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WEAKLY PERIODIC SEQUENCES OF BOUNDED LINEAR
TRANSFORMATIONS: A SPECTRAL

CHARACTERIZATION

A. R. SOLTANI AND Z. SHISHEBOR

Abstract. Let X and Y be two Hilbert spaces, and L(X, Y ) the
space of bounded linear transformations from X into Y . Let {An} ⊂
L(X, Y ) be a weakly periodic sequence of period T . Spectral theory
of weakly periodic sequences in a Hilbert space is studied by H. L.
Hurd and V. Mandrekar (1991). In this work we proceed further
to characterize {An} by a positive measure µ and a number T of
L(X, X)-valued functions a0, . . . , aT−1; in the spectral form An =
∫ 2π

0
e−iλnΦ(dλ)Vn(λ), where Vn(λ) =

∑T−1
k=0 e−i 2πkn

T ak(λ) and Φ
is an L(X, Y )-valued Borel set function on [0, 2π) such that

(Φ(∆)x, Φ(∆
′
)x
′
)Y = (x, x′)Xµ(∆ ∩∆

′
).

1. Introduction

Let X and Y be Hilbert spaces, and let L(X,Y ) stand for bounded
linear transformations from X into Y . Suppose {An, n ∈ Z}, Z is the
set of integers, is a sequence in L(X,Y ). The sequence {An} is said to be
weakly periodic, if for every n, m ∈ Z, (Anx,Amx′)Y = (An+T x,Am+T x′)Y ,
x, x′ ∈ X, for some T > 0. The smallest T indicates the period, and in
this case we use the notation T -WP. We call the sequence {An} ⊂ L(X, Y )
strongly periodic if An = An+T , n ∈ Z. Such a sequence is denoted by T -SP.
Every 1-WP is stationary. Spectral theory of T -WP sequences in Hilbert
spaces, and in certain Banach spaces, was first studied by H. L. Hurd and
V. Mandrekar [1]. If X is finite dimensional and Y = L2(Ω,F , P ), where
(Ω,F , P ) is a probability space, then every T -WP sequence is a periodically
correlated second order process. Such a process was first introduced and
studied by Gladyshev [2]. For more on these kind of processes see [3], [4].
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The significance of a spectral representation for a given sequence is re-
alized in probability theory. It amounts to considering the elements of the
sequence as the Fourier coefficients of a certain (random) measure. Let Ψ
be a set function on Borel sets in [0, 2π) with values in L(X, Y ). Among
the following properties;

(i) for every x ∈ X, Ψ(·)x is an Y -valued measure,
(ii) for every x, x′ ∈ X, (Ψ(∆)x, Ψ(∆

′
)x
′
)Y = 0 if ∆ ∩ ∆

′
= ∅ and

(Ψ(·)x, Ψ(·)x′)Y defines a complex measure on [0, 2π);
if (i) is satisfied, then we call Ψ a random spectrum, RS; if (i) and (ii) both
are satisfied, then we call Ψ a random spectrum with orthogonal increments,
RSOI.

If Ψ is a RS, then

Bn =
∫ 2π

0
e−inλΨ(dλ), n ∈ Z, (1.1)

is well-defined in the sense that

(Bnx, Bmx
′
)Y =

∫ 2π

0

∫ 2π

0
e−i(nλ−mλ

′
)(Ψ(dλ)x, Ψ(dλ

′
)x
′
)Y =

=
∫ 2π

0

∫ 2π

0
e−i(nλ−mλ

′
)Γx,x′ (dλ, dλ

′
),

where Γx,x′ (·, ·) is a bimeasure on [0, 2π) × [0, 2π). Any sequence {Bn} ⊂
L(X, Y ) given by (1.1) is called harmonizable [4]. Every harmonizable se-
quence in L(X, Y ), for which its Ψ also satisfies (ii), is a stationary sequence
[5]. By using a certain Tth root of a unitary operator Hurd and Mandrekar
[1] provided the Gladyshev’s type representation for a T -WP sequence in a
Hilbert space. It can be deduced from their work that {An} ⊂ L(X,Y ) is
a T -WP sequence if and only if An =

∫ 2π
0 e−inλZ(dλ), n ∈ Z, where Z is a

RS on [0, 2π), that its restriction to each [ 2πp
T , 2π(p+1)

T ), p = 0, . . . , T − 1, is
a RSOI; more precisely,

Z(∆) =
T−1
∑

p=0

Wp

(

∆
⋂

[2πp
T

,
2π(p + 1)

T

))

, (1.2)

(

Wp

(

∆ +
2πp
T

)

x, Wq

(

∆′ +
2πq
T

x′
))

Y
= 0

for every ∆, ∆′ ⊆ [0, 2π
T ) with ∆ ∩ ∆′ = ∅, and every p, q = 0, . . . , T − 1.

This representation was also independently derived by the authors in [6] by
using a different approach.

In this work we proceed further to identify each T -WP sequence {An}
in L(X, Y ) with a positive measure µ as a number T of L(X, X)-valued
functions, a0, . . . , aT−1. The identification is given in Theorem 3.4, which
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is a refinement of Gladyshev’s result on periodically correlated sequences.
The relationship between the functions a0, . . . , aT−1 and the matrix f , given
in (2.3), introduced by Gladyshev is also provided in Theorem 3.4. An
application of our representation to the regularity of periodically correlated
sequences is as follows.

A periodically correlated sequence Xn, n ∈ Z, is regular, i.e.,
⋂

n
span{Xt,

t ≤ n} = {0}, if and only if
∫ 2π/T
0 log det f(λ) dλ > −∞, with f as in (2.3)

(see [2]). It follows from (3.3) that det f(λ) =
∏T−1

j=0 a0

(

λ + 2πj
T

)2
, λ ∈

[0, 2π/T ). Therefore the sequence is regular if and only if
∫ 2π
0 log a0(λ) dλ >

−∞. Theorem 3.1 in [3] easily follows from this observation, as f0 in [3]
dominates a0.

We summarize our characterization by the spectral representation An =
∫ 2π
0 e−inλΦ(dλ)Vn(λ), where, Φ is a certain RSOI, as in the abstract, and

for each λ ∈ [0, 2π), {Vn(λ)} ⊂ L(X, X) is a T -SP in n, as is defined in
Theorem 3.4.

2. Notation and Preliminaries

Suppose Z is given by (1.4); let F be the L(X,X)-valued Borel set func-
tion on [0, 2π)× [0, 2π) for which

(x, F (∆, ∆′)x′)X = (Z(∆)x,Z(∆′)x′)Y , x, x′ ∈ X. (2.1)

We call F the spectral measure of the sequence {An}. Note that the support
of F lies on the lines dk: s− t = 2πk

T , k = −T + 1, . . . , T − 1. Furthermore
(Anx, Amx′)Y =

∫ 2π
0

∫ 2π
0 e−int+ims(x, F (dt, ds)x′)X , x, x′ ∈ X. Let Fk be

the restriction of F to the line dk, k = −T +1, . . . , T −1. Let µ be a positive
finite measure for which each Fk is µ-continuous and

µ 2πk
T

(dx) = µ(dx) on [0, 2π/T ), k = 1− T, . . . , T − 1, (2.2)

and (x, Fk(∆)x
′
) =

∫

∆(x, fk(s)x
′
)µ(ds), where fk are L(X, X)-valued func-

tions on [0, 2π), k = 1− T, . . . , T − 1, [7].
To see the existence of such a measure, note that corresponding to each

Fk there is a positive finite measure µk such that Fk is µk-continuous [8].
Now let ν =

∑T−1
k=1−T µk, and ν 2πk

T
(E) = ν((E + 2πk

T )∩ [0, 2π)), then define

µ(E) =
∑T

j=1

∑T−1
k=1−T ν 2πk

T
(E ∩ [ 2π(j−1)

T , 2πj
T )).

Now

f(s) =
[

fp−l

(

s +
2πp
T

) ]

l,p=0,...,T−1
, s ∈

[

0,
2π
T

)

, (2.3)

defines an operator-matrix; we refer to a matrix whose entries are operators
as an operator-matrix. We call f the spectral density of {An} with respect
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to µ. Recall that an operator-matrix T = [Ti,j ] i, j = 0, . . . , T − 1 is called
positive definite if and only if the matrix [(xkj , Tj,lxkl)] j,l=0,...,T−1, is posi-
tive definite for each xk0 , . . . , xkT−1 . We recall that L2(µ, X) stands for µ-
Bochner integrable functions g : (0, 2π] → X such that

∫ 2π
0 ‖g(λ)‖2Xµ(dλ) <

∞ the proof of which is omitted [9].

3. Spectral Characterization

Hn integral (stochastic integral) of the form
∫ 2π
0 Φ(dλ)g(λ), where g ∈

L2(µ,X) and Φ is the RSOI given below in (3.1), can be defined by using
the well known result on a existence of the weak stochastic integral. The
detail is given in the following theorem. For more on a stochastic integral
we refer the readers to [10] and [1].

Theorem 3.1. Let µ be a positive finite Borel measure on [0, 2π) and Φ
be a RSOI for which

(Φ(∆)x, Φ(∆
′
)x
′
)Y = (x, x′)Xµ(∆ ∩∆

′
). (3.1)

Then for every g ∈ L2(µ,X),
∫ 2π
0 Φ(dλ)g(λ) is well defined as an element

in Y and
∥

∥

∥

∥

∫ 2π

0
Φ(dλ)g(λ)

∥

∥

∥

∥

Y
=

{∫ 2π

0
‖g(λ)‖2Xµ(dλ)

}
1
2

.

Moreover, the integral satisfies the following properties:
(i)

∫ 2π
0 Φ(dλ)(g1(λ)+g2(λ)) =

∫ 2π
0 Φ(dλ)g1(λ)+

∫ 2π
0 Φ(dλ)g2(λ), g1, g2 ∈

L2(µ,X);
(ii) if gn → g in L2(µ,X), then

∫ 2π
0 Φ(dλ)gn(λ) →

∫ 2π
0 Φ(dλ)g(λ) in Y

as n →∞.

Corollary 3.2. Let µ and Φ be as in Theorem 3.1. Let

A =
{

a; a : [0, 2π) → L(X, X),
∫

‖a(λ)x‖2Xµ(dλ) < ∞, x ∈ X
}

.

Then for every a ∈ A, x ∈ X,
∫ 2π
0 Φ(dλ)a(λ)x is well defined as an element

in Y , and
∥

∥

∥

∥

∫ 2π

0
Φ(dλ)a(λ)x

∥

∥

∥

∥

Y
=

{ ∫ 2π

0
‖a(λ)x‖2Xµ(dλ)

} 1
2

.

Moreover, for every x, x′ ∈ X and every a, b ∈ A,
(i)

∫ 2π
0 Φ(dλ)(a(λ) + b(λ))x =

∫ 2π
0 Φ(dλ)a(λ)x +

∫ 2π
0 Φ(dλ)b(λ)x,

(ii)
∫ 2π
0 Φ(dλ)a(λ)(x + x

′
) =

∫ 2π
0 Φ(dλ)a(λ)x +

∫ 2π
0 Φ(dλ)a(λ)x

′
,

(iii) for a given x ∈ X, if an(·)x → a(·)x in L2(µ,X), then
∫ 2π
0 Φ(dλ)an(λ)x →

∫ 2π
0 Φ(dλ)a(λ)x in Y.
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Proof. For each fix x ∈ X, a(·)x is an X-valued function. If a ∈ A, then
a(·)x ∈ L2(µ,X). Now apply Theorem 3.1 and use the linear property of
a(·).

The following lemma concerns the Cholesky decomposition for a positive
definite operator-matrix (Lemma 3.5 in [11]) and it plays a crucial role in
our characterization.

Lemma 3.3. Let Mn be an n × n positive operator-matrix, then Mn =
U∗

n Un, where Un is an n× n upper triangular matrix.

The following theorem is the essential result of this paper.

Theorem 3.4. Let {An}⊂L(X,Y ). Then {An} is a T -WP if and only if

An =
∫ 2π

0
e−insΦ(ds)Vn(s), (3.2)

where
(i) Φ is a RSOI that satisfies (3.1) and µ is a finite measure satisfying

(2.2);
(ii) Vn(s) =

∑T−1
k=0 e−i 2πkn

T ak(s + 2πk
T ), s ∈ [0, 2π), n ∈ Z,

where each ak is an L(X, X)-valued function on [0, 2π) with ak(s) = 0 for
s ∈ [0, 2πk

T ).
Furthermore, the triangular operator-matrix A(x) = [a∗j−k(x + 2πj

T )]k≤j,
k, j = 0, . . . , T − 1, satisfies

f(x) = A∗(x)A(x), x ∈
[

0,
2π
T

)

, (3.3)

i.e., it is the Cholesky decomposition of the density f(x) given by (2.3),
a∗(x) stands for the adjoint of a(x).

Proof. Let {An} be a sequence for which (3.2) holds, i.e.,

An =
T−1
∑

k=0

∫ 2π

0
e−insΦ−2πk

T
(ds)ak(s). (3.4)

Thus

(Anx, Amx′)Y =
T−1
∑

k=0

T−1
∑

l=0

∫ 2π

0

∫ 2π

0
e−ins+imt(Φ−2πk

T
(ds)ak(s)x, Φ−2πl

T
(dt)al(t)x′)Y .(3.5)
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It also follows from (3.1) that

(Φ−2πk
T

(ds)ak(s)x, Φ−2πl
T

(dt)al(t)x′)Y =

=
{

(ak(s)x, ap+k(s + 2πp
T )x′)Xµ−2πp

T
(ds), s− 2πk

T = t− 2πl
T

0, otherwise
,

where p = l− k. Since µ−2πp
T

(ds) = µ(ds), p = 1− T, . . . , T − 1. We obtain

(Anx,Amx′)Y =

=
−1
∑

p=−(T−1)

∫ 2π

0
e−ins+im(s+2πp

T )
T−1
∑

k=−p

(

ak(s)x, ak+p(s+2πp/T )x′
)

Xµ(ds)+

+
∫ 2π

0
e−ins+ims

T−1
∑

k=0

(ak(s)x, ak(s)x′)Xµ(ds) +

+
T−1
∑

p=1

∫ 2π

0
e−ins+im(s+ 2πp

T )
T−1−p
∑

k=0

(

ak(s)x, ak+p(s + 2πp/T )x′
)

Xµ(ds). (3.6)

It is clear from (3.6) that {An} is a T -WP sequence. Conversely, let {An}
be a T -WP sequence; then it follows from (2.1) that

(Anx,Amx′)Y =
∫ 2π

0

∫ 2π

0
e−ins+imt(Z(ds)x, Z(dt)x′)Y =

=
∫ 2π

0

∫ 2π

0
e−ins+imt(x, F (ds, dt)x′)X =

=
T−1
∑

p=0

T−1
∑

l=0

∫
2π(p+1)

T

2πp
T

∫
2π(l+1)

T

2πl
T

e−ins+imt(x, F (ds, dt)x′)X =

=
T−1
∑

p=0

T−1
∑

l=0

∫
2π(p+1)

T

2πp
T

e−i(n−m)s−i 2π(p−l)m
T (x, Fp−l(ds)y)X =

=
−1
∑

k=−T+1

T+k−1
∑

p=0

∫
2π(p+1)

T

2πp
T

e−i(n−m)s−i 2πkm
T (x, fk(ds)y)Xµ(ds)+

+
T−1
∑

p=0

∫
2π(p+1)

T

2πp
T

e−i(n−m)s(x, f0(ds)y)Xµ(ds) +

+
T−1
∑

k=1

T−l
∑

p=k

∫
2π(p+1)

T

2πp
T

e−i(m−n)s−i 2πkm
T (x, fk(ds)y)Xµ(ds) =
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=
−1
∑

k=−T+1

e−i 2πmk
T

∫
2π(T+k)

T

0
e−i(n−m)s(x, fk(ds)y)Xµ(ds) +

+
∫ 2π

0
e−i(n−m)s(x, f0(ds)y)Xµ(ds) +

+
T−1
∑

k=1

e−i 2πmk
T

∫ 2π

2πk
T

e−i(n−m)s(x, fk(ds)y)Xµ(ds).

By using (2.3) and comparing the last equality with (3.6) we obtain that if
ak, k = 1− T, . . . , T − 1, satisfy

T−1
∑

k=−p

(

ak(s)x, ap+k

(

s +
2πp
T

)

x′
)

X
=(x, f−p(s)x′)X , p=−T + 1, . . . ,−1,

T−1
∑

k=0

(ak(s)x, ak(s)x′)X = (x, f0(s)x′)X , (3.7)

T−1−p
∑

k=0

(

ak(s)x, ak+p

(

s +
2πp
T

)

x′
)

X
= (x, f−p(s)x′)X , p = 1, . . . , T − 1,

then {An} will satisfy (3.2), as (3.2), (3.4), (3.5) and (3.6) are equivalent.
But it easily follows that (3.7) and (3.3) are identical. On the other hand,
(3.3) follows by applying Lemma 3.3 to f .

Remark 3.5. We were led by the referee to the representation that {An} ⊂
L(X, Y ) is T -WP if and only if

An =
∫ 2π

0
e−iλnΨ(dλ)Dn, (3.8)

where Ψ is an L(X, Y )-valued measure and {Dn} ⊂ L(X,X) is a T -SP
sequence. In (3.8) Ψ lacks property (3.1), but instead each {Dn} is inde-
pendent of λ.

Let us provide the referee’s proof which is a nice application of the sym-
bolic calculus to unitary operators.

Proof. Since {An} is T -weakly periodic, An+T = UAn for some unitary U
in Y and each n and T . We define Bn = U−n/T An. It is easy to make sure
that {Bn} ⊂ L(X, Y ) is T -strongly periodic and An = Un/T Bn. Writing
the spectral representation for the unitary operator U−1/T we get An =
∫ 2π
0 e−iλnE(dλ)Bn, where E(dλ) is a solution of the identity of Y . Now if

X is infinite-dimensional, one can establish an isomorphism (without loss
of generality one can assume that X and Y are separable) j ∈ L(Y,X) and
we come to (3.8) with Ψ(dλ) = E(dλ)j−1 and Dn = jBn.
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