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ON THE INTEGRABILITY OF STRONG MAXIMAL
FUNCTIONS CORRESPONDING TO DIFFERENT

FRAMES

G. ONIANI

Abstract. For the frame θ in Rn, let B2(θ)(x) (x ∈ Rn) be a family
of all n-dimensional rectangles containing x and having edges parallel
to the straight lines of θ, and let MB2(θ) be a maximal operator
corresponding to B2(θ). The main result of the paper is the following

Theorem. For any function f ∈ L(1 + ln+ L)(Rn) (n ≥ 2) there
exists a measure preserving and invertible mapping ω : Rn → Rn

such that
1. {x : ω(x) 6= x} ⊂ supp f ;
2. sup

θ∈θ(Rn)

∫

{MB2(θ)(f◦ω)>1}
MB2(θ)(f ◦ ω) < ∞.

This theorem gives a general solution of M. de Guzmán’s problem
that was previously studied by various authors.

1. Definitions and the Notation

Let B be a mapping defined on Rn such that, for every x ∈ Rn, B(x) is
a family of open bounded sets in Rn containing x. The maximal operator
MB corresponding to B is defined as follows: for f ∈ Lloc(Rn) and x ∈ Rn

MB(f)(x) = sup
R∈B(x)

1
|R|

∫

R

|f | if B(x) 6= ∅,

and
MB(f)(x) = 0 if B(x) = ∅.

A frame in Rn will be called a set whose elements are n pairwise ortho-
gonal straight lines passing through the origin O. Frames will be denoted
by θ, θ = {θ1, . . . , θn}. Under θ0 will be meant a frame {Ox1, . . . , Oxn},
where Ox1, . . . , Oxn are the coordinate axes of Rn. A set of all frames in
Rn will be denoted by θ(Rn).

1991 Mathematics Subject Classification. 28A15.
Key words and phrases. Strong maximal operator, rectangle, frame.

149
1072-947X/99/0300-0149$15.00/0 c© 1999 Plenum Publishing Corporation



150 G. ONIANI

A set congruent to a set of the form I1 × · · · × In, where I1, . . . , In
are intervals of positive length on the straight line, will be called an n-
dimensional rectangle or simply a rectangle in Rn.

The frame θ = {θ1, . . . , θn} for which the sides of the rectangle I are
parallel to the corresponding straight lines θj (j = 1, . . . , n) will be called
the frame of I which will be denoted by θ(I).

For a nonempty set E ⊂ θ(Rn) we shall denote by B2(E)(x) (x ∈ Rn) a
family of all rectangles I in Rn with the properties x ∈ I, θ(I) ∈ E. Instead
of B2({θ}) we shall write B2(θ) when E = {θ}, and B2 when θ = θ0.

Since MB2 is said to be a strong maximal operator, it is natural to call
MB2(θ) the strong maximal operator corresponding to the frame θ.

By B1(x) (x ∈ Rn) we denote a family of all cubic intervals in Rn con-
taining x (for n = 1 a one-dimensional interval is understood here as a
square interval).

The support {x ∈ Rn : f(x) 6= 0} of the function f : Rn → R will be
denoted by supp f .

2. Formulation of the Question and the Main Result

The class L(1 + ln+ L)(Rn) was characterized by Guzmán and Welland
([1, 2], Ch. II, §6) by means of the maximal operator MB1 . In particular,
they have shown that for f ∈ L(Rn) the following conditions are equivalent:

1. f ∈ L(1 + ln+ L)(Rn),

2.
∫

{MB1 (f)>1}

MB1(f) < ∞.

From the strong maximal Jessen–Marcinkiewicz–Zygmund’s theorem it
follows that if

f ∈ L(1 + ln+ L)n(Rn), (2.1)

then
∫

{MB2 (f)>1}

MB2(f) < ∞. (2.2)

Guzmán (see [2], Ch. II, §6) posed the question whether it was possible
to characterize the class L(1 + ln+ L)2(R2) by the operator MB2 as it was
done for the class L(1 + ln+ L)(Rn) using the operator MB1 , i.e., whether
conditions (2.1) and (2.2) are equivalent for f ∈ L(R2). Gogoladze [4, 5]
and Bagby [6] answered this question in the negative.
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It can be easily verified that much more than (2.2) is fulfilled for f ∈
L(1 + ln+ L)n(Rn), in particular,

sup
θ∈θ(Rn)

∫

{MB2(θ)(f)>1}

MB2(θ)(f) < ∞. (2.3)

A question arises if it is possible to characterize the class L(1+ln+L)n(Rn)
by condition (2.3), i.e., if conditions (2.1) and (2.3) are equivalent for
f ∈ L(Rn) (n ≥ 2).

This question was answered in the negative for n = 2 in [7]. The answer
remains negative for an arbitrary n > 2 as well. In particular, the following
theorem is valid.

Theorem 1. For any function f ∈ L(1+ln+ L)(Rn) (n ≥ 2) there exists
a measure preserving and invertible mapping ω : Rn → Rn such that

1.
{

x : ω(x) 6= x
}

⊂ supp f,

2. sup
θ∈θ(Rn)

∫

{MB2(θ)(f◦ω)>1}

MB2(θ)(f ◦ ω) < ∞.

Note that we had to use many new arguments to proceed from the case
to n = 2 to the case of arbitrary (n ≥ 2).

Theorem 1 was first formulated by us in a less general for in [8].

3. Auxiliary Statements

Throughout the discussion preceding Lemma 4 we shall consider the
spaces Rn with n ≥ 2.

We shall call a strip in Rn an open set bounded by two different parallel
hyperplanes, i.e., a set of the form

{

x ∈ Rn : a < α1x2 + · · ·+ αnxn < b
}

,

where a, b (a > b) and α1, . . . , αn (α2
1 + · · · + α2

n > 0) are some real num-
bers, and xk (k = 1, . . . , n) here and everywhere below denotes the k-th
coordinate of the point x ∈ Rn. The strip width will be called the distance
between the hyperplanes that bound the strip, i.e., the number b − a will
be called the strip width.

In the sequel it will always be assumed that χA is the characteristic
function of the set A.

Lemma 1. For every x ∈ Rn let B(x) be a family of open bounded and
convex sets in Rn, containing x, and let S be a strip in Rn of width δ. Then

MB(χS )(x) <
2nδ

dist(x, S)
when dist(x, S) ≥ δ.
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Proof. Let dist(x, S) ≥ δ and R ∈ B(x), R ∩ S 6= ∅.
Among the hyperplanes bounding S we denote by Γ the hyperplane which

is the closest to x. It is obvious that R∩Γ 6= ∅. For every y ∈ R∩Γ let ∆y

be a segment connecting x and y. It is assumed that K =
⋃

y∈R∩Γ
∆y. Since

R is convex, we have

K ⊂ R. (3.1)

Let H be the homothety centered at x and with the coefficient

α =
dist(x, S) + δ

dist(x, S)
.

Let us show that

R ∩ S ⊂ H(K)\K. (3.2)

Indeed, assume that z ∈ R ∩ S and denote by y the point at which the
segment connecting x and z intersects with Γ. Since x, z ∈ R, by virtue of
the convexity of R we have y ∈ R. Therefore y ∈ R ∩ Γ. By the definitions
of the set K and homothety H we easily obtain z ∈ H(∆y) ⊂ H(K).
(R ∩ S) ∩ K = ∅. Therefore z /∈ K. Thus z ∈ H(K)\K. Thus, since
z ∈ R ∩ S is arbitrary, we have proved (3.2).

Using (3.1), (3.2), the definition of H and obvious inequality αn − 1 <
2nδ

dist(x,S) we can write

1
|R|

∫

R

χS =
|R ∩ S|
|R|

≤ |H(K)\K|
|K|

=
(αn − 1)|K|

|K|
<

2nδ
dist(x, S)

,

which, obviously, proves the lemma.

For the rectangle I in Rn having pairwise orthogonal edges of lengths
δ1, δ2, . . . , δn, where δ1 ≤ δ2 ≤ · · · ≤ δn, we introduce the notation:

(1) r(I) is a number δ2/δ1;
(2) when r(I) > 1, for h ≥ 1, J(I, h) is an open rectangle with the

following properties: J(I, h) has the same center and frame as I; the length
of the edges of J(I, h) parallel to the edges of I of the length δ1 is equal to
(2n+1h + 1)δ1, while the length of the edges of J(I, h) parallel to the edges
of I of length δj (j = 2, . . . , n) is equal to 3δj ;

(3) for r(I) > 1, `I is a straight line passing through O and parallel to
the edges of I of length δ1.

For the straight line ` in Rn and 0 < ε < π/4 we assume

E(`, ε) =
{

θ ∈ θ(Rn) : ∠(`, θj) < π/2− ε, j = 1, . . . , n
}

,

where ∠(·, ·) is the angle lying between the two straight lines.
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Lemma 2. Let I be a rectangle in Rn, h > 1, 0 < ε < π/4, r(I) > nh
sin ε ,

and E = E(`I , ε). Then
{

MB2(E)(hχI ) > 1
}

⊂ J(I, h),

and therefore
∣

∣

{

MB2(E)(hχI ) > 1
}∣

∣ ≤ 9nh|I|.

Proof. Without loss of generality we assume that

I = (−δ1/2, δ1/2)× · × (−δn/2, δn/2),

where δ1 < δ1 ≤ · · · ≤ δn. We write

S1 =
{

x ∈ Rn : |x1| <
(

2nh +
1
2

)

δ1

}

,

Sj =
{

x ∈ Rn : |xj | < 3δj/2
}

(j = 2, . . . , n).

As is easily seen, J(I, h) is the intersection of the strips S1, . . . , Sn.
Let S = {x ∈ Rn : |x1| < δ1/2} and x ∈ S1. Obviously, dist(x, S) ≥

2nhδ1. Now by lemma 1 we write

MB2(E)(hχI )(x) = hMB2(E)(χI )(x) ≤ hMB2(E)(χS )(x) <
h2nδ1

dist(x, S)
≤ 1.

Hence we conclude that
{

MB2(E)(hχI ) > 1
}

⊂ S1. (3.3)

Consider arbitrary 2 ≤ j ≤ n. Let x /∈ Sj , J ∈ B2(E)(x), and J ∩ I 6= ∅.
Obviously, dist(x, I) ≥ δj , and we have

dist(x, I) ≤ diam I < t1 + t2 + · · ·+ tn,

where t1, t2, . . . , tn are lengths of orthogonal edges of J . Therefore there
exists a side of J with the length greater than δj/n. We can represent J
as a union of pairwise nonintersecting intervals equal and parallel to above-
mentioned edge: J =

⋃

α∈T
∆α. Obviously,

|∆α|1 > δj/n (α ∈ T ). (3.4)

(Here and everywhere below, for the set A contained in some k-dimensional
(k = 1, . . . , n − 1) affine subspace Rn, we denote by |A|k k-dimensional
measure of A.)

Let us prove that

h|∆α ∩ I|1
|∆α|1

≤ 1 (α ∈ T ). (3.5)

Indeed, let ` be the straight line containing the segment ∆α. It is easy to
see that |` ∩ S|1 = δ1/ cos ∠(`,Ox1). J ∈ B2(E)(x), Therefore ∠(`,Ox1) <



154 G. ONIANI

π/2− ε. Consequently, |`∩S|1 ≤ δ1
cos(π/2−ε) = δ1

sin ε , which by virtue of (3.4)

and the inequality δj > r(I)δ1 ≥ nhδ1
sin ε implies

h|∆α ∩ I|1
|∆α|1

≤ h|` ∩ S|1
δj/n

≤ hδ1

sin ε
sin ε
hδ1

= 1.

It is not difficult to verify that

1
|J |

∫

J

hχI =
h|J ∩ I|
|J |

≤ sup
α∈T

h|∆α ∩ I|1
|∆α|1

.

Hence, by (3.5),
1
|J |

∫

J

hχI ≤ 1,

which, taking into account the arbitrariness of J ∈ B2(E)(x), L ∩ I 6= ∅,
allowsus to conclude that

MB2(E)(hχI )(x) ≤ 1 (x /∈ Sj , 2 ≤ j ≤ n).

This and (3.3) imply

{

MB2(E)(hχI ) > 1
}

⊂
n
⋂

j=1
Sj = J(I, h).

Lemma 3. If among the pairwise different straight lines `1, . . . , `k (k ≥
n) in Rn which pass through the same point none of n lie in the same
hyperplane, then there exists ε > 0 such that for every straight line ` in Rn

and every 1 ≤ k1 < k2 < · · · < kn ≤ k

min
1≤j≤n

∠(`, `kj) <
π
2
− ε .

Proof. Let xj ∈ Rn, ‖xj‖ = 1 (‖ · ‖ is the norm in Rn, j = 1, . . . , n) be
the direction vector of the straight line `j . If we assume the contrary to
the assertion of the lemma, then for every m ∈ N there exist ym ∈ Rn,
‖ym‖ = 1, and numbers 1 ≤ k1(m) < k2(m) < · · · kn(m) ≤ k such that

arccos
∣

∣(ym, xkj(m))
∣

∣ >
π
2
− 1

m
for j = 1, . . . , n, where (·, ·) is the scalar product in Rn. Hence by the
compactness of the unit sphere in Rn and the continuity of the scalar product
there exist y ∈ Rn, ‖y‖ = 1, and 1 ≤ k1 < k2 < · · · < kn ≤ k such that

(y, xkj ) = 0

for j = 1, . . . , n. This implies that the points xk1 , . . . , xkn belong to the
hyperplane which is orthogonal to y. Thus the straight lines `k1 , . . . , `kn lie
in the same hyperplane which contradicts the condition of the lemma.
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Lemma 4. Let f be a continuous function on Rn, θ ∈ θ(Rn), λ > 0,
and an open set G contain {MB2(θ)(f) > λ}. If for the rectangle I in Rn

with θ(I) = θ, I\G 6= ∅, then
∫

I∩G

|f | ≤ λ|I ∩G|.

Proof. We prove the lemma by induction with respect to n. For n = 1 the
proof is obvious. Consider the passage from n− 1 to n.

Without loss of generality we assume that θ = θ0 and I is closed.
Introduce the notation:

Γt =
{

x ∈ Rn : x1 = t
}

,

It = I ∩ Γt, Gt = G ∩ Γt,
(t ∈ R)

J =
{

t ∈ Rn : It 6= ∅
}

,

S1 =
{

t ∈ J : It ⊂ Gt
}

,

S2 =
{

t ∈ J : It\Gt 6= ∅
}

.

It is easy to see that S1 is open by the natural topology on the interval
J . Therefore S1 divides into pairwise nonintersecting intervals {δk}k∈T⊂N.
Obviously, the n-dimensional rectangles ∆k =

⋃

t∈δk

It (k ∈ T ) satisfy the

conditions

∂∆k ∩ ∂G 6= ∅ (k ∈ T ), (3.6)

where ∂∆k and ∂G are the boundaries of ∆k and G, respectively;

θ(∆k) = θ(I) = θ0 and ∆k ⊂ I ∩G (k ∈ T ), (3.7)

∆k ∩∆m = ∅ (k 6= m). (3.8)

By the conditions of the lemma, MB2(f)(x) ≤ λ for x ∈ ∂G and therefore,
with (3.6) and (3.7) taken into account, we have

∫

∆k

|f | ≤ λ|∆k| (k ∈ T ),

which on account to (3.8) implies
∫

⋃

k∈T

∆k

|f | ≤ λ
∣

∣

∣

⋃

k∈T
∆k

∣

∣

∣. (3.9)
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Estimate now the integral of |f | on (I∩G)\
⋃

k∈T
∆k. Let M be an (n−1)-

dimensional strong maximal operator. For each t ∈ R consider the function
gt(y) = f(t, y) (y ∈ Rn−1) and assume that

F (t, y) = M(gt)(y) (t ∈ R, y ∈ Rn−1).

For t ∈ S2 we have
{

F (t, ·) > λ
}

⊂ Gt. (3.10)

Indeed, assume the contrary, i.e., there exist t0 ∈ S2, y0 ∈ Rn−1 and an
(n− 1)-dimensional interval R such that (t0, y0) /∈ Gt0 , R 3 y0, and

∫

R

|gt0(y)| dy ≥ λ|R|n−1.

Then by the continuity of f , for a sufficiently small one-dimensional interval
∆ 3 t0 we shall have

∫

∆×R

|f(t, y)| dt dy > λ|∆×R|.

Hence MB2(f)(t0, y0) > λ. On the other hand, since (t0, y0) /∈ Gt0 , we have
(t0, y0) /∈ G ⊃ {MB2(f) > λ}. The obtained contradiction proves (3.10).

By virtue of (3.10) and the induction assumption we easily obtain
∫

It∩Gt

|f(t, y)| dy ≤ λ|It ∩Gt|n−1

for t ∈ S2.
Thus we can immediately write

∫

I∩G\
⋃

k∈T

∆k

|f | =
∫

S2

[ ∫

It∩Gt

|f(t, y)| dy
]

dt ≤

≤
∫

S2

λ|It ∩Gt| dt = λ
∣

∣

∣(I ∩G)\
⋃

k∈T
∆k

∣

∣

∣.

whence by (3.7) and (3.9) we conclude that Lemma 4 is valid.

Denote by L(Rn) a class of all functions f ∈ L(Rn) for each of which
there exists, for ε > 0, a continuous function g ∈ L(Rn) on Rn such that
|g(x)| ≤ |f(x)| almost everywhere on Rn, and ‖f − g‖1 < ε.
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Lemma 5. Let f ∈ L(Rn), θ ∈ θ(Rn), λ > 0, and then open set G
contain {MB2(θ)(f) > λ}. If for the rectangle I in Rn with θ(I) = θ,
I\G 6= ∅, then

∫

I∩G

|f | ≤ λ|I ∩G|.

Proof. f ∈ L(Rn). Therefore for arbitrarily given ε > 0 there exists a
continuous function g ∈ L(Rn) on Rn such that |g(x)| ≤ |f(x)| almost
everywhere on Rn, and ‖f − g‖1 < ε. It is obvious that

{

MB2(θ)(g) > λ
}

⊂
{

MB2(θ)(f) > λ
}

⊂ G.

Now by Lemma 4
∫

I∩G

|g| ≤ λ|I ∩G|,

and therefore
∫

I∩G

|f | − ε ≤ λ|I ∩G|,

whence by the arbitrariness of ε > 0 we conclude that Lemma 5 is valid.

Lemma 6. Let fk ∈ L(Rn), fk ≥ 0 (k ∈ N), E ⊂ θ(Rn), E 6= ∅, λ > 0,
and let for k, m ∈ N and k 6= m the following conditions be fulfilled:

supp fk ∩ supp fm = ∅,

supp fk ∩
{

MB2(E)(fm) > λ
}

= ∅,
{

MB2(E)(fk) > λ
}

∩
{

MB2(E)(fm) > λ
}

= ∅.

Then
{

MB2(E)

(
m

∑

k=1

fk

)

> λ
}

=
∞
⋃

k=1

{

MB2(E)(fk) > λ
}

.

Proof. Denote Gk =
{

MB2(E)(fk) > λ
}

, k ∈ N. For each k ∈ N

fk(x) ≤ λ almost everywhere on Rn\Gk. (3.11)

Indeed, otherwise, since the differential bases B2(θ), θ ∈ θ(Rn), are dense
(see, for e.g., [2], Ch.II, §3), for arbitrary θ ∈ E and Aj = (Rn\Gk)∩ {fk >
λ + 1/j} (j ∈ N) we shall have

lim
I∈B2(θ)(x), diam I→0

|I ∩Aj |
|I|

for almost all x ∈ Aj .

Hence MB2(E)(fk) ≥ MB2(θ)(fk) > λ for almost all x ∈ (Rn\Gk)∩{fk >
λ}, which contradicts the definition of Gk.
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By (3.11) and the condition of the lemma we write

∞
∑

k=1

fk(x) ≤ λ for almost all x /∈
∞
⋃

k=1
Gk.

Hence, by the conditions of the lemma and by Lemma 5, we find that for

every x /∈
∞
⋃

k=1
Gk and I ∈ B2(E)(x)

∫

I

∞
∑

k=1

fk ≤
∞
∑

k=1

∫

I∩Gk

fk +
∫

I\
∞
⋃

k=1

Gk

∞
∑

k=1

fk ≤

≤
∞
∑

k=1

λ|I ∩Gk|+ λ
∣

∣

∣I\
∞
⋃

k=1
Gk

∣

∣

∣ = λ|I|.

Therefore

MB2(E)

(
∞
∑

k=1

fk

)

(x) ≤ λ for x /∈
∞
⋃

k=1
Gk.

The next assertion belongs to Jessen, Marcinkiewicz, and Zygmund and
is referred to as the strong maximal theorem (see [3] or [2], Ch. II, §3).

Theorem. If f ∈ L(1 + ln+ L)n−1(Rn), then

∣

∣

{

MB2(f) > λ
}∣

∣ ≤ c1

∫

Rn

|f |
λ

(

1 + ln+ |f |
λ

)n−1
(λ > 0),

where c1 is the constant depending only on n.

The foollowing lemma is a simple improvement of this result.

Lemma 7. If f ∈ L(1 + ln+ L)n−1(Rn), then for every θ ∈ θ(Rn)

∣

∣

{

MB2(θ)(f) > λ
}∣

∣ ≤ c2

∫

{|f |>λ/2}

|f |
λ

(

1 + ln
2|f |
λ

)n−1
(λ > 0),

where the constant c2 depends only on n.

Proof. For arbitrary fixed λ>0 assume f∗=fχ{|f|≤λ/2} and f∗=fχ{|f|>λ/2} .
f = f∗ + f∗. Therefore MB2(f) ≤ MB2(f∗) + MB2(f

∗). Hence
{

MB2 > λ
}

⊂
{

MB2(f∗) > λ/2
}

∪
{

MB2(f
∗) > λ/2

}

.
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But {MB2(f∗) > λ/2} = ∅ and therefore by the strong maximal theorem

∣

∣

{

MB2(f) > λ
}∣

∣≤
∣

∣

{

MB2(f
∗) > λ/2

}∣

∣≤c1

∫

Rn

2|f∗|
λ

(

1 + ln+ 2|f∗|
λ

)n−1
≤

≤ 2c1

∫

{|f |>λ/2}

|f |
λ

(

1 + ln
2|f |
λ

)n−1
. (3.12)

Let γθ, θ ∈ θ(Rn), be a rotation such that θ = {γθ(Ox1), . . . , γθ(Oxn)}.
In view of the fact that the rotation is a measure preserving mapping, we
readily obtain

MB2(θ)(f)(x) = MB2(f ◦ γθ)
(

γ−1
θ (x)

)

(x ∈ Rn) (3.13)

Therefore
∣

∣

{

MB2(θ)(f) > λ
}∣

∣ =
∣

∣

{

MB2(f ◦ γθ) > λ
}∣

∣ (λ > 0).

By this and (3.12) we conclude that the lemma is valid.

Lemma 8. If f ∈ L(1 + ln+ L)n(Rn), then for every θ ∈ θ(Rn)
∫

{MB2(θ)(f)>λ}

MB2(θ)(f) ≤ c3

∫

Rn

|f |
(

1 + ln+ |f |
λ

)n
(λ > 0),

where the constant c3 depends only on n.

Proof. Let f ∈ L(1 + ln+ L)n(Rn) and λ > 0. We have

∫

{MB2(θ)(f)>λ}

MB2(f) = −
∞
∫

λ

t dF (t) =
[

− tF (t)
]∞
λ +

∞
∫

λ

F (t) dt,

where F (t) = |{MB2(f) > t}| (t > 0). By Lemma 7

tF (t) ≤ c2

∫

{|f |>t/2}

|f |
(

1 + ln
2|f |
t

)n−1
(t > 0). (3.14)

Hence

∫

{MB2(θ)(f)>λ}

MB2(f) = λF (λ) +

∞
∫

λ

F (t) dt. (3.15)
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Lemma 7 yields

∞
∫

λ

F (t) dt ≤ c2

∞
∫

λ

∫

{|f(x)|>t/2}

|f(x)|
t

(

1 + ln
2|f(x)|

t

)n−1
dx dt =

= c2

∫

{|f(x)|>λ/2}

2|f(x)|
∫

λ

|f(x)|
t

(

1 + ln
2|f(x)|

t

)n−1
dt dx ≤

≤ c2

∫

{|f(x)|>λ/2}

2|f(x)|
∫

λ

|f(x)|
t

(

1 + ln
2|f(x)|

λ

)n−1
dt dx ≤

≤ c2

∫

{|f(x)|>λ/2}

|f(x)|
(

1 + ln
2|f(x)|

λ

)n
dx,

whence with regard for (3.14) and (3.15) we obtain

∫

{MB2 (f)>λ}

MB2(f) ≤ 2c2

∫

Rn

|f |
(

1 + ln+ 2|f |
λ

)n
(λ > 0) (3.16)

for f ∈ L(1 + ln+ L)n(Rn).
(3.13) readily implies

∫

{MB2(θ)(f)>λ}

MB2(θ)(f) =
∫

{MB2 (f◦γθ)>λ}

MB2(f ◦ γθ) (λ > 0) (3.17)

for f ∈ L(1 + ln+ L)n(Rn) and θ ∈ θ(Rn).
Since the rotation is the measure preserving mapping, by (3.16) and

(3.17) we immediately conclude that Lemma 8 is valid.

Lemma 9. Let f ∈ L(1 + ln+ L)(Rn), g : Rn → R be a measurable
function, and a, b > 0 and λ ≥ 0. If

∣

∣

{

|g| > t
}∣

∣ ≤ a
t

∫

{|f |>bt}

|f | (t ≥ λ), (3.18)

then
∫

{|g|>λ}

|g| ≤ a
∫

Rn

|f |
(

1 + ln+ |f |
bλ

)

.
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Proof. We have

∫

{|g|>λ}

|g| = −
∞
∫

λ

t dF (t) =
[

− tF (t)
]∞
λ +

∞
∫

λ

F (t) dt,

where F (t) = |{|g| > t}| (t ≥ 0). By (3.18)

tF (t) ≤ a
∫

{|f |>bt}

|f | (t ≥ λ). (3.19)

Hence

∫

{|g|>λ}

|g| = λF (λ) +

∞
∫

λ

F (t) dt. (3.20)

By (3.18)

∞
∫

λ

F (t) dt ≤ a

∞
∫

λ

1
t

∫

{|f(x)|>bt}

|f(x)| dx dt =

= a
∫

{|f(x)|>bλ}

|f(x)|
|f(x)|/b

∫

λ

dt
t

dx = a
∫

{|f(x)|>bλ}

|f(x)| ln |f(x)|
bλ

dx.

Hence with (3.19) and (3.20) taken into account, we conclude that Lemma
9 is valid.

Lemma 10. Let f1 and f2 be the nonnegative measurable functions de-
fined on Rn. Then

∫

{f1+f2>2λ}

(f1 + f2) ≤ (1 + λ)
( ∫

{f1>λ}

f1 +
∫

{f2>λ}

f2

)

(λ ≥ 0).

Proof. The validity of the lemma follows from the following relations easy
to verify:

(1)
∫

{f1+f2>2λ}

(f1 + f2) ≤
∫

{f1>λ}∪{f2>λ}

(f1 + f2);

(2)
∫

{f1>λ}∪{f2>λ}

fj ≤
∫

{fj>λ}

fj + λ|{fi > λ}|, where j, i ∈ 1, 2 and j 6= i.

The set E ⊂ Rn is called elementary if it is a union of a finite number of
n-dimensional intervals.
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Lemma 11. Let A be a subset of Rn of positive measure. Then for each

δk > 0 (k ∈ N) with
∞
∑

k=1
δk < |A| and εk > 0 (k ∈ N) there exist pairwise

nonintersecting elementary sets Gk (k ∈ N) such that

|Gk| = δk and |Gk\A| < εk.

Proof. Let us construct the sequence {Gk} with the needed properties. For
this we shall need the following simple facts:

(1) For each measurable set E and number δ with 0 ≤ δ ≤ |E| there
exists a measurable set E′ ⊂ E with |E′| = δ;

(2) For each open set E ⊂ Rn and number δ with 0 < δ < |E| there
exists an elementary set E′ ⊂ E with |E′| = δ.

By virtue of (1), there exists E ⊂ A with |E| = δ1. Let an open set
Q be such that Q ⊃ E, |Q| > |E| = δ1 and |Q\E| < ε1. According to
(2), there exists an elementary set G1 ⊂ Q with |G1| = δ1. Obviously,
|G1\A| ≤ |Q\E| < ε1.

Suppose the pairwise nonintersecting elementary sets G1, . . . , Gk with
the properties

|Gj | = δj and |Gj\A| < εj (j ∈ 1, k)

have already been constructed. Then

∣

∣

∣A\
k
⋃

j=1
(Gj ∩A)

∣

∣

∣ ≥ |A| −
k

∑

j=1

δj > δk+1,

where Gj is the closure of Gj . Therefore by (1), there exists

E ⊂ A\
k
⋃

j=1
(Gj ∩A)

with |E| = δk+1. We can easily obtain an open set Q ⊃ E with the proper-
ties

Q ∩
k
⋃

j=1
Gj = ∅, |Q| > |E| = δk+1, |Q\E| < εk+1.

By (2), we can choose an elementary set Gk+1 ⊂ Q such that |Gk+1| =
δk+1. By virtue of the properties of Q we have

|Gk+1\A| ≤ |Q\E| < εk+1,

Gk+1 ∩
k
⋃

j=1
Gj = ∅,

which obviously proves Lemma 11.

We shall need the following simple lemma (see [2], Ch. III, §1).
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Lemma 12. Let G be an open bounded set in Rn, and K be a compact set
in Rn with |K| > 0. Then there exists a sequence {Kk} of pairwise noninter-
secting sets, homothetic to K, contained in G and such that

∣

∣G\
⋃

k
Kk

∣

∣ = 0.

We shall also need the following well-known fact from the measure theory
(see, e.g., [9], Ch. “Uniform Approximation”).

Lemma 13. For every measurable sets A1, A2 ⊂ Rn, |A1| = |A2|, there
exists a measure preserving and invertible mapping ω : A1 → A2.

4. Proof of Theorem 1

Without loss of generality we assume that f≥0 and f /∈(1+ln+ L)n(Rn).
Denote

G = supp f, Ak = {k − 1 ≤ f < k} (k ∈ N),

k0 = min
{

k ≥ 2 :
∞
∑

m=k

9nm|Am| < |G|
}

,

N = {k ≥ k0 : |Ak| > 0}.

Choose natural numbers mk ≥ n (k ∈ N) such that

∑

k∈N

k(ln k)n|Ak|
mk

< 1 . (4.1)

For k ∈ N , let `k,1, . . . , `k,mk be the straight lines passing through the
origin with none of n lying in the same hyperplane. Then by Lemma 2 there
exists εk > 0 such that

min
1≤j≤n

∠(`, `k,νj ) <
π
2
− εk (4.2)

for every 1 ≤ ν1 < ν2 < · · · < νn ≤ mk and for every straight line `.
For every k ∈ N and m ∈ 1,mk let us consider the rectangle Ik,m with

the properties:

r(Ik,m) ≥ 4kn
sin εk

, |Ik,m| =
|Ak|
mk

, `Ik,m = `k,m. (4.3)

Denote Jk,m = J(Ik,m, 4k), Ek,m = E(`k,m, εk) (k ∈ N , m ∈ 1,mk). By
Lemma 2

{

MB2(Ek,m)(4kχIk,m
) > 1

}

⊂ Jk,m.

From the definition of k0 and Jk,m and from (4.3), we conclude by virtue
of Lemma 11 that there exist pairwise nonintersecting open sets Qk,m such
that

|Qk,m| = |Jk,m| and |Qk,m\G| <
1

2kmk
.
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For each k ∈ N and m ∈ 1,mk we complete Qk,m with pairwise nonin-
tersecting rectangles {Jk,m,q} which are homothetic to the rectangle Jk,m

(see Lemma 12), i.e.,

Jk,m,q = Hk,m,q(Jk,m), where Hk,m,q is the homothety (q ∈ N),

Jk,m,q ⊂ Qk,m (q ∈ N),

Jk,m,q ∩ Jk,m,q′ = ∅ (q 6= q′),
∣

∣

∣Qk,m\
⋃

q∈N
Jk,m,q

∣

∣

∣ = 0.

Let Ik,m,q = Hk,m,q(Ik,m) (k ∈ N , m ∈ 1,mk, q ∈ N). Because of the
homothety properties we can easily see that

Jk,m,q = J(Ik,m,q, 4k), (4.4)
{

MB2(Ek,m)(4kχIk,m,q
) > 1

}

⊂ Jk,m,q (4.5)

for k ∈ N , m ∈ 1,mk, q ∈ N, and

∑

q∈N
|Ik,m,q| = |Ik,m| =

|Ak|
mk

(4.6)

for k ∈ N , m ∈ 1,mk.
Denote

gk,m = sup
{

kχIk,m,q
: q ∈ N

}

(k ∈ N, m ∈ 1, mk),

g = sup
{

gk,m : k ∈ N, m ∈ 1,mk
}

,

and prove that

sup
θ∈θ(Rn)

∫

{MB2(θ)(g)>1/2}

MB2(θ)(g) < ∞. (4.7)

The following estimate is valid:

card Sθ,k < n2 (θ ∈ θ(Rn), k ∈ N), (4.8)

where Sθ,k = {m ∈ 1,mk : θ /∈ Ek,m}. Indeed, let us assume the contrary,
i.e., that card Sθ,k ≥ n2 for some θ ∈ θ(Rn) and k ∈ N . Then there
exist 1 ≤ ν1 < · · · < νn2 ≤ mk such that θ ∈ Ek,νj (j ∈ 1, n2), i.e.,
max

1≤i≤n
∠(θi, `k,νj ) ≥ π

2 − εk (j ∈ 1, n2). Hence there exist a straight line

θi ∈ θ and indices ν′1, . . . , ν
′
n ∈ {ν1, . . . , νn2} such that ∠(θi, `k,ν′j

) ≥ π
2 − εk

(j ∈ 1, n), which contradicts (4.2). Therefore (4.8) is proved.
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Let us consider an arbitrary frame θ. Suppose

gθ =











sup{gk,m : k ∈ N, m ∈ Sθ,k} if
⋃

k∈N
Sθ,k 6= ∅,

0 if
⋃

k∈N
Sθ,k = ∅.

By Lemma 8, (4.1), (4.3), (4.6) and (4.8) we have
∫

{MI(θ)(gθ)>1/4}

MI(θ)(gθ) ≤ c3

∫

Rn

gθ(1 + ln+ 4gθ)n <

< c3

∑

k∈N

n2k(1 + ln 4k)n |Ak|
mk

< 5nn2c3

∑

k∈N

k(ln k)n|Ak|
mk

< 5nn2c3. (4.9)

Denote

T =
{

(k, m, q) : k ∈ N, m ∈ 1,mk \Sθ,k, q ∈ N
}

,

Jk,m,q(λ) = J(Ik,m,q, k/λ) for (k, m, q) ∈ T and 1/4 ≤ λ < k.

Obviously,

r(Ik,m,q) >
4kn

sin εk
≥ kn

λ sin εk

for (k, m, q) ∈ T and 1/4 ≤ λ < k, whence on account of (4.4), (4.5) and
Lemma 2

{

MB2(Ek,m)(kχIk,m,q
) > λ

}

=

=
{

MB2(Ek,m)

(k
λ

χIk,m,q

)

> 1
}

⊂ Jk,m,q(λ) ⊂ Jk,m,q.

Consequently, since θ ∈ Ek,m, we have
{

MB2(θ)(kχIk,m,q
) > λ

}

⊂ Jk,m,q(λ) ⊂ Jk,m,q. (4.10)

On the other hand, it is clear that
{

MB2(θ)(kχIk,m,q
) > λ

}

= ∅ (4.11)

for (k, m, q) ∈ T and λ ≥ k.
It is easy to see that the functions kχIk,m,q

belong to the class L(Rn) and
therefore, keeping in mind that the rectangles Jk,m,q are pairwise noninter-
secting and using (4.10), (4.11) and Lemma 6 we have

{

MB2(θ)(g − gθ) > λ
}

⊂
⋃

(k,m,q)∈T, k>λ
Jk,m,q(λ) for λ ≥ 1/4.
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The above inequality, (4.3), (4.6) and the definition of g imply that
∣

∣

{

MB2(θ)(g − gθ) > λ
}∣

∣ ≤
∑

(k,m,q)∈T, k>λ

|Jk,m,q(λ)| ≤

≤
∑

k∈N, k>λ

mk
∑

m=1

∞
∑

q=1

9n k
λ
|Ik,m,q| =

9n

λ

∑

k∈N, k>λ

k|Ak| ≤
2 · 9n

λ

∫

{f>λ/2}

f

for λ ≥ 1/4.
Consequently, by Lemma 9 we obtain

∫

{

MB2(θ)(g−gθ)>1/4
}

MB2(θ)(g − gθ) ≤ 2 · 9n
∫

Rn

f(1 + ln+ 8f). (4.12)

From (4.9), (4.12) and Lemma 10 we find that
∫

{

MB2(θ)(g)>1/2
}

MB2(θ)(g) < 2 · 5nn2c3 + 4 · 9n
∫

Rn

f(1 + ln+ 8f),

whence by virtue of the arbitrariness of θ we conclude that (4.7) is valid.
Denote

Pk =
mk
⋃

m=1

∞
⋃

q=1
(Ik,m,q ∩G) (k ∈ N).

By our choice of sets Qk,m we easily see that

0 ≤ |Ak| − |Pk| <
1
2k (k ∈ N). (4.13)

Let A′k ⊂ Ak (k ∈ N) be some measurable set with |A′k| = |Pk|. By
Lemma 13 there exists a measure preserving and invertible mapping ω :
Rn → Rn such that

ω(Pk) = A′k (k ∈ N), ω
(

G\
⋃

k∈N
Pk

)

= G\
⋃

k∈N
A′k,

ω(x) = x (x ∈ Rn\G). (4.14)

Suppose

ϕ1 = (f ◦ ω)χ ⋃

k∈N

Pk
and ϕ2 = (f ◦ ω)χ

Rn\
⋃

k∈N

Pk
.

Obviously, f ◦ ω = ϕ1 + ϕ2. We have
∫

Rn

ϕ2(1 + ln+ ϕ2)n =
∫

Rn\
⋃

k∈N

A′k

f(1 + ln+ f)n =
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=
∫

{0≤f<k0−1}

f(1 + ln+ f)n +
∑

k∈N

∫

Ak\A′k

f(1 + ln+ f)n = α1 + α2.

It can be seen that α1 < ∞, and by (4.13)

α2 ≤
∑

k∈N

k(1 + ln k)n

2k < ∞.

Thus ϕ2 ∈ L(1+ ln+ L)n(Rn). Therefore, by the obvious inequality ϕ1 ≤ g,
(4.7) and Lemmas 8 and 10, we conclude that

sup
θ∈θ(Rn)

∫

{MB2(θ)(f◦ω)>1}

MB2(θ)(f ◦ ω) < ∞,

which together with (4.14) completes the proof of Theorem 1.

5. Remarks

(1) By the equality MB2(θ)(αf) = αMB2(θ)(f) (α > 0), we can easily
verify that Theorem 1 remains valid if instead of {MB2(θ)(f ◦ ω) > 1} we
shall take the integrals on {MB2(θ)(f ◦ω) > λ}, where λ > 0 is an arbitrarily
fixed number.

(2) Theorem 1 immediately yields the following improvement:

Theorem 2. For every function f ∈ L(1 + ln+ L)(Rn) (n ≥ 2) and
measurable sets G1, G2 ∈ Rn such that fχRn\G1

∈ L(1 + ln+ L)n(Rn) and
|G1| = |G2| there exists a measure preserving and invertible mapping ω :
Rn → Rn such that

1) ω(G1) = G2 and {x : ω(x) 6= x} ⊂ G1 ∪G2,

2) sup
θ∈θ(Rn)

∫

{MB2(θ)(f◦ω)>1}

MB2(θ)(f ◦ ω) < ∞.

Proof. Let ω1 : Rn → Rn be a measure preserving and invertible mapping
such that (see Lemma 12) ω1(G1) = G2 and {x : ω(x) 6= x} ⊂ G1 ∪ G2.
Consider the function g = (f ◦ω1)χG2

. Then supp g ⊂ G2, and by virtue of
Theorem 1 (see Remark (1)) there exists a measure preserving and invertible
mapping ω2 : Rn → Rn such that

{x : ω2(x) 6= x} ⊂ supp g ⊂ G2 and sup
θ∈θ(Rn)

∫

{MB2(θ)(g◦ω2)>1/2}

MB2(θ)(g◦ω2)<∞.

Obviously, (f ◦ ω1)χRn\G2
∈ L(1 + ln+ L)n(Rn). Therefore, by Lemmas

8 and 10, one can take ω2 ◦ ω1 as ω.



168 G. ONIANI

(3) For arbitrary ε > 0, a mapping ω “correcting” the function f ∈
L(1 + ln+ L)(Rn) can be chosen so that

|{f ◦ ω 6= f}| < ε.

For this it is enough in Theorem 2 to take G1 and G2 with measures less
than ε/2.

(4) When G1 = {|f | > 1}, and G2 is a cubic interval, Theorem 2 has
been proved for n = 2 in [7] and announced for n ≥ 2 in [8].
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