TENSOR PRODUCTS OF NON-ARCHIMEDEAN WEIGHTED SPACES OF CONTINUOUS FUNCTIONS

A. K. KATSARAS AND A. BELOYIANNIS

Abstract

It is shown that the completion of the tensor product of two non-Archimedean weighted spaces of continuous functions is topologically isomorphic to another weighted space. Several applications of this result are given.

1. Introduction

Weighted spaces of continuous functions were introduced in the complex case by L. Nachbin in [1], and in the vector case by J. Prolla in [2]. Many other authors have continued the investigation of such spaces. W. H. Summers has shown in [3] that if X and Y are locally compact topological spaces and U, V Nachbin families on X, Y, respectively, then $C U_{0}(X) \otimes C V_{0}(Y)$ is topologically isomorphic to a dense subspace of $C W_{0}(X \times Y)$, where $W=U \times V=\{u \times v: u \in U, v \in V\}$ and $(u \times v)(x, y)=u(x) v(y)$.

The p-adic weighted spaces of continuous functions were introduced by J. P. Q. Carneiro in [4]. Several of the properties of these spaces were studied by the authors in [5] and [6]. In this paper we show that if X, Y are Hausdorff topological spaces, not necessarily locally compact, U, V Nachbin families on X, Y respectively and E a non-Archimedean polar locally convex space, then $C U_{0}(X) \otimes C V_{0}(Y, E)$ is topologically isomorphic to a dense subspace of $C W_{0}(X \times Y, E)$, where $W=U \times V$. We give several applications of this result. We also show that on the space $C_{b}(X, E)$ of all bounded continuous E-valued functions on X, the strict topology defined in [7] is the weighted topology which corresponds to a certain Nachbin family on X.

2. Preliminaries

Throughout this paper, \mathbf{K} will stand for a complete non-Archimedean valued field whose valuation is nontrivial. By a seminorm, on a vector

[^0]space E over \mathbf{K}, we mean a non-Archimedean seminorm. Let E be a locally convex space over \mathbf{K}. The collection of all continuous seminorms on E will be denoted by $c s(E)$. The algebraic and the topological duals of E will be denoted by E^{*} and E^{\prime}, respectively. For a subset B of E, B^{0} denotes its polar subset of E^{\prime}. A seminorm p on E is called polar if
$$
p=\sup \left\{|f|: f \in E^{*},|f| \leq p\right\}
$$
where $|f|$ is defined by $|f|(x)=|f(x)|$. The space E is called polar if its topology is generated by a family of polar seminorms. If E, F are locally convex spaces over \mathbf{K}, then $E \otimes F$ denotes the projective tensor product of these spaces. By $E \widehat{\otimes} F$ we denote the completion of $E \otimes F$. Also, by $p \otimes q$ we denote the tensor product of the seminorms p and q. For all unexplained terms concerning non-Archimedean spaces we refer to [8].

Next we recall the definition of non-Archimedean weighted spaces. Let X be a Hausdorff topological space and E a locally convex space. The space of all continuous E-valued functions on X is denoted by $C(X, E)$. By $C_{b}(X, E)$ and $C_{0}(X, E)$ we denote the spaces of all members of $C(X, E)$ which are bounded on X or vanish at infinity on X, respectively. In case $E=\mathbf{K}$, we write $C(X), C_{b}(X)$ and $C_{0}(X)$ instead of $C(X, \mathbf{K}), C_{b}(X, \mathbf{K})$ and $C_{0}(X, \mathbf{K})$.

A Nachbin family on X is a family V of non-negative upper-semicontinuous functions on X such that:
(1) For all $v_{1}, v_{2} \in V$ and any $a>0$ there exists $v \in V$ with $v \geq a v_{1}, a v_{2}$ (pointwise) on X.
(2) For every $x \in X$ there exists $v \in V$ with $v(x)>0$.

Let now $p \in \operatorname{cs}(E)$ and $v \in V$. For an E-valued function f on X, we define

$$
q_{v, p}(f)=\|f\|_{v, p}=\sup \{v(x) p(f(x)): x \in X\}
$$

In case f is \mathbf{K}-valued, we define

$$
q_{v}(f)=\|f\|_{v}=\sup \{v(x)|f(x)|: x \in X\}
$$

Also, for an \mathbf{R}-valued or \mathbf{K}-valued function f on X, we define

$$
\|f\|=\sup \{|f(x)|: x \in X\}
$$

The weighted space $C V(X, E)$ is defined to be the space of all f in $C(X, E)$ such that $q_{v, p}(f)<\infty$ for all $v \in V$ and all $p \in \operatorname{cs}(E)$. Note that $q_{v, p}$ is a non-Archimedean seminorm on $C V(X, E)$. We will denote by $C V_{0}(X, E)$ the subspace of $C V(X, E)$ consisting of all f such that the function $x \mapsto$ $v(x) p(f(x))$ vanishes at infinity on X for each $v \in V$ and each $p \in c s(E)$. On $C V(X, E)$ and on $C V_{0}(X, E)$ we will consider the weighted topology τ_{ν} generated by the seminorms $q_{v, p}, v \in V, p \in c s(E)$. When $E=\mathbf{K}$, we will simply write $C V(X)$ and $C V_{0}(X)$ instead of $C V(X, \mathbf{K})$ and $C V_{0}(X, \mathbf{K})$.

3. On the Strict Topology

For a locally compact zero dimensional topological space X and a nonArchimedean normed space E, J. Prolla has defined, in [9], the strict topology β on $C_{b}(X, E)$ as the topology defined by the seminorms

$$
f \mapsto\|\phi f\|=\sup \{\|\phi(x) f(x)\|: x \in X\}
$$

where $\phi \in C_{0}(X)$. For an arbitrary topological space X and a locally convex space E, the strict topology β_{0} on $C_{b}(X, E)$ was defined in [7]. This is the topology generated by the seminorms

$$
f \mapsto\|\phi f\|_{p}=\sup \{|\phi(x)| p(f(x)): x \in X\}
$$

where $p \in c s(E)$ and ϕ belongs to the family $B_{0}(X)$ of all bounded \mathbf{K}-valued functions f on X which vanish at infinity. As shown in [7], $\beta_{0}=\beta$ when X is locally compact zero-dimensional. In this section we will show that β_{0} is a weighted topology.

Let X be a Hausdorff topological space and let $B_{0 u}(X)$ denote the family of all $\phi \in B_{0}(X)$ for which $|\phi|$ is upper-semicontinuous.

Lemma 3.1.
(1) If $V=\left|B_{0 u}(X)\right|=\left\{|\phi|: \phi \in B_{0 u}(X)\right\}$, then V is a Nachbin family on X.
(2) For each $\phi \in B_{0}(X)$ there exists $\psi \in B_{0 u}(X)$ such that $|\phi| \leq|\psi|$.

Proof. (1) If $\phi_{1}, \phi_{2} \in B_{0 u}(X)$ and if ϕ is defined on X by

$$
\phi(x)= \begin{cases}\phi_{1}(x)+\phi_{2}(x) & \text { if }\left|\phi_{1}(x)\right| \neq\left|\phi_{2}(x)\right| \\ \phi_{1}(x) & \text { otherwise }\end{cases}
$$

then $|\phi|=\max \left\{\left|\phi_{1}\right|,\left|\phi_{2}\right|\right\}$ and $\phi \in B_{0 u}(X)$. It follows now easily that V is a Nachbin family on X.
(2) Let $\phi \in B_{0}(X)$ and choose $\lambda \in \mathbf{K}, 0<|\lambda|<1$. Without loss of generality we may assume that $\|\phi\|<|\lambda|$. There exists an increasing sequence $\left(D_{n}\right)$ of compact subsets of X such that $\left\{x \in X:|\phi(x)|>|\lambda|^{n}\right\} \subseteq$ D_{n}. Let ϕ_{n} denote the \mathbf{K}-characteristic function of D_{n}. For each $x \in X$, the series $\sum_{n=1}^{\infty} \lambda^{n} \phi_{n}(x)$ converges in \mathbf{K}. Define ψ on X by

$$
\psi(x)=\sum_{n=1}^{\infty} \lambda^{n} \phi_{n}(x)
$$

If $x \in D_{n} \backslash D_{n-1}$, then $|\psi(x)|=|\lambda|^{n}$. Given $\epsilon>0$, choose n such that $|\lambda|^{n}<\epsilon$. Now $\{x \in X:|\psi(x)|>\epsilon\} \subseteq D_{n}$ and so $\psi \in B_{0}(X)$. Also, for each $\epsilon>0$, the set $A=\{x:|\psi(x)|<\epsilon\}$ is open. Indeed, if $|\lambda|<\epsilon$, then $A=X$. Assume $\epsilon \leq|\lambda|$ and let κ be such that $|\lambda|^{\kappa+1}<\epsilon \leq|\lambda|^{\kappa}$. If $x_{0} \in A$, then $x_{0} \notin D_{\kappa}$. Also, for $x \notin D_{\kappa}$, we have $|\psi(x)| \leq|\lambda|^{\kappa+1}<\epsilon$ and so $x \in A$. Thus $A=X \backslash D_{\kappa}$, which shows that A is open. Finally, $|\lambda \phi| \leq|\psi|$. Indeed,
let $\phi(x) \neq 0$. If $x \in D_{1}$, then $|\psi(x)|=|\lambda| \geq|\lambda \phi(x)|$. If $x \in D_{n+1} \backslash D_{n}$, then $|\phi(x)| \leq|\lambda|^{n}$ and so $|\psi(x)|=|\lambda|^{n+1} \geq|\lambda \phi(x)|$.

Theorem 3.2. If V is as in the preceding Lemma, then

$$
C V(X, E)=C V_{0}(X, E)=C_{b}(X, E) \quad(\text { algebraically })
$$

and the weighted topology on $C V(X, E)$ coincides with the strict topology β_{0} on $C_{b}(X, E)$.

Proof. It is clear that $C_{b}(X, E) \subseteq C V_{0}(X, E)$. On the other hand, assume that some $f \in C V(X, E)$ is not bounded. Then, for $|\lambda|>1$, there exist $p \in \operatorname{cs}(E)$ and a sequence $\left(x_{n}\right)$ of distinct elements of X such that $p\left(f\left(x_{n}\right)\right)>|\lambda|^{2 n}$ for all n. Let ϕ_{n} be the \mathbf{K}-characteristic function of the set $\left\{x_{1}, \ldots, x_{n}\right\}$. As in the proof of the preceding Lemma, we get that the function $\phi=\sum_{n=1}^{\infty} \lambda^{-n} \phi_{n}$ is in $B_{0 u}(X)$ and $\left|\phi\left(x_{n}\right)\right|=\left|\sum_{\kappa \geq n} \lambda^{-\kappa} \phi_{\kappa}\left(x_{n}\right)\right|=$ $|\lambda|^{-n}$. Thus $\sup _{n}\left|\phi\left(x_{n}\right)\right| p\left(f\left(x_{n}\right)\right)=\infty$ contradicts the fact that $f \in$ $C V(X, E)$. This proves the first part. The second part follows from (2) of the preceding Lemma.

4. Tensor Products of Weighted Spaces

Let X, Y be Hausdorff topological spaces and let U, V be Nachbin families on X, Y respectively. Set $W=U \times V=\{u \times v: u \in U, v \in V\}$ where $u \times v$ is defined on $X \times Y$ by $(u \times v)(x, y)=u(x) v(y)$. It is easy to see that W is a Nachbin family on $X \times Y$. In the complex case, Summers has shown in [3] that, for locally compact $X, Y, C U_{0}(X) \otimes C V_{0}(Y)$ is topologically isomorphic to a dense subspace of $C W_{0}(X \times Y)$. The following is an analogous result in our case. Note that we do not assume that X, Y are locally compact.

Theorem 4.1. Let U, V, W be as above and let E be a Hausdorff locally convex space over \mathbf{K}. Then:
(1) $C U_{0}(X) \otimes C V_{0}(Y, E)$ is topologically isomorphic to a subspace G of $C W_{0}(X \times Y, E)$;
(2) if X is zero-dimensional and E a polar space, then G is a dense subspace of $C W_{0}(X \times Y, E)$.

Proof. (1) Let

$$
\begin{gathered}
B: C U_{0}(X) \times C V_{0}(Y, E) \mapsto C W_{0}(X \times Y, E) \\
B(\phi, f)=\phi \times f, \quad(\phi \times f)(x, y)=\phi(x) f(y)
\end{gathered}
$$

Then B is bilinear. Let

$$
T=\tilde{B}: C U_{0}(X) \otimes C V_{0}(Y, E) \mapsto C W_{0}(X \times Y, E)
$$

be the corresponding linear map. Then T is one-to-one. Indeed, assume that for some $h=\sum_{1}^{n} \phi_{\kappa} \otimes f_{\kappa}$ we have $T(h)=0$. We claim that $h=0$. We prove it by induction on n. This is clearly true if $n=1$. Assume that it is true for $n-1$. If some $\phi_{\kappa} \neq 0$, say $\phi_{n} \neq 0$, then f_{n} is a linear combination of f_{1}, \ldots, f_{n-1}, i.e., $f_{n}=\sum_{\kappa=1}^{n-1} \lambda_{\kappa} f_{\kappa}$. Thus

$$
0=\sum_{1}^{n} \phi_{\kappa} \times f_{\kappa}=\sum_{1}^{n-1} \phi_{\kappa} \times f_{\kappa}+\sum_{1}^{n-1} \lambda_{\kappa}\left(\phi_{n} \times f_{\kappa}\right)=\sum_{1}^{n-1}\left(\phi_{\kappa}+\lambda_{\kappa} \phi_{n}\right) \times f_{\kappa}
$$

By our inductive hypothesis, we have

$$
\begin{aligned}
0 & =\sum_{1}^{n-1}\left(\phi_{\kappa}+\lambda_{\kappa} \phi_{n}\right) \otimes f_{\kappa}=\sum_{1}^{n-1} \phi_{\kappa} \otimes f_{\kappa}+\sum_{1}^{n-1} \lambda_{\kappa} \phi_{n} \otimes f_{\kappa}= \\
& =\sum_{1}^{n-1} \phi_{\kappa} \otimes f_{\kappa}+\phi_{n} \otimes\left(\sum_{1}^{n-1} \lambda_{\kappa} f_{\kappa}\right)=\sum_{1}^{n} \phi_{\kappa} \otimes f_{\kappa} .
\end{aligned}
$$

This proves that T is one-to-one. Also, if $M=C U_{0}(X) \otimes C V_{0}(Y, E)$ and $G=T(M)$, then T is a topological isomorphism from M onto G. Indeed, let $h \in M, u \in U, v \in V, w=u \times v, p \in c s(E)$. For any representation $h=\sum_{1}^{n} \phi_{\kappa} \otimes f_{\kappa}$ of h we have

$$
\begin{gathered}
\|T h\|_{w, p}=\sup _{x, y} u(x) v(y) p\left(\sum_{1}^{n} \phi_{\kappa}(x) f_{\kappa}(y)\right) \leq \\
\leq \max _{\kappa}\left[\left(\sup _{x} u(x)\left|\phi_{\kappa}(x)\right|\right) \cdot\left(\sup _{y} v(y) p\left(f_{\kappa}(y)\right)\right)\right]=\max _{\kappa}\left\|\phi_{\kappa}\right\|_{u}\left\|f_{\kappa}\right\|_{v, p}
\end{gathered}
$$

Thus $\|T h\|_{w, p} \leq\left(\|\cdot\|_{u} \otimes\|\cdot\|_{v, p}\right)(h)$. On the other hand, given $0<t<1$, there exists a representation $h=\sum_{\kappa=1}^{m} \phi_{\kappa} \otimes f_{\kappa}$ of h such that $\left\{f_{1}, \ldots, f_{m}\right\}$ is t-orthogonal with respect to the seminorm $\|\cdot\|_{v, p}$. Now, for any $x \in X$,

$$
\left\|\sum_{\kappa=1}^{m} \phi_{\kappa}(x) f_{\kappa}\right\|_{v, p} \geq t \max _{\kappa}\left|\phi_{\kappa}(x)\right|\left\|f_{\kappa}\right\|_{v, p}
$$

and so

$$
\begin{gathered}
\|T h\|_{w, p}=\sup _{x}\left[\left\|\sum_{1}^{m} \phi_{\kappa}(x) f_{\kappa}\right\|_{v, p}\right] u(x) \geq t \max _{\kappa} \sup _{x}\left|\phi_{\kappa}(x)\right|\left\|f_{\kappa}\right\|_{v, p} u(x)= \\
=t \max _{\kappa}\left\|\phi_{\kappa}\right\|_{u}\left\|f_{\kappa}\right\|_{v, p} \geq t\left(\|\cdot\|_{u} \otimes\|\cdot\|_{v, p}\right)(h)
\end{gathered}
$$

It follows that $\|T h\|_{w, p}=\left(\|\cdot\|_{u} \otimes\|\cdot\|_{v, p}\right)(h)$ and so $T: M \mapsto G$ is a topological isomorphism.
(2) Assume that E is polar and X zero-dimensional.

Let $f \in C W_{0}(X \times Y, E), u \in U, v \in V, w=u \times v, \epsilon>0$ and $p \in c s(E)$, where p is polar. The set $D=\{(x, y): u(x) v(y) p(f(x, y)) \geq \epsilon\}$ is compact
in $X \times Y$. If D_{1}, D_{2} are the projections of D on X, Y respectively, then $D \subseteq D_{1} \times D_{2}$. Let $d>\sup _{x \in D_{1}} u(x), \sup _{y \in D_{2}} v(y)$.

The set $\Omega=\{x \in X: u(x)<d\}$ is open in X and contains D_{1}. Since X is zero-dimensional, there exists a clopen subset A of X with $D_{1} \subseteq A \subseteq \Omega$. For each $x \in D_{1}$ there exists $y \in Y$ with $(x, y) \in D$ and so $u(x)>0$. Also, for $x_{0} \in X$, the map $y \mapsto f\left(x_{0}, y\right)$ is in $C V_{0}(Y, E)$. Indeed, there exists $u_{1} \in U$ with $u_{1}\left(x_{0}\right) \neq 0$. Let $v_{1} \in V, \epsilon_{1}>0$ and $q \in c s(E)$. We want to show that the set $B=\left\{y \in Y: v_{1}(y) q\left(f\left(x_{0}, y\right)\right) \geq \epsilon_{1}\right\}$ is compact. The set $B_{1}=\left\{(x, y): u_{1}(x) v_{1}(y) q(f(x, y)) \geq \epsilon_{1} u_{1}\left(x_{0}\right)\right\}$ is compact. If $y \in B$, then $\left(x_{0}, y\right) \in B_{1}$ and so B is contained in the projection of B_{1} in Y. Since B is closed, it follows that B is compact. This proves that the map $y \mapsto f\left(x_{0}, y\right)$ is in $C V_{0}(Y, E)$.

Also, for each $y_{0} \in Y$ and each $x^{\prime} \in E^{\prime}$, the function $x \mapsto x^{\prime}\left(f\left(x, y_{0}\right)\right)$ is in $C U_{0}(X)$. Indeed, the seminorm $q(x)=\left|x^{\prime}(x)\right|$ is continuous on E. Choose $v_{1} \in V$ with $v_{1}\left(y_{0}\right) \neq 0$. For $u_{1} \in U$, let $H=\left\{x: u_{1}(x) q\left(f\left(x, y_{0}\right)\right) \geq \epsilon_{1}\right\}$. Then, H is contained in the projection on X of the compact set $B_{2}=$ $\left\{(x, y): u_{1}(x) v_{1}(y) q(f(x, y)) \geq \epsilon_{1} v_{1}\left(y_{0}\right)\right\}$ and so H is compact, which proves that the function $x \mapsto x^{\prime}\left(f\left(x, y_{0}\right)\right)$ is in $C U_{0}(X)$.

Let now $x \in D_{1}$. There exists $y_{0} \in Y$ with $\left(x, y_{0}\right) \in D$. Since $p\left(f\left(x, y_{0}\right)\right)>0$ and p is polar, there exists $x^{\prime} \in E^{\prime}$ with $x^{\prime}\left(f\left(x, y_{0}\right)\right) \neq 0$. Since the function $z \mapsto x^{\prime}\left(f\left(z, y_{0}\right)\right)$ is in $C U_{0}(X)$, it is clear that there exists $\phi_{x} \in C U_{0}(X)$ with $\phi_{x}(x)=1$. By the compactness of D_{2}, there exists a clopen neighborhood A_{x} and $0<\epsilon_{x}<1$, with

$$
d^{2} \cdot \epsilon_{x} \cdot \sup _{y \in D_{2}} p(f(x, y))<\epsilon
$$

such that

$$
A_{x} \subseteq A \cap\left\{z:\left|\phi_{x}(z)-1\right|<\epsilon_{x}\right\} \cap\{z: u(z)<2 u(x)\}
$$

and $p(f(z, y)-f(x, y))<\epsilon / d^{2}$ for all $z \in A_{x}$ and all $y \in D_{2}$. In view of the compactness of D_{1}, there are x_{1}, \ldots, x_{m} in D_{1} such that $D_{1} \subseteq \bigcup_{1}^{m} A_{x_{i}}$.

$$
\text { Let } A_{1}=A_{x_{1}}, \quad A_{\kappa+1}=A_{x_{\kappa+1}} \backslash\left(\bigcup_{1}^{\kappa} A_{x_{i}}\right) \quad \text { for } \kappa=1, \ldots, m-1
$$

Set $\phi_{\kappa}=\phi_{x_{\kappa}} \cdot \mathcal{X}_{A_{\kappa}}, f_{\kappa}=f\left(x_{\kappa}, \cdot\right) \in C V_{0}(Y, E)$, where $\mathcal{X}_{A_{\kappa}}$ is the \mathbf{K} characteristic function of A_{κ}. Then $h=\sum_{1}^{m} \phi_{\kappa} \times f_{\kappa} \in G$. Moreover, for all $x \in X$ and $y \in Y$, we have

$$
\begin{equation*}
u(x) v(y) p(f(x, y)-h(x, y)) \leq 2 \epsilon \tag{*}
\end{equation*}
$$

To show $(*)$ we consider three possible cases.
Case I: $x \notin \bigcup_{1}^{m} A_{\kappa}$.
In this case, we have $h(x, y)=0,(x, y) \notin D$ and $u(x) v(y) p(f(x, y))<\epsilon$.
Case II: $x \in A_{\kappa}$ and $y \in D_{2}$.

Then

$$
\begin{gathered}
f(x, y)-h(x, y)=f(x, y)-\phi_{\kappa}(x) f_{\kappa}(y)= \\
=\left[f(x, y)-f\left(x_{\kappa}, y\right)\right]+f\left(x_{\kappa}, y\right)\left(1-\phi_{\kappa}(x)\right)
\end{gathered}
$$

Since

$$
u(x) v(y) p\left(f(x, y)-f\left(x_{\kappa}, y\right)\right)<d^{2} \cdot \epsilon / d^{2}=\epsilon
$$

and

$$
u(x) v(y)\left|1-\phi_{\kappa}(x)\right| p\left(f\left(x_{\kappa}, y\right)\right) \leq d^{2} \cdot \epsilon_{x_{\kappa}} \cdot p\left(f\left(x_{\kappa}, y\right)\right)<\epsilon
$$

we have that $(*)$ holds.
Case III: $x \in A_{\kappa}, y \notin D_{2}$.
In this case we have that $(x, y) \notin D$ and so $u(x) v(y) p(f(x, y))<\epsilon$. Also, since $x \in A_{\kappa} \subseteq A_{x_{\kappa}}$, we have $\phi_{\kappa}(x)=\phi_{x_{\kappa}}(x)$ and $\left|\phi_{x_{\kappa}}(x)-1\right|<1$, which implies that $\left|\phi_{x_{\kappa}}(x)\right|=1$. Thus

$$
u(x) v(y)\left|\phi_{\kappa}(x)\right| p\left(f\left(x_{\kappa}, y\right)\right) \leq 2 u\left(x_{\kappa}\right) v(y) p\left(f\left(x_{\kappa}, y\right)\right)<2 \epsilon
$$

since $\left(x_{\kappa}, y\right) \notin D$. Thus $(*)$ holds in all cases and so $\|f-h\|_{w, p} \leq 2 \epsilon$.
Remark 4.2. Looking at the proof of (2) in the preceding Theorem, we see that instead of the hypothesis that E is polar we may just assume that E^{\prime} separates the points of E, i.e., for each $s \neq 0$ in E there exists $x^{\prime} \in E^{\prime}$ with $x^{\prime}(s) \neq 0$. Of course polar spaces have this property.

Taking as V the family of all constant positive functions on X, we get that $C V_{0}(X, E)$ coincides with $C_{0}(X, E)$ with the topology τ_{u} of uniform convergence.

Lemma 4.3. Considering on both $C_{0}(X, E)$ and $C_{0}(X, \hat{E})$ the topology τ_{u} of uniform convergence, we have that $C_{0}(X, \hat{E})$ is the completion of $C_{0}(X, E)$.
Proof. It is easy to see that $C_{0}(X, \hat{E})$ is complete. Let $f \in C_{0}(X, \hat{E})$ and $p \in c s(E)$. We will denote also by p the unique continuous extension of p to all of \hat{E}.

The set $Z=\{x \in X: p(f(x)) \geq 1\}$ is clopen and compact. There are x_{1}, \ldots, x_{n} in Z such that the sets

$$
Z_{\kappa}=\left\{x \in X: p\left(f(x)-f\left(x_{\kappa}\right)\right)_{\leq 1}\right\}, \quad \kappa=1, \ldots, n
$$

are pairwise disjoint and cover Z. For each κ, choose $s_{\kappa} \in E$ with $p\left(s_{\kappa}-\right.$ $\left.f\left(x_{\kappa}\right)\right)<1$. Set

$$
h=\sum_{1}^{n} \mathcal{X}_{A_{\kappa}} s_{\kappa} \in C_{0}(X, E)
$$

where $A_{\kappa}=Z_{\kappa} \cap Z$. Note that the sets A_{1}, \ldots, A_{n} are clopen and compact and their union is Z. Since $\|f-h\|_{p} \leq 1$, the result follows.

Combining Theorem 1 with Lemma 2, we get as a corollary the following
Theorem 4.4. Let X, Y be Hausdorff topological spaces and E a Hausdorff locally convex space. Then:
(1) $C_{0}(X) \otimes C_{0}(Y, E)$ is topologically isomorphic to a subspace of $C_{0}(X \times Y, E) ;$
(2) if X is zero-dimensional and E^{\prime} separates the points of E (e.g. if E is polar), then

$$
C_{0}(X) \hat{\otimes} C_{0}(Y, E) \cong C_{0}(X \times Y, \hat{E})
$$

Lemma 4.5. Let X, Y be Hausdorff topological spaces, $U=\left|B_{0 u}(X)\right|$, $V=\left|B_{0 u}(Y)\right|, W=U \times V, W_{1}=\left|B_{0 u}(X \times Y)\right|$. Then, the Nachbin families W and W_{1} are equivalent.

Proof. Clearly, $W \subseteq W_{1}$. On the other hand, let $\phi \in B_{0 u}(X \times Y)$ and $\lambda \in \mathbf{K}, \mu \in \mathbf{K}$ with $|\mu|>1,|\lambda| \geq|\mu|^{2}$. Without loss of generality, we may assume that $\|\phi\|<|\lambda|^{-1}$. For each positive integer n, the set

$$
D_{n}=\left\{(x, y):|\phi(x, y)| \geq|\lambda|^{-n}\right\}
$$

is compact. Let A_{n}, B_{n} be the projections of D_{n} on X, Y, respectively. Set

$$
\phi_{1}=\sum_{n=1}^{\infty} \mu^{-n} \mathcal{X}_{A_{n}}, \quad \phi_{2}=\sum_{n=1}^{\infty} \mu^{-n} \mathcal{X}_{B_{n}}
$$

Since $\left(A_{n}\right),\left(B_{n}\right)$ are increasing sequences of compact sets, we get (as in the proof of Lemma 1) that $\phi_{1} \in B_{0 u}(X)$ and $\phi_{2} \in B_{0 u}(Y)$. Moreover, $|\phi| \leq|\lambda|\left(\left|\phi_{1}\right| \times\left|\phi_{2}\right|\right)$. Indeed, let $\left(x_{0}, y_{0}\right) \in X \times Y$ with $\phi\left(x_{0}, y_{0}\right) \neq 0$, and let n be the smallest of all integers κ with $\left(x_{0}, y_{0}\right) \in D_{\kappa}$. If m is the smallest integer κ with $x_{0} \in A_{\kappa}$, then $m \leq n$ and $\left|\phi_{1}\left(x_{0}\right)\right|=|\mu|^{-m} \geq|\mu|^{-n}$. Similarly, $\left|\phi_{2}\left(y_{0}\right)\right| \geq|\mu|^{-n}$ and so

$$
\left|\phi_{1}\left(x_{0}\right) \phi_{2}\left(y_{0}\right)\right| \geq|\mu|^{-2 n} \geq|\lambda|^{-n}
$$

Since $\left(x_{0}, y_{0}\right) \notin D_{n-1}$, we have that

$$
\left|\phi\left(x_{0}, y_{0}\right)\right|<|\lambda|^{-(n-1)} \leq|\lambda|\left|\phi_{1}\left(x_{0}\right) \phi_{2}\left(y_{0}\right)\right| .
$$

This clearly completes the proof.
Combining the preceding Lemma with Theorems 3.2 and 4.1, we get
Theorem 4.6. Let X, Y be Hausdorff topological spaces and E a Hausdorff locally convex space. Then:
(1) $\left(C_{b}(X), \beta_{0}\right) \otimes\left(C_{b}(Y, E), \beta_{0}\right)$ is topologically isomorphic to a subspace G of $\left(C_{b}(X \times Y, E), \beta_{0}\right)=M$.
(2) If X is zero-dimensional and E^{\prime} separates the points of E, then G is a dense subspace of M.

Let X, Y be Hausdorff topological spaces, U the Nachbin family of all positive multiples of the \mathbf{R}-characteristic functions of the compact subsets of $X, V=\left|B_{0 u}(Y)\right|$ and $W=U \times V$. Let $f \in E^{X \times Y}$ be such that the restriction $\left.f\right|_{D}$ to each compact subset D of $X \times Y$ is continuous.

Consider the following properties of f :
(1) For each compact subset D_{1} of X, the restriction of f to $D_{1} \times Y$ is bounded.
(2) For any $u \in U, v \in V, w=u \times v, p \in c s(E)$, the function $w \cdot(p \circ f)$ vanishes at infinity on $X \times Y$.
(3) $\|f\|_{w, p}<\infty$ for any $w=u \times v \in W$ and any $p \in c s(E)$.

Then (1), (2), (3) are equivalent. Indeed, it is easy to see that $(1) \Rightarrow(2) \Rightarrow$ (3). To prove that $(3) \Rightarrow(1)$, assume that there exist a compact subset D_{1} of X and $p \in c s(E)$ such that

$$
\sup \left\{p(f(x, y)): x \in D_{1}, y \in Y\right\}=\infty
$$

Let $|\lambda|>1$ and choose a sequence $\left(x_{n}\right)$ in D_{1} and a sequence $\left(y_{n}\right)$ of distinct elements of Y such that $p\left(f\left(x_{n}, y_{n}\right)\right)>|\lambda|^{2 n}$. Let w_{n} be the \mathbf{K}-characteristic function of $\left\{y_{1}, \ldots, y_{n}\right\}$ and consider the function $\phi=\sum_{n=1}^{\infty} \lambda^{-n} w_{n}$. Then $v=|\phi| \in V$. If u is the \mathbf{R}-characteristic function of D_{1}, then $w=u \times v \in W$ and

$$
u\left(x_{n}\right) v\left(y_{n}\right) p\left(f\left(x_{n}, y_{n}\right)\right)=|\lambda|^{-n} p\left(f\left(x_{n}, y_{n}\right)\right) \geq|\lambda|^{n}
$$

and so $\|f\|_{w, p}=\infty$, a contradiction. Thus (1),(2),(3) are equivalent.
Let now U, V, W be as above and denote by $C W_{\kappa}(X \times Y, E)$ the vector space of all $f \in E^{X \times Y}$ such that:
(a) $\left.f\right|_{D \times Y}$ is continuous for each compact subset D of X.
(b) $\|f\|_{w, p}<\infty$ for each $w \in W$ and each $p \in c s(E)$.

If we consider on $C W_{\kappa}(X \times Y, E)$ the weighted topology τ_{w} generated by the seminorms $\|\cdot\|_{w, p}, w \in W, p \in c s(E)$, we have

Theorem 4.7. Let X, Y be zero-dimensional Hausdorff topological spaces and E a Hausdorff locally convex space. If τ_{c} is the topology of compact convergence, then:
(1) the map

$$
\omega:\left(C(X), \tau_{c}\right) \otimes\left(C_{b}(Y, E), \beta_{0}\right) \mapsto C W_{\kappa}(X \times Y, E), \quad f \otimes g \mapsto f \times g
$$

is a topological isomorphism onto a dense subspace G of $C W_{\kappa}(X \times Y, E)$;
(2) if Y is locally compact, then

$$
\left(C(X), \tau_{c}\right) \hat{\otimes}\left(C_{b}(Y, E), \beta_{0}\right) \cong C W_{\kappa}(X \times Y, \hat{E})
$$

Proof. The mapping ω is a topological isomorphism onto G by Theorem 4.1, since $C W_{0}(X \times Y, E)$ is a topological subspace of $C W_{\kappa}(X \times Y, E)$. To prove that G is dense, let $f \in C W_{\kappa}(X \times Y, E), w=u \times v \in W$ and $p \in c s(E)$.

We may assume that u is the \mathbf{R}-characteristic function of a compact subset D_{1} of X. Given $\epsilon>0$, let $D=\left\{(x, y): x \in D_{1}, v(y) p(f(x, y)) \geq \epsilon\right\}$. If D_{2} is the projection of D on Y, then D_{2} is compact, since D is compact, and $D \subseteq D_{1} \times D_{2}$. The restriction h of f to $D_{1} \times D_{2}$ is continuous. Let $\epsilon_{2}>0$ with $\epsilon_{2}\|v\|<\epsilon$. There are $\left(x_{\kappa}, y_{\kappa}\right) \in D_{1} \times D_{2}, \kappa=1, \ldots, n$, such that the sets $A_{\kappa}=\left\{s \in E: p\left(s-f\left(x_{\kappa}, y_{\kappa}\right)\right) \leq \epsilon_{2}\right\}$ are pairwise disjoint and cover $h\left(D_{1} \times D_{2}\right)$. Set $B_{\kappa}=h^{-1}\left(A_{\kappa}\right)$. Clearly, B_{κ} is compact and $D_{1} \times D_{2}=\bigcup_{\kappa} B_{\kappa}$.

It is easy to see that if C, C_{1}, \ldots, C_{n} are clopen in X and F, F_{1}, \ldots, F_{n} clopen in Y, then the set

$$
C \times F \backslash\left(\bigcup_{\kappa=1}^{n} C_{\kappa} \times F_{\kappa}\right)
$$

is a finite disjoint union of sets of the form $Z_{1} \times Z_{2}$, with Z_{1} clopen in X and Z_{2} clopen in Y.

There are pairwise disjoint sets $O_{1} \ldots, O_{n}$ in $X \times Y$ with $B_{\kappa} \subseteq O_{\kappa}$. For $(x, y) \in B_{\kappa}$ there are clopen neighbourhoods M_{x}, D_{y} of x, y respectively such that $M_{x} \times D_{y} \subseteq O_{\kappa}$ and $p(f(x, y)-f(a, b)) \leq \epsilon_{2}$ for all $a \in M_{x} \cap D_{1}$ and $b \in D_{y}$. In view of the compactness of B_{κ}, there are clopen sets $A_{\kappa 1}, \ldots, A_{\kappa m_{\kappa}}$ in X and clopen sets $D_{\kappa 1}, \ldots, D_{\kappa m_{\kappa}}$ in Y such that the sets $A_{\kappa j} \times D_{\kappa j}, j=1, \ldots, m_{\kappa}$, are pairwise disjoint, cover B_{κ}, are contained in O_{κ} and $p(f(x, y)-f(a, b)) \leq \epsilon_{2}$ if (x, y) and (a, b) are in $\left(A_{\kappa j} \cap D_{1}\right) \times D_{\kappa j}$.

Choose $\left(x_{\kappa j}, y_{\kappa j}\right) \in\left(A_{\kappa j} \cap D_{1}\right) \times D_{\kappa j}$ and set

$$
g=\sum_{\kappa=1}^{n}\left(\sum_{j=1}^{m_{\kappa}} \mathcal{X}_{C_{\kappa j}} \times\left(\mathcal{X}_{F_{\kappa j}} f\left(x_{\kappa}, y_{\kappa}\right)\right)\right)
$$

is in G. Moreover, $\|f-g\|_{w, p} \leq \epsilon$. Indeed, let $x \in D_{1}, y \in Y$.
Case I: $\quad(x, y) \in A_{\kappa j} \times B_{\kappa j}$.
Then $g(x, y)=f\left(x_{\kappa}, y_{\kappa}\right)$ and so $p(f(x, y)-g(x, y)) \leq \epsilon_{2}$, which implies that

$$
v(y) p(f(x, y)-g(x, y)) \leq\|v\| \epsilon_{2}<\epsilon
$$

Case II: $\quad(x, y) \notin \bigcup_{\kappa, j} A_{\kappa j} \times B_{\kappa j}$.
Then $g(x, y)=0$ and $(x, y) \notin D$ and so

$$
w(x, y) p(f(x, y)-g(x, y)) \leq v(y) p(f(x, y))<\epsilon
$$

This proves the first part of the theorem.
(2) To prove the second part, we show first that $C W_{\kappa}(X \times Y, \hat{E})$ is complete. To this end, let $\left(f_{\alpha}\right)$ be a Cauchy net in $C W_{\kappa}(X \times Y, \hat{E})$.

Given $\left(x_{0}, y_{0}\right) \in X \times Y$, there exist $u \in U, v \in V$ with $u\left(x_{0}\right)>0$, $v\left(y_{0}\right)>0$. Using this, we get that the net $\left(f_{\alpha}\left(x_{0}, y_{0}\right)\right)$ is Cauchy and hence
convergent in \hat{E}. Define

$$
f: X \times Y \mapsto \hat{E}, \quad f(x, y)=\lim f_{\alpha}(x, y)
$$

(i) For each compact subset D_{1} of $X,\left.f\right|_{D_{1} \times Y}$ is continuous. Indeed, let $x_{0} \in D_{1}$ and $y_{0} \in Y$. There exists a compact clopen neighbourhood W of $y_{0} \in Y$.

If u, v are the \mathbf{R}-characteristic functions of D_{1}, W, respectively, then $w=u \times v \in W$ and

$$
\left\|f_{\alpha}-f_{\beta}\right\|_{w, p}=\sup \left\{p\left(f_{\alpha}(x, y)-f_{\beta}(x, y)\right): x \in D_{1}, y \in W\right\}
$$

It follows that $f_{\alpha} \rightarrow f$ uniformly on $D_{1} \times W$. Since $D_{1} \times W$ is open in $D_{1} \times Y$ and $\left(x_{0}, y_{0}\right) \in D_{1} \times W$ it follows that f is continuous at $\left(x_{0}, y_{0}\right)$ on $D_{1} \times Y$.
(ii) If $w=u \times v \in W$, then $\|f\|_{w, p}<\infty$ for each $p \in c s(E)$. Indeed, there exists α_{0} such that $\left\|f_{\alpha_{0}}-f_{\alpha}\right\|_{w, p} \leq 1$, for all $\alpha \succeq \alpha_{0}$, which implies that

$$
\left\|f_{\alpha_{0}}-f\right\|_{w, p} \leq 1 \text { and so }\|f\|_{w, p} \leq \max \left\{1,\left\|f_{\alpha_{0}}\right\|_{w, p}\right\}<\infty
$$

It follows from the above that $f \in C W_{\kappa}(X \times Y, \hat{E})$ and $f_{\alpha} \rightarrow f$ in the topology τ_{w}. To finish the proof, it suffices to show that $C W_{\kappa}(X \times Y, E)$ is dense in $C W_{\kappa}(X \times Y, \hat{E})$. So, let $f \in C W_{\kappa}(X \times Y, \hat{E}), w=u \times v \in W$ and $p \in c s(E)$. As in the proof of the first part, there are clopen subsets A_{1}, \ldots, A_{n} of X, clopen subsets B_{1}, \ldots, B_{n} of Y and $\left(x_{\kappa}, y_{\kappa}\right)$ in $X \times Y$ such that the sets $A_{\kappa} \times B_{\kappa}, \kappa=1, \ldots, n$, are pairwise disjoint and $\|f-g\|_{w, p} \leq 1$, where

$$
g=\sum_{\kappa=1}^{n} \mathcal{X}_{A_{\kappa}} \times\left(\mathcal{X}_{B_{\kappa}} f\left(x_{\kappa}, y_{\kappa}\right)\right)
$$

Since w is bounded, we have that $\|w\|=d<\infty$. For each κ, choose $s_{\kappa} \in E$ such that $p\left(s_{\kappa}-f\left(x_{\kappa}, y_{\kappa}\right)\right)<1 / d$. Now

$$
h=\sum_{\kappa=1}^{n} \mathcal{X}_{A_{\kappa}} \times\left(\mathcal{X}_{B_{\kappa}} s_{\kappa}\right) \in G
$$

If $(x, y) \in A_{\kappa} \times B_{\kappa}$, then $g(x, y)=f\left(x_{\kappa}, y_{\kappa}\right), h(x, y)=s_{\kappa}$, and so

$$
\begin{gathered}
w(x, y) p(f(x, y)-h(x, y)) \leq \\
\leq \max \left\{w(x, y) p(f(x, y)-g(x, y)), w(x, y) p\left(f\left(x_{\kappa}, y_{\kappa}\right)-s_{\kappa}\right)\right\} \leq 1
\end{gathered}
$$

Thus $\|f-h\|_{w, p} \leq 1$ and the result clearly follows.
Let $C_{\kappa, 0}(X \times Y, E)$ denote the space of all E-valued functions f on $X \times Y$ such that $\left.f\right|_{D_{1} \times Y} \in C_{0}\left(D_{1} \times Y, E\right)$ for each compact subset D_{1} of X. If we consider on $C_{\kappa, 0}(X \times Y, E)$ the locally convex topology generated by the seminorms $\|f\|_{D_{1}, p}=\sup \left\{p\left(f(x, y): x \in D_{1}, y \in Y\right\}\right.$, where $p \in \operatorname{cs}(E)$ and D_{1} is a compact subset of X, then we have

Theorem 4.8. Let X, Y be zero-dimensional Hausdorff topological spaces, where Y is locally compact, and let E be a Hausdorff complete locally convex space. Then

$$
\left(C(X), \tau_{c}\right) \hat{\otimes}\left(C_{0}(Y, E), \tau_{u}\right) \cong C_{\kappa, 0}(X \times Y, E)
$$

Proof. The proof is analogous to the one of the preceding theorem, using an additional fact that the clopen compact subsets of Y form the base for the open subsets of Y.

References

1. L. Nachbin, Elements of approximation theory. Van Nostrand Math. Studies, 14, Princeton, Jersey, 1967; reprinted in 1976 by Kreiger, Melbourne; initial publications: Notes de Matematica, No. 33, Instituto de Matematica Pura e Aplicada, Rio de Janeiro, 1965.
2. J. B. Prolla, Weighted spaces of vector-valued continuous functions. Ann. Mat. Pura Appl. 89(1971), No. 4, 145-158.
3. W. H. Summers, A representation theorem for biequicontinuous completed tensor products of weighted space. Trans. Amer. Math. Soc. 146(1969), 121-131.
4. J. P. Q. Carneiro, Non-Archimedean weighted approximation. (Portuguese) An. Acad. Brasil. Ciènc. 50(1)(1978), 1-34.
5. A. K. Katsaras and A. Beloyiannis, Non-Archimedean weighted spaces of continuous functions. Rendi. Mat. Appl. 16(1996), 545-562.
6. A. K. Katsaras and A. Beloyiannis, On non-Archimedean weighted spaces of continuous functions. Proc. Fourth Inter. Conference on p-adic Analysis (Nijmegen, The Netherlands), 237-252, Marcel Dekker, 1997.
7. A. K. Katsaras, The Strict topology in non-Archimedean vector-valued function spaces. Proc. Konink. Nederl. Akad. Wetensch. A 87(2)(1984), 189-201.
8. W. H. Schikhoff, Locally convex spaces over non-spherically complete fields I,II. Bull. Soc. Math. Belg., Ser B 38(1986), 187-224.
9. J. B. Prolla, Approximation of vector-valued functions. North Holland Publ. Co., Amsterdam, New York, Oxford, 1977.
(Received 26.11.1996)
Authors' address:
Department of Mathematics
University of Ioannina
P.O. Box 1186, 45110 Ioannina

Greece

[^0]: 1991 Mathematics Subject Classification. 46S10.
 Key words and phrases. Nachbin families, weighted spaces, non-Archimedean seminorms, tensor product, strict topology.

