ON THE ABSOLUTE SUMMABILITY OF SERIES WITH RESPECT TO BLOCK-ORTHONORMAL SYSTEMS

G. NADIBAIDZE

Abstract

Theorems determining Weyl's multipliers for the summability almost everywhere by the $|c, 1|$ method of the series with respect to block-orthonormal systems are proved. In particular, it is stated that if the sequence $\{\omega(n)\}$ is the Weyl multiplier for the summability almost everywhere by the $|c, 1|$ method of all orthogonal series, then there exists a sequence $\left\{N_{k}\right\}$ such that $\{\omega(n)\}$ will be the Weyl multiplier for the summability almost everywhere by the $|c, 1|$ method of all series with respect to the Δ_{k}-orthonormal systems.

The present paper deals with the summability almost everywhere (a.e.) by the $|c, \alpha|$ method of series with respect to block-orthonormal systems. Under the summability by the $|c, \alpha|$ method of the series

$$
\sum_{n=1}^{\infty} a_{n}
$$

is understood the convergence of the series

$$
\sum_{n=1}^{\infty}\left|\sigma_{n+1}^{(\alpha)}-\sigma_{n}^{(\alpha)}\right|
$$

where

$$
\sigma_{n}^{(\alpha)}=\frac{1}{A_{n}^{\alpha}} \sum_{k=1}^{\infty} A_{n-k}^{\alpha} a_{k}
$$

are the Cesàro (c, α)-means.
The problem of the summability a.e. by the $|c, \alpha|$ method of orthogonal series was considered by P.L. Ul'yanov [1]. In particular, he proved that if

[^0]the condition
\[

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{1}{n \omega(n)}<\infty \tag{1}
\end{equation*}
$$

\]

is fulfilled for a positive nondecreasing sequence $\{\omega(n)\}$, then the convergence of the series

$$
\sum_{n=1}^{\infty} a_{n}^{2} \omega(n)
$$

guarantees the summability a.e. on $(0,1)$ by the $|c, \alpha| \operatorname{method}\left(\alpha>\frac{1}{2}\right)$ of the series

$$
\begin{equation*}
\sum_{n=1}^{\infty} a_{n} \varphi_{n}(x) \tag{2}
\end{equation*}
$$

for every orthonormal system from $L^{2}(0,1)$.
If however

$$
\sum_{n=1}^{\infty} \frac{1}{n \omega(n)}=\infty
$$

then there exists an even function $f(x) \in \underset{p \geq 1}{\cap} L^{p}[0,2 \pi]$ such that its Fourier series

$$
f(x) \sim \sum_{n=1}^{\infty} c_{n} \cos n x
$$

converges a.e. on $[0,2 \pi]$ and for every fixed $\alpha>0$ is not $|c, \alpha|$ summable a.e. on $[0,2 \pi]$ though

$$
\sum_{n=1}^{\infty} c_{n}^{2} \omega(n)<\infty
$$

Definition 1 (see [2]). Let $\left\{N_{k}\right\}$ be an increasing sequence of natural numbers, $\Delta_{k}=\left(N_{k}, N_{k+1}\right], k=1,2, \ldots$, and $\left\{\varphi_{n}\right\}$ be a system of functions from $L^{2}(0,1)$. The system $\left\{\varphi_{n}\right\}$ will be called a Δ_{k}-orthonormal system (Δ_{k}-ONS) if:
(1) $\left\|\varphi_{n}\right\|_{2}=1, n=1,2, \ldots$;
(2) $\left(\varphi_{i}, \varphi_{j}\right)=0$ for $i, j \in \Delta_{k}, i \neq j, k \geq 1$.

Definition 2 (see [1]). A positive nondecreasing sequence $\{\omega(n)\}$ will be called the Weyl multiplier for the summability a.e. of series with respect to the Δ_{k} - ONS $\left\{\varphi_{n}\right\}$ if the condition

$$
\begin{equation*}
\sum_{n=1}^{\infty} a_{n}^{2} \omega(n)<\infty \tag{3}
\end{equation*}
$$

guarantees the summability a.e. by the $|c, \alpha|$ method of the corresponding series (2).

Below we shall quote the theorem showing that if the sequence $\{\omega(n)\}$ is the Weyl multiplier for the summability a.e. by the $|c, 1|$ method of all orthogonal series (2), then it will be the Weyl multiplier for the summability a.e. by the $|c, 1|$ method of all series (2) with respect to the Δ_{k}-ONS for the increasing sequence of natural numbers $\left\{N_{k}\right\}$.

Theorem 1. If a positive nondecreasing sequence $\{\omega(n)\}$ is the Weyl multiplier for the summability a.e. by the $|c, 1|$ method of all orthonormal series (2), then there exists an increasing sequence of natural numbers $\left\{N_{k}\right\}$ such that $\{\omega(n)\}$ is the Weyl multiplier for the summability a.e. by the $|c, 1|$ method of all series (2) with respect to the $\Delta_{k}=\left(N_{k}, N_{k+1}\right]-$ ONS.

Proof. We prove this theorem by the Wang-Ul'yanov's scheme (see [1]) modifying it accordingly. Let the positive nondecreasing sequence $\{\omega(n)\}$ be the Weyl multiplier for the summability a.e. by the $|c, 1|$ method of all orthogonal series (2). Then condition (1) is fulfilled.

As is known (see [1]), for the positive nondecreasing on $\left[n_{0},+\infty\right.$) function $\omega(x)$ the series

$$
\sum_{m=n_{0}}^{\infty} \frac{1}{m \omega(m)} \text { and } \sum_{m=n_{0}^{2}}^{\infty} \frac{1}{m \omega(\sqrt{m})}
$$

converge or diverge simultaneously. Therefore, taking into account (1), we have

$$
\sum_{n=1}^{\infty} \frac{1}{n \omega(\sqrt[4]{n})}<\infty
$$

Then

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{R(n)}{n \omega(\sqrt[4]{n})}<\infty \tag{4}
\end{equation*}
$$

where

$$
R(n)=\frac{\left(\sum_{k=2}^{\infty} \frac{1}{k \omega(\sqrt[4]{k})}\right)^{\frac{1}{2}}}{\left(\sum_{k=n+1}^{\infty} \frac{1}{k \omega(\sqrt[4]{k})}\right)^{\frac{1}{2}}}
$$

Obviously, $R(1)=1, R(n)<R(n+1)$ and $\lim _{n \rightarrow \infty} R(n)=+\infty$.
Define the sequence $k(n)$ by the recursion formula

$$
k(1)=0, \quad k(n+1)= \begin{cases}k(n)+1 & \text { if } R(n+1) \geq k(n)+1, \quad n \geq 1 \\ k(n) & \text { if } R(n+1)<k(n)+1,\end{cases}
$$

Thus we obtain the nondecreasing sequence of nonnegative integers for which

$$
\begin{equation*}
k(n) \leq R(n), \quad n=1,2, \ldots \tag{5}
\end{equation*}
$$

Note that for the sequence $k(n)$ there exists an increasing sequence of natural numbers $\left\{N_{k}\right\}$ (it is assumed that $N_{0}=0$) which is defined by the formula

$$
k(n)=\max \left\{k: N_{k}<n\right\}
$$

Then, taking into account (4) and (5), we find that

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{k(n)}{n \omega(\sqrt[4]{n})}<\infty \tag{6}
\end{equation*}
$$

Let $\left\{\varphi_{n}\right\}$ be a block-orthonormal system with $\Delta_{k}=\left(N_{k}, N_{k+1}\right]$ and condition (3) be fulfilled. Then for the corresponding series (2) we have

$$
\sigma_{n}(x)-\sigma_{n-1}(x)=\frac{1}{n(n-1)} \sum_{i=1}^{\infty} a_{i}(i-1) \varphi_{i}(x), \quad n \geq 2
$$

Denoting by c the absolute positive constants which, generally speaking, may have different values in different inequalities and using (6), we find that

$$
\begin{gathered}
\sum_{n=2}^{\infty} \int_{0}^{1}\left|\sigma_{n}(x)-\sigma_{n-1}(x)\right| d x \leq \sum_{n=2}^{\infty}\left(\int_{0}^{1}\left|\sigma_{n}(x)-\sigma_{n-1}(x)\right|^{2} d x\right)^{\frac{1}{2}} \leq \\
\leq c \sum_{n=2}^{\infty} \frac{1}{n^{2}}\left(\int_{0}^{1}\left|\sum_{i=1}^{n} a_{i}(i-1) \varphi_{i}(x)\right|^{2} d x\right)^{\frac{1}{2}} \leq \\
\leq c \sum_{n=1}^{\infty} \frac{1}{n^{2}}\left(\int_{0}^{1}\left|\sum_{i=1}^{N_{k(n)}} a_{i}(i-1) \varphi_{i}(x)\right|^{2}+\int_{0}^{1}\left|\sum_{i=N_{k(n)}+1}^{n} a_{i}(i-1) \varphi_{i}(x)\right|^{2} d x\right)^{\frac{1}{2}} \leq \\
\leq c \sum_{n=1}^{\infty} \frac{1}{n^{2}}\left(k(n) \sum_{i=1}^{N_{k(n)}} a_{i}^{2} i^{2}+\sum_{i=N_{k(n)}+1}^{n} a_{i}^{2} i^{2}\right)^{\frac{1}{2}} \leq \\
\leq c \sum_{n=1}^{\infty} \frac{1}{n^{2}}\left(k(n) \sum_{i=1}^{n} i^{2} a_{i}^{2}\right)^{\frac{1}{2}} \leq c \sum_{n=1}^{\infty} \frac{\sqrt{k(n)}}{n^{2}}\left[\left(\sum_{i=1}^{[\sqrt[4]{n}} i^{2} a_{i}^{2}\right)^{\frac{1}{2}}+\right. \\
\left.+\left(\sum_{i=[\sqrt[4]{n}]+1}^{n} i^{2} a_{i}^{2}\right)^{\frac{1}{2}}\right] \leq c\left(\sum_{n=1}^{\infty} \frac{\sqrt{k(n)}(\sqrt{n} \sqrt[4]{n})^{\frac{1}{2}}}{n^{2}}+\right.
\end{gathered}
$$

$$
\begin{gathered}
\left.+\sum_{n=1}^{\infty} \frac{\sqrt{k(n)}}{n^{2}} \frac{n \omega(\sqrt[4]{n}))^{\frac{1}{2}}}{n \omega(\sqrt[4]{n}))^{\frac{1}{2}}}\left(\sum_{i=[\sqrt[4]{n}]+1}^{n} i^{2} a_{i}^{2}\right)^{\frac{1}{2}}\right) \leq \\
\leq\left(\sum_{n=1}^{\infty} \frac{1}{n^{9}}+\left(\sum_{n=1}^{\infty} \frac{\omega(\sqrt[4]{n})}{n^{3}} \sum_{i=[\sqrt[4]{n}]+1}^{n} i^{2} a_{i}^{2}\right)^{\frac{1}{2}}\left(\sum_{n=1}^{\infty} \frac{k(n)}{k \omega(\sqrt[4]{n})}\right)^{\frac{1}{2}}\right) \leq \\
\leq c+c\left(\sum_{n=1}^{\infty} \frac{1}{n^{3}} \sum_{i=1}^{\infty} i^{2} a_{i}^{2} \omega(i)\right)^{\frac{1}{2}} \leq c+c\left(\sum_{i=1}^{\infty} a_{i}^{2} \omega(i)\right)^{\frac{1}{2}}<\infty
\end{gathered}
$$

whence by Levy's theorem

$$
\sum_{n=2}^{\infty}\left|\sigma_{n}(x)-\sigma_{n-1}(x)\right|<\infty \quad \text { a.e. on } \quad(0,1)
$$

The theorem below makes it possible to determine the Weyl multipliers for the summability a.e. of the series (2) with respect to the Δ_{k}-ONS for regularly increasing sequences $\left\{N_{k}\right\}$.

Theorem 2. Let an increasing sequence of natural numbers $\left\{N_{k}\right\}$ be given, for which the condition

$$
\begin{equation*}
\sum_{k=n}^{\infty} \frac{1}{N_{k}^{2}}=O\left(\frac{n}{N_{n}^{2}}\right) \quad(n \rightarrow \infty) \tag{7}
\end{equation*}
$$

is fulfilled, and let

$$
k(n)=\max \left\{k: N_{k}<n\right\} .
$$

If for the positive nondecreasing sequence $\{\omega(n)\}$ condition (1) is fulfilled, then for every Δ_{k}-ONS $\left\{\varphi_{n}\right\}$ the condition

$$
\begin{equation*}
\sum_{n=1}^{\infty} a_{n}^{2} \omega(n) k(n)<\infty \tag{8}
\end{equation*}
$$

guarantees the summability a.e. by the $|c, 1|$ method of the corresponding series (2).

Proof. Let conditions (1), (7) and (8) be fulfilled. Then for the corresponding series (2) we have

$$
\begin{gathered}
\sum_{n=2}^{\infty} \int_{0}^{1}\left|\sigma_{n}(x)-\sigma_{n-1}(x)\right| d x \leq \sum_{n=2}^{\infty}\left(\int_{0}^{1}\left|\sigma_{n}(x)-\sigma_{n-1}(x)\right|^{2} d x\right)^{\frac{1}{2}} \leq \\
\leq \\
c \sum_{n=1}^{\infty} \frac{1}{n^{2}}\left(\int_{0}^{1}\left|\sum_{i=1}^{N_{k(n)}} a_{i}(i-1) \varphi_{i}(x)\right|^{2} d x+\int_{0}^{1}\left|\sum_{i=N_{k(n)}+1}^{n} a_{i}(i-1) \varphi_{i}(x)\right|^{2} d x\right)^{\frac{1}{2}} \leq
\end{gathered}
$$

$$
\begin{aligned}
& \leq c \sum_{n=1}^{\infty} \frac{1}{n^{2}}\left(k(n) \sum_{i=1}^{\infty} i^{2} a_{i}^{2}\right)^{\frac{1}{2}} \leq c \sum_{n=1}^{\infty} \frac{\sqrt{k(n)}}{n^{2}}\left[\left(\sum_{i=n}^{[\sqrt[4]{n}]} i^{2} a_{i}^{2}\right)^{\frac{1}{2}}+\right. \\
& \left.+\left(\sum_{i=[\sqrt[4]{n}]+1}^{n} i^{2} a_{i}^{2}\right)^{\frac{1}{2}}\right] \leq c\left(\sum_{n=1}^{\infty} \frac{\sqrt{k(n)} n^{\frac{3}{8}}}{n^{2}}+\right. \\
& \left.+\sum_{n=1}^{\infty} \frac{\sqrt{k(n)}}{n^{2}} \frac{(n \omega(\sqrt[4]{n}))^{\frac{1}{2}}}{(n \omega(\sqrt[4]{n}))^{\frac{1}{2}}}\left(\sum_{i=[\sqrt[4]{n}]+1}^{n} i^{2} a_{i}^{2}\right)^{\frac{1}{2}}\right) \leq \\
& \leq \\
& c+c\left(\sum_{n=1}^{\infty} \frac{k(n)}{n^{3}} \sum_{i=1}^{\infty} i^{2} a_{i}^{2} \omega(i)\right)^{\frac{1}{2}}\left(\sum_{n=1}^{\infty} \frac{1}{n \omega(\sqrt[4]{n})}\right)^{\frac{1}{2}} \leq \\
& \quad \leq c+c\left(\sum_{i=1}^{\infty} i^{2} a_{i}^{2} \omega(i) \sum_{i=1}^{\infty} \frac{k(n)}{n^{3}}\right)^{\frac{1}{2}}= \\
& =c+c\left(\sum_{i=1}^{\infty} i^{2} a_{i}^{2} \omega(i)\left(\sum_{n=i}^{N_{k(i)+1}} \frac{k(i)}{n^{3}}+\sum_{j=k(i)+1}^{\infty} j \sum_{n=N_{j}+1}^{N_{j+1}} \frac{1}{n^{3}}\right)\right)^{\frac{1}{2}} \leq \\
& \leq \\
& \\
& c+c\left(\sum _ { i = 1 } ^ { \infty } i ^ { 2 } a _ { i } ^ { 2 } \omega (i) \left(\frac{k(i)}{i^{2}}+(k(i)+1) \sum_{n=N_{k(i)+1}+1}^{\infty} \frac{1}{n^{3}}+\right.\right. \\
& \\
& \left.\left.\quad+\sum_{j=k(i)+1}^{\infty} \frac{1}{N_{j}^{2}}\right)\right)^{\frac{1}{2}} \leq c+c\left(\sum_{i=1}^{\infty} i^{2} a_{i}^{2} \omega(i) k(i)\right)^{\frac{1}{2}}<\infty
\end{aligned}
$$

whence by Levy's theorem

$$
\sum_{n=2}^{\infty}\left|\sigma_{n}(x)-\sigma_{n-1}(x)\right|<\infty \quad \text { a.e. on } \quad(0,1)
$$

Remark 1. In Theorem 2, the Weyl multipliers defined by conditions (1) and (8) can be assumed to be exact on the set of sequences $\left\{N_{k}\right\}$ with condition (7) in the sense that if condition (1) is violated, then one can construct a sequence $\left\{N_{k}\right\}$ for which condition (7) is fulfilled and also there exists a trigonometric series

$$
\sum_{n=1}^{\infty} b_{n} \cos n x
$$

which is nonsummable by the $|c, \alpha|$ method for almost all $x \in[0,2 \pi]$ (for every fixed $\alpha>0$) though

$$
\sum_{n=1}^{\infty} b_{n}^{2} \omega(n) k(n)<\infty
$$

Indeed, let the condition

$$
\sum_{n=1}^{\infty} \frac{1}{n \omega(n)}=\infty
$$

be fulfilled for the sequence $\{\omega(n)\}$.
We construct an increasing sequence of natural numbers $\left\{N_{k}\right\}$ in such a way that the condition

$$
k=O\left(\sum_{n=1}^{N_{k}} \frac{1}{n \omega(n)}\right)^{\beta}, \quad 0<\beta \leq \frac{1}{2}
$$

be fulfilled and the sequence $\frac{N_{k}}{k}$ be increasing.
Clearly, condition (7) is fulfilled (see [3], Remark 2).
Take

$$
s_{k}=\sum_{n=1}^{k} \frac{1}{n \omega(n)}, \quad k=1,2, \ldots
$$

and

$$
c_{m}=\frac{1}{\sqrt{m} \omega(m)\left(s_{m}\right)^{\beta+\frac{1}{2}}} \quad m=1,2, \ldots
$$

Then for arbitrary $\varepsilon_{m}= \pm 1$ we have

$$
\begin{gathered}
\sum_{m=1}^{\infty}\left(\varepsilon_{m} c_{m}\right)^{2} \omega(m) k(m)=\sum_{m=1}^{\infty} \frac{k(m)}{m \omega(m)\left(s_{m}\right)^{2 \beta+1}}= \\
=\sum_{k=0}^{\infty} \sum_{m=N_{k}+1}^{N_{k+1}} \frac{k(m)}{m \omega(m)\left(s_{m}\right)^{2 \beta+1}} \leq c \sum_{k=0}^{\infty} \sum_{m=N_{k}+1}^{N_{k+1}} \frac{\left(s_{N_{k}}\right)^{\beta}}{m \omega(m)\left(s_{m}\right)^{2 \beta+1}} \leq \\
\leq c \sum_{k=0}^{\infty} \sum_{m=N_{k}+1}^{N_{k+1}} \frac{1}{m \omega(m)\left(s_{m}\right)^{1+\beta}} \leq c \sum_{m=1}^{\infty} \frac{1}{m \omega(m)\left(s_{m}\right)^{1+\beta}}<\infty
\end{gathered}
$$

On the other hand,

$$
\begin{aligned}
\sum_{n=0}^{\infty}\left\{\sum_{m=2^{n}+1}^{2^{n+1}} c_{m}^{2}\right\}^{\frac{1}{2}} & \geq \sum_{n=0}^{\infty}\left\{\sum_{m=2^{n}+1}^{2^{n+1}} \frac{1}{m(\omega(m))^{2}\left(s_{m}\right)^{1+2 \beta}}\right\}^{\frac{1}{2}} \geq \\
\geq & \frac{1}{2} \sum_{n=1}^{\infty} \frac{1}{\omega\left(2^{n}\right)\left(s_{2^{n}}\right)^{\frac{1}{2}+\beta}}=\infty
\end{aligned}
$$

Therefore by Billard's theorem [1], for almost all choices of $\varepsilon_{k}= \pm 1$ the series

$$
\sum_{m=1}^{\infty} \varepsilon_{m} c_{m} \cos m x
$$

is $|c, \alpha|$-nonsummable $(\alpha>0)$ at almost every point $x \in[0,2 \pi]$ though

$$
\sum_{n=1}^{\infty} b_{n}^{2} \omega(n) k(n)<\infty
$$

where $b_{n}=\varepsilon_{n} c_{n}$.
Remark 2. The above theorems remain also valid for $|c, \alpha|$ methods with $c \alpha>\frac{1}{2}$.

References

1. P. L. Ul'yanov, Solved and unsolved problems of the theory of trigonometric and orthogonal series. (Russian) Uspekhi Mat. Nauk 19(1964), No. 1, 3-69.
2. V. F. Gaposhkin, Series of block-orthogonal and block-independent systems. (Russian) Izv. Vyssh. Uchebn. Zaved. Mat. 1990, No. 5, 12-18; English translation: Soviet Math. (Iz. VUZ), 34(1990), No. 5, 13-20.
3. G. G. Nadibaidze, On some problems connected with series with respect to Δ_{k}-ONS. Bull. Acad. Sci. Georgia 144(1991), No. 2, 233-236.
(Received 15.05.1997)
Author's address:
J. Javakhishvili Tbilisi State University

Faculty of Mechanics and Mathematics
2, University St., Tbilisi 380043
Georgia

[^0]: 1991 Mathematics Subject Classification. 42C20.
 Key words and phrases. Block-orthonormal systems, Weyl multiplier, series with respect to block-orthonormal systems, summability almost everywhere by the $|c, 1|$ method.

