and $1 / 4 \leq \lambda<k$, whence on account of (4.4), (4.5) and Lemma 2

$$
\begin{gathered}
\left\{M_{B_{2}\left(E_{k, m}\right)}\left(k \chi_{I_{k, m, q}}\right)>\lambda\right\}= \\
=\left\{M_{B_{2}\left(E_{k, m}\right)}\left(\frac{k}{\lambda} \chi_{I_{k, m, q}}\right)>1\right\} \subset J_{k, m, q}(\lambda) \subset J_{k, m, q} .
\end{gathered}
$$

Consequently, since $\theta \in E_{k, m}$, we have

$$
\begin{equation*}
\left\{M_{B_{2}(\theta)}\left(k \chi_{I_{k, m, q}}\right)>\lambda\right\} \subset J_{k, m, q}(\lambda) \subset J_{k, m, q} . \tag{4.10}
\end{equation*}
$$

On the other hand, it is clear that

$$
\begin{equation*}
\left\{M_{B_{2}(\theta)}\left(k \chi_{I_{k, m, q}}\right)>\lambda\right\}=\varnothing \tag{4.11}
\end{equation*}
$$

for $(k, m, q) \in T$ and $\lambda \geq k$.
It is easy to see that the functions $k \chi_{I_{k, m, q}}$ belong to the class $\bar{L}\left(\mathbb{R}^{n}\right)$ and therefore, keeping in mind that the rectangles $J_{k, m, q}$ are pairwise nonintersecting and using (4.10), (4.11) and Lemma 6 we have

$$
\left\{M_{B_{2}(\theta)}\left(g-g_{\theta}\right)>\lambda\right\} \subset \bigcup_{(k, m, q) \in T, k>\lambda} J_{k, m, q}(\lambda) \text { for } \lambda \geq 1 / 4
$$

The above inequality, (4.3), (4.6) and the definition of g imply that

$$
\begin{aligned}
\left|\left\{M_{B_{2}(\theta)}\left(g-g_{\theta}\right)>\lambda\right\}\right| & \leq \sum_{(k, m, q) \in T, k>\lambda}\left|J_{k, m, q}(\lambda)\right| \leq \\
\leq \sum_{k \in N, k>\lambda} \sum_{m=1}^{m_{k}} \sum_{q=1}^{\infty} 9^{n} \frac{k}{\lambda}\left|I_{k, m, q}\right| & =\frac{9^{n}}{\lambda} \sum_{k \in N, k>\lambda} k\left|A_{k}\right| \leq \frac{2 \cdot 9^{n}}{\lambda} \int_{\{f>\lambda / 2\}} f
\end{aligned}
$$

for $\lambda \geq 1 / 4$.
Consequently, by Lemma 9 we obtain

$$
\begin{equation*}
\quad \int M_{B_{2}(\theta)}\left(g-g_{\theta}\right) \leq 2 \cdot 9^{n} \int_{\mathbb{R}^{n}} f\left(1+\ln ^{+} 8 f\right) . \tag{4.12}
\end{equation*}
$$

From (4.9), (4.12) and Lemma 10 we find that

$$
\int_{\underset{2}{(\theta)}(g)>1 / 2\}} M_{B_{2}(\theta)}(g)<2 \cdot 5^{n} n^{2} c_{3}+4 \cdot 9^{n} \int_{\mathbb{R}^{n}} f\left(1+\ln ^{+} 8 f\right),
$$

whence by virtue of the arbitrariness of θ we conclude that (4.7) is valid.
Denote

$$
P_{k}=\bigcup_{m=1}^{m_{k}} \bigcup_{q=1}^{\infty}\left(I_{k, m, q} \cap G\right) \quad(k \in N) .
$$

By our choice of sets $Q_{k, m}$ we easily see that

$$
\begin{equation*}
0 \leq\left|A_{k}\right|-\left|P_{k}\right|<\frac{1}{2^{k}} \quad(k \in N) \tag{4.13}
\end{equation*}
$$

Let $A_{k}^{\prime} \subset A_{k}(k \in N)$ be some measurable set with $\left|A_{k}^{\prime}\right|=\left|P_{k}\right|$. By Lemma 13 there exists a measure preserving and invertible mapping ω : $\mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ such that

$$
\begin{array}{cl}
\omega\left(P_{k}\right)=A_{k}^{\prime} \quad(k \in N), \quad \omega\left(G \backslash \bigcup_{k \in N} P_{k}\right)=G \backslash \bigcup_{k \in N} A_{k}^{\prime} \\
\omega(x)=x \quad\left(x \in \mathbb{R}^{n} \backslash G\right) \tag{4.14}
\end{array}
$$

Suppose

$$
\varphi_{1}=(f \circ \omega) \chi \bigcup_{k \in N} P_{k} \quad \text { and } \quad \varphi_{2}=(f \circ \omega) \chi_{\mathbb{R}^{n} \backslash} \bigcup_{k \in N} P_{k}
$$

Obviously, $f \circ \omega=\varphi_{1}+\varphi_{2}$. We have

$$
\int_{\mathbb{R}^{n}} \varphi_{2}\left(1+\ln ^{+} \varphi_{2}\right)^{n}=\int_{\mathbb{R}^{n} \backslash \bigcup_{k \in N} A_{k}^{\prime}} f\left(1+\ln ^{+} f\right)^{n}=
$$

$$
=\int_{\left\{0 \leq f<k_{0}-1\right\}} f\left(1+\ln ^{+} f\right)^{n}+\sum_{k \in N_{A_{k} \backslash A_{k}^{\prime}}} \int f\left(1+\ln ^{+} f\right)^{n}=\alpha_{1}+\alpha_{2} .
$$

It can be seen that $\alpha_{1}<\infty$, and by (4.13)

$$
\alpha_{2} \leq \sum_{k \in N} \frac{k(1+\ln k)^{n}}{2^{k}}<\infty
$$

Thus $\varphi_{2} \in L\left(1+\ln ^{+} L\right)^{n}\left(\mathbb{R}^{n}\right)$. Therefore, by the obvious inequality $\varphi_{1} \leq g$, (4.7) and Lemmas 8 and 10, we conclude that

$$
\sup _{\theta \in \theta\left(\mathbb{R}^{n}\right)} \int_{\left\{M_{B_{2}(\theta)}(f \circ \omega)>1\right\}} M_{B_{2}(\theta)}(f \circ \omega)<\infty
$$

which together with (4.14) completes the proof of Theorem 1.

5. Remarks

(1) By the equality $M_{B_{2}(\theta)}(\alpha f)=\alpha M_{B_{2}(\theta)}(f)(\alpha>0)$, we can easily verify that Theorem 1 remains valid if instead of $\left\{M_{B_{2}(\theta)}(f \circ \omega)>1\right\}$ we shall take the integrals on $\left\{M_{B_{2}(\theta)}(f \circ \omega)>\lambda\right\}$, where $\lambda>0$ is an arbitrarily fixed number.
(2) Theorem 1 immediately yields the following improvement:

Theorem 2. For every function $f \in L\left(1+\ln ^{+} L\right)\left(\mathbb{R}^{n}\right)(n \geq 2)$ and measurable sets $G_{1}, G_{2} \in \mathbb{R}^{n}$ such that $f \chi_{\mathbb{R}^{n} \backslash G_{1}} \in L\left(1+\ln ^{+} L\right)^{n}\left(\mathbb{R}^{n}\right)$ and $\left|G_{1}\right|=\left|G_{2}\right|$ there exists a measure preserving and invertible mapping ω : $\mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ such that

1) $\omega\left(G_{1}\right)=G_{2} \quad$ and $\quad\{x: \omega(x) \neq x\} \subset G_{1} \cup G_{2}$,
2) $\sup _{\theta \in \theta\left(\mathbb{R}^{n}\right)} \int_{\left\{M_{B_{2}(\theta)}(f \circ \omega)>1\right\}} M_{B_{2}(\theta)}(f \circ \omega)<\infty$.

Proof. Let $\omega_{1}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be a measure preserving and invertible mapping such that (see Lemma 12) $\omega_{1}\left(G_{1}\right)=G_{2}$ and $\{x: \omega(x) \neq x\} \subset G_{1} \cup G_{2}$. Consider the function $g=\left(f \circ \omega_{1}\right) \chi_{G_{2}}$. Then $\operatorname{supp} g \subset G_{2}$, and by virtue of Theorem 1 (see Remark (1)) there exists a measure preserving and invertible mapping $\omega_{2}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ such that
$\left\{x: \omega_{2}(x) \neq x\right\} \subset \operatorname{supp} g \subset G_{2}$ and $\sup _{\theta \in \theta\left(\mathbb{R}^{n}\right)} \int_{\left\{M_{B_{2}(\theta)}\left(g \circ \omega_{2}\right)>1 / 2\right\}} M_{B_{2}(\theta)}\left(g \circ \omega_{2}\right)<\infty$.
Obviously, $\left(f \circ \omega_{1}\right) \chi_{\mathbb{R}^{n} \backslash G_{2}} \in L\left(1+\ln ^{+} L\right)^{n}\left(\mathbb{R}^{n}\right)$. Therefore, by Lemmas 8 and 10 , one can take $\omega_{2} \circ \omega_{1}$ as ω.
(3) For arbitrary $\varepsilon>0$, a mapping ω "correcting" the function $f \in$ $L\left(1+\ln ^{+} L\right)\left(\mathbb{R}^{n}\right)$ can be chosen so that

$$
|\{f \circ \omega \neq f\}|<\varepsilon
$$

For this it is enough in Theorem 2 to take G_{1} and G_{2} with measures less than $\varepsilon / 2$.
(4) When $G_{1}=\{|f|>1\}$, and G_{2} is a cubic interval, Theorem 2 has been proved for $n=2$ in [7] and announced for $n \geq 2$ in [8].

References

1. M. de Guzmán and G. V. Welland, On the differentiation of integrals. Rev. Un. Mat. Argentina 25(1971), 253-276.
2. M. de Guzmán, Differentiation of integrals in \mathbb{R}^{n}. Lecture Notes in Mathematics 481, Springer, 1975.
3. B. Jessen, J. Marcinkiewicz, and A. Zygmund, Note on the differentiability of multiple integrals. Fund. Math. 25(1935), 217-234.
4. L. D. Gogoladze, On maximal Hardy-Littlewood functions. (Russian) Soobshch. Akad. Nauk Gruz. SSR 3(1983), 257-259.
5. L. D. Gogoladze, On the summation of multiple trigonometric series and conjugate functions. (Russian) Dissertation for the Doctor of Science Degree, Tbilisi, 1984.
6. R. J. Bagby, A note on the strong maximal function. Proc. Amer. Math. Soc. 88(1983), 648-650.
7. G. Oniani, On strong maximal operators corresponding to different frames. Georgian Math. J. 3(1996), No. 1, 81-96.
8. G. Oniani, On the integrability of maximal functions $M_{B_{2}(\theta)}(f)$. Georgian Bull. Acad. Sci. 156(1997), No. 1, 5-6.
9. P. R. Halmos, Lectures on the ergodic theory. Math. Soc. Japan, Tokyo, 1956.
(Received 20.06.1997)
Author's address:
A. Tsereteli Kutaisi State University

55, Queen Tamar St., Kutaisi 384000
Georgia

[^0]: 1991 Mathematics Subject Classification. 28A15.
 Key words and phrases. Strong maximal operator, rectangle, frame.

