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A RADIAL DERIVATIVE WITH BOUNDARY VALUES OF
THE SPHERICAL POISSON INTEGRAL *

O. DZAGNIDZE

Abstract. A formula of a radial derivative ∂
∂r Uf (r, θ, φ) is obtained

with the aid of derivatives with respect to θ and to φ of the functions
closely connected with the spherical Poisson integral Uf (r, θ, φ) and
the boundary values are determined for ∂

∂r Uf (r, θ, φ). The bound-
ary values are also found for partial derivatives with respect to the
Cartesian coordinates ∂

∂x UF , ∂
∂y UF and ∂

∂z UF .

Introduction

0.1. Let the function F (X,Y, Z) be summable on the two-dimensional
unit sphere σ with center at the origin. The Poisson integral corresponding
to this function F will be denoted by UF (x, y, z), where (x, y, z) is a point
in the open unit ball B bounded by σ. This integral written in terms of
spherical ccordinates will be denoted by Uf (r, θ, φ).

We shall represent the spehrical kernel of the Poisson integral Pr by the
series (see, for instance, [2], pp. 335 and 143)

Pr(θ, φ; θ′, φ′) = 1 +
∞
∑

n=1

(2n + 1)rnPn(cos θ)Pn(cos θ′) +

+2
∞
∑

n=1

(2n + 1)rn
n

∑

m=1

(n−m)!
(n + m)!

Pnm(cos θ)Pnm(cos θ′) cos m(φ− φ′). (0.1)

0.2. In the case of the unit circle, the radial derivative of the Poisson
integral vλ(r, φ) for a function λ ∈ L(0, 2π) and the derivative with respect
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to φ of the conjugate Poisson integral ṽλ(r, φ) are connected through the
equality

∂
∂r

vλ(r, φ) =
1
r

∂
∂φ

ṽλ(r, φ).

As is well known, the above equality is based on the property of the func-
tion vλ(r, φ) + iṽr(r, φ) to be analytic with respect to the complex variable
reiφ, 0 ≤ r < 1, 0 ≤ φ ≤ 2π. The equality is immediately obtained from
the representations of vλ(r, φ) and ṽλ(r, φ) as the series

vλ(r, φ) =
a0

2
+

∞
∑

n=1

rn(an cos nφ + bn sinnφ),

ṽλ(r, φ) =
∞
∑

n=1

rn(an sin nφ− bn cos nφ)

since the exponent of r coincides with multiplicity of the polar angle φ.
Moreover, if the conjugate function ˜λ is summable on (0, 2π), then the
equality ṽλ(r, φ) = v

λ̃
(r, φ) holds by virtue of Smirnov’s theorem ([3], p.

263; [4], p. 583). Therefore by the well-known Fatou’s theorem ([3], p. 100)
the radial derivative ∂

∂r vr(r, φ) will have an angular limit at the point (1, φ0)
if the conjugate function ˜λ with ˜λ(φ) ∈ L(0, 2π) has the finite derivative
(˜λ)′(φ0) at the point φ0.

It should be noted in the first place that there exists no analogue of the
theory of analytic functions of a complex variable in a three-dimensional
real space. In the second place, the exponent of r in series (0.2) differs
from the multiplicity of the polar angle φ. Hence to obtain a formula for
∂
∂r Uf (r, θ, φ) we have to overcome some difficulties. That this is so is seen
from the fact that in the final result the products cos mφ · Pnm(cos θ) and
sinmφ · Pnm(cos θ) must remain unchanged after all transformations if we
want to remain in the class of harmonic functions; such an intention is
dictated by the problem itself. At the same time, the trigonometric sys-
tem (cos mφ, sin mφ) has some properties which the system (Pnm(cos(θ))
does not possess. For instance, a derivative of the trigonometric system is
the same system to within a constant multiplier with respect to φ. The
system (Pnm(cos(θ)) does not possess the latter property! Furthermore,
the trigonometric system is bounded, while the system (Pnm(cos(θ)) is un-
bounded! These and other differences (for instance, the 2π-periodicity with
respect to φ and the non-π-periodicity with respect to θ) between these two
systems make series (0.2) have different properties with respect to θ and to
φ (a similar observation is obviously true for series (0.3)). The same rea-
son accounts for different preconditions with respect to θ and to φ, which
are imposed on the boundary function f(θ, φ) from equalities (0.2) and
(0.3). Nevertheless the system of spherical functions (Pn(cos(θ), cos mφ ·
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Pnm(cos θ), sin mφ · Pnm(cos θ)) is successfully used to solve many impor-
tant spatial problems of theoretical and mathematical physics as well as of
mechanics. Theoretical geodesics which studies the external gravitational
field of the Earth and other planets makes active use of the method of
Laplace series.

0.3. In what follows we shall use the representation of the spherical Pois-
son integral as a series (see, e.g., [5], p. 444)

Uf (r, θ, φ) = a00 +
∞
∑

n=1

an0rnPn(cos θ) +

+
∞
∑

n=1

rn
n

∑

m=1

(

anm cosmφ + bnm sin mφ
)

Pnm(cos θ), (0.2)

coinciding with the Abel–Poisson mean values (A-mean values) of the fol-
lowing Fourier–Laplace series S[f ] for the function f(θ, φ) ∈ L(R) (see, e.g.,
[5], p. 444):

S[f ] = a00 +
∞
∑

n=1

an0Pn(cos θ) +

+
∞
∑

n=1

n
∑

m=1

(

anm cosmφ + bnm sin mφ
)

Pnm(cos θ). (0.3)

The Legendre polynomials Pn(x) and associated Legendre functions
Pnm(x) figuring in these equalities are defined on [−1, 1] by the following
equalities:

Pn(x) =
1

n!2n ·
dn

dxn (x2 − 1)n, n = 0, 1, 2, . . . , (0.4)

Pnm(x) = (1− x2)
1
2 m dm

dxm Pn(x) = (0.5)

=
(1− x2)

1
2 m

n!2n

dn+m

dxn+m (x2 − 1)n, (0.6)

1 ≤ m ≤ n, n = 1, 2, . . . ,

where (1 − x2)
1
2 is a non-negative value of the square root. Note that we

have P 0
n(x) = Pn(x) and Pnm(x) = 0 for m > n.

0.4. The formula for ∂
∂r Uf (r, θ, φ) will contain the functions U∗f and ˜U∗f

which are allied with Uf and defined as follows (see [6], §1). To the spherical
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Poisson integral Uf (r, θ, φ), f ∈ L(R), given in the form of series (0.2) there
correspond the following functions allied with respect to θ and to (θ, φ):

U∗f (r, θ, φ) =
∞
∑

n=1

an0λn0rnPn(cos θ) +

+
∞
∑

n=1

rn
n

∑

m=1

λnm
(

anm cosmφ + bnm sin mφ
)

Pnm(cos θ) (0.7)

and

˜U∗f (r, θ, φ) =
∞
∑

n=1

rn
n

∑

m=1

λnm
(

anm sin mφ− bnm cosmφ
)

Pnm(cos θ), (0.8)

where the numbers λnm are given by the equalities

λnm =
1

n + m
+

1
n−m + 1

for 0 ≤ m ≤ n, n = 1, 2, . . . . (0.9)

Analogously, to the spherical Poisson kernel Pr(θ, φ; θ′, φ′) there correspond
the following kernels allied with respect to θ and (θ, φ) (see [6], §2):

P ∗r (θ, φ; θ′, φ′) =
∞
∑

n=1

(2n + 1)λn0rnPn(cos θ)Pn(cos θ′) +

+2
∞
∑

n=1

(2n + 1)rn
n

∑

m=1

λnm
(n−m)!
(n + m)!

×

×Pnm(cos θ)Pnm(cos θ′) cos m(φ− φ′), (0.10)

˜P ∗r (θ, φ; θ′, φ′) =

+2
∞
∑

n=1

(2n + 1)rn
n

∑

m=1

λnm
(n−m)!
(n + m)!

×

×Pnm(cos θ)Pnm(cos θ′) sin m(φ− φ′). (0.11)

Finally, for each function f ∈ L2(R) there are functions f∗(θ, φ) ∈ L2(R)
and ˜f∗(θ, φ) ∈ L2(R) allied with respect to θ and to (θ, φ) respectively, such
that (see [6], §4)

U∗f (r, θ, φ) = Uf∗(r, θ, φ), ˜U∗f (r, θ, φ) = U
f̃∗

(r, θ, φ). (0.12)
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§ 1. A Radial Derivative of the Spherical Poisson Integral
and Kernel

Our aim now is to derive a formula for the radial derivative ∂
∂r Uf (r, θ, φ)

of the spherical Poisson integral Uf (r, θ, φ) for f ∈ L(R), and also a formula
for ∂

∂r Pr. At the end of the paper a formula for ∂2

∂r2 Uf (r, θ, φ) will be given
too.

1.1. For the derivative ∂
∂r Uf we have

Theorem 1.1. For every function f(θ, φ) ∈ L(R) the equality

2r
∂
∂r
Uf (r, θ, φ) + Uf (r, θ, φ)− a00 =

=
∂2

∂θ2 U
∗
f (r, θ, φ) + cot θ

∂
∂θ
U∗f (r, θ, φ) + cot2 θ

∂2

∂φ2 U
∗
f (r, θ, φ)−

− ∂
∂φ

˜U∗f (r, θ, φ) (1.1)

holds, where the allied harmonic functions U∗f and ˜U∗f in the ball B are
defined by equalities (0.7) and (0.8).

By introducing the operator

Tθ,φ =
1

sin θ
∂
∂θ

(

sin θ
∂
∂θ

)

+ cot2 θ
∂2

∂φ2 =

=
∂2

∂θ2 + cot θ
∂
∂θ

+ cot2 θ
∂2

∂φ2 , (1.2)

equality (1.1) can be rewritten as

2r
∂
∂r
Uf (r, θ, φ) + Uf (r, θ, φ)− a00 =

= Tθ,φU∗f (r, θ, φ)− ∂
∂φ

˜U∗f (r, θ, φ). (1.3)

Proof. From equality (0.2) we obtain

r
∂
∂r
Uf (r, θ, φ) =

∞
∑

n=1

nrnan0Pn(cos θ) +

+
∞
∑

n=1

nrn
n

∑

m=1

(

anm cos mφ + bnm sin mφ
)

Pnm(cos θ). (1.4)

Our next aim is to find convenient expressions for nPn(cos θ) and
nPnm(cos θ). If in equality (0.5) we replace Pn(x) by its value from the
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equality

(2n + 1)Pn(x) = P ′n+1(x)− P ′n−1(x), P−1(x) = 0

(see,for instance, [2], p. 33, equality (34), or [7], p. 228, equality (7.8.2)),
then we obtain the relations

(2n + 1)Pnm(x) = (1− x2)
m
2

dm

dxm

[

P ′n+1(x)− P ′n−1(x)
]

=

= (1− x2)−
1
2

[

(1− x2)
m+1

2
dm+1

dxm+1 Pn+1(x)−

− (1− x2)
m+1

2
dm+1

dxm+1 Pn−1(x)
]

=

= (1− x2)−
1
2
[

Pn+1,m+1(x)− Pn−1,m+1(x)
]

.

Hence

(2n + 1)Pnm(x) =

= (1− x2)−
1
2
[

Pn+1,m+1(x)− Pn−1,m+1(x)
]

, −1 < x < 1. (1.5)

Further, the differentiation of equality (0.5) gives

d
dx

Pnm(x) = − mx
1− x2 (1− x2)

m
2

dm

dxm Pn(x) +

+
(1− x2)

m+1
2

(1− x2)
1
2

· dm+1

dxm+1 Pn(x) =

= − mx
1− x2 Pnm(x) +

1

(1− x2)
1
2

Pn,m+1(x).

Thus

d
dx

Pnm(x) =
1

(1− x2)
1
2

Pn,m+1(x)− mx
1− x2 Pnm(x) (1.6)

from which we have

Pn,m+1(x) =
mx

(1− x2)
1
2

Pnm(x) + (1− x2)
1
2

d
dx

Pnm(x). (1.7)

Using the latter equality to define successively Pn+1,m+1(x), Pn−1,m+1 and
substituting them into (1.5), we obtain the equality

(2n + 1)Pnm(x) =
d
dx

[

Pn+1,m(x)− Pn−1,m(x)
]

+

+
mx

1− x2

[

Pn+1,m(x)− Pn−1,m(x)
]

(1.8)
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which for x = cos θ and 0 < θ < π can be rewritten as

(2n + 1)Pnm(cos θ) =
1

sin θ
d
dθ

[

Pn−1,m(cos θ)− Pn+1,m(cos θ)
]

+

+m
cos θ
sin2 θ

[

Pn+1,m(cos θ)− Pn−1,m(cos θ)
]

. (1.9)

Hence we find

nPnm(cos θ) =
1

2 sin θ
d
dθ

[

Pn−1,m(cos θ)− Pn+1,m(cos θ)
]

+

+ m
cos θ

2 sin2 θ

[

Pn+1,m(cos θ)− Pn−1,m(cos θ)
]

−

− 1
2

Pnm(cos θ). (1.10)

For m = 0 the latter equality implies the equality

nPn(cos θ) =
1

2 sin θ
d
dθ

[

Pn−1(cos θ)− Pn+1(cos θ)
]

− 1
2

Pn(cos θ). (1.11)

By the substitution of the expressions we have found for nPn(cos θ) and
nPnm(cos θ) into (1.4) we obtain the following equality, using in doing so
the right of termwise differentiation of the sries (see the arguments from
[6], §1):

2r
∂
∂r
Uf (r, θ, φ) =

=
1

sin θ
d
dθ

∞
∑

n=1

an0rn[

Pn−1(cos θ)− Pn+1(cos θ)
]

−
∞
∑

n=1

an0rnPn(cos θ) +

+
1

sin θ
∂
∂θ

∞
∑

n=1

rn
n

∑

m=1

(

anm cos mφ + bnm sin mφ
)

×

×
[

Pn−1,m(cos θ)− Pn+1,m(cos θ)
]

+

+
cos θ
sin2 θ

∞
∑

n=1

rn
n

∑

m=1

m
(

anm cos mφ + bnm sin mφ
)

×

×
[

Pn+1,m(cos θ)− Pn−1,m(cos θ)
]

−

−
∞
∑

n=1

rn
n

∑

m=1

(

anm cos mφ + bnm sin mφ
)

Pnm(cos θ).

Hence

2r
∂
∂r
Uf (r, θ, φ) + Uf (r, θ, φ)− a00 =
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=
1

sin θ
d
dθ

∞
∑

n=1

an0rn[

Pn−1(cos θ)− Pn+1(cos θ)
]

+

+
1

sin θ
∂
∂θ

∞
∑

n=1

rn
n

∑

m=1

(

anm cos mφ + bnm sin mφ
)

×

×
[

Pn−1,m(cos θ)− Pn+1,m(cos θ)
]

+

+
cos θ
sin2 θ

∂
∂φ

∞
∑

n=1

rn
n

∑

m=1

(

anm sin mφ− bnm cosmφ
)

×

×
[

Pn+1,m(cos θ)− Pn−1,m(cos θ)
]

≡

≡ 1
sin θ

A +
1

sin θ
B +

cos θ
sin2 θ

C. (1.12)

Now we are to find expressions for the differences contained within the
square brackets from equality (1.12).

The well-known equality ([2], p. 107, equality (41)1 with replaced cos θ =
x, cot θ = x(1− x2)−

1
2 ; [7], p. 241, equality (7.12.9), or [8], p. 99, equality

(46′) with the same replacement)

(−1)m+2Pn,m+2(x) + (−1)m+1 2(m + 1)x

(1− x2)
1
2

Pn,m+1(x) +

+(−1)m(n−m)(n + m + 1)Pnm(x) = 0 (1.13)

implies, after reducing by (−1)m and replacing m by (m− 1), the equality

Pn,m+1(x) =
2mx

(1− x2)
1
2

Pnm(x) + (n + m)(n−m + 1)Pn,m−1(x). (1.14)

By (1.7) and (1.14) we have the equality

(1− x2)
d
dx

Pnm(x) = mxPnm(x) +

+(n + m)(n−m + 1)(1− x2)
1
2 Pn,m−1(x), −1 < x < 1. (1.15)

Next, if in equality (1.5) m is replaced by (m − 1), then we obtain the
equality

Pn+1,m(x)− Pn−1,m(x) = (2n + 1)(1− x2)
1
2 Pn,m−1(x), (1.16)

1 ≤ m ≤ n, −1 < x < 1.

1Here the Legendre functions are defined together with multipliers (−1)k. This fact is
taken into account in equality (1.13), i.e., in (1.13) Pnk(x) are defined by equality (0.5).
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Now, by equalities (1.15) and (1.16) we find the product (1−x2)
1
2 Pn,m−1(x)

and equate them to each other. This results in the equality

Pn+1,m(x)− Pn−1,m(x) =
(2n + 1)(1− x2)

(n + m)(n−m + 1)
d
dx

Pnm(x)−

− m(2n + 1)x
(n + m)(n−m + 1)

Pnm(x), −1 < x < 1. (1.17)

Thus

Pn−1,m(cos θ)− Pn+1,m(cos θ) =
(2n + 1) sin θ

(n + m)(n−m + 1)
d
dθ

Pnm(cos θ) +

+
m(2n + 1) cos θ

(n + m)(n−m + 1)
Pnm(cos θ), 0 < θ < π. (1.18)

For m = 0 equality (1.18) gives rise to the equality

Pn−1(cos θ)− Pn+1(cos θ) =
(2n + 1) sin θ

n(n + 1)
d
dθ

Pn(cos θ), (1.19)

0 < θ < π.

Now, taking into account equalities (1.18) and (1.19) we define A, B and
C appearing in (1.12). In doing so, we make use of the numbers λnm from
equality (0.9).

A =
d
dθ

(

sin θ
d
dθ

∞
∑

n=1

λn0an0rnPn(cos θ)
)

=

= cos θ
d
dθ

∞
∑

n=1

λn0an0rnPn(cos θ) +

+ sin θ
d2

dθ2

∞
∑

n=1

λn0an0rnPn(cos θ). (1.20)

Further,

B =
∂
∂θ

[

sin θ
∂
∂θ

∞
∑

n=1

rn
n

∑

m=1

λnm
(

anm cos mφ + bnm sin mφ
)

Pnm(cos θ)
]

+

+
∂
∂θ

[

cos θ
∞
∑

n=1

rn
n

∑

m=1

λnmm
(

anm cos mφ + bnm sin mφ
)

Pnm(cos θ)
]

.

After performing the above-indicated differentiations and taking into ac-
count the equality

m
(

anm cos mφ + bnm sin mφ
)

=
∂
∂φ

(

anm sinmφ− bnm cos mφ
)

,
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we have

B =

= cos θ
∂
∂θ

∞
∑

n=1

rn
n

∑

m=1

λnm
(

anm cosmφ + bnm sin mφ
)

Pnm(cos θ) +

+ sin θ
∂2

∂θ2

∞
∑

n=1

rn
n

∑

m=1

λnm
(

anm cos mφ + bnm sinmφ
)

Pnm(cos θ)−

− sin θ
∂
∂φ

∞
∑

n=1

rn
n

∑

m=1

λnm
(

anm sin mφ− bnm cos mφ
)

Pnm(cos θ) +

+cos θ
∂2

∂θ∂φ

∞
∑

n=1

rn
n

∑

m=1

λnm
(

anm sin mφ− bnm cos mφ
)

Pnm(cos θ). (1.21)

In a similar manner we obtain

C = − sin θ
∂2

∂θ∂φ

∞
∑

n=1

rn
n

∑

m=1

λnm ×

×
(

anm sin mφ− bnm cos mφ
)

Pnm(cos θ) +

+cos θ
∂2

∂φ2

∞
∑

n=1

rn
n

∑

m=1

λnm
(

anm cos mφ + bnm sin mφ
)

Pnm(cos θ). (1.22)

The substitution of the found values of A, B and C into equality (1.12)
shows that the one-dimensional series with cot θ d

dθ and the double-series
with cot θ ∂

∂θ are summable. The situation for series with ∂2

∂θ2 is similar.
In the obtained series we have 0 ≤ m ≤ n. The sum of the series with
cot θ ∂2

∂θ∂φ and (− cot θ ∂2

∂θ∂φ ) is equal to zero. Further, in the series with

cot2 θ ∂2

∂φ2 , where 1 ≤ m ≤ n, we add λn0an0rnPn(cos θ) which does not
depend on φ. This will not affect the result, since the derivative has been
taken with respect to φ. Now m will vary from zero to n inclusive.

Summarizing the above arguments, we obtain equality (1.1) with the
functions U∗f (r, θ, φ) and ˜U∗f (r, θ, φ) from equalities (0.7) and (0.8). It should

be noted that formula (1.1) contains no mixed derivative ∂2

∂θ∂φ whose pres-
ence would make the situation much more difficult on the whole.

1.2. By the method of proving Theorem 1.1 we can obtain a formula for
the radial derivative ∂

∂r Pr of the Poisson kernel Pr.

Theorem 1.2. The equalities

2r
∂
∂r

Pr + Pr − 1 =
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∂2

∂θ2 P ∗r + cot θ
∂
∂θ

P ∗r + cot2 θ
∂2

∂φ2 P ∗r −
∂
∂φ

˜P ∗r , (1.23)

2r
∂
∂r

Pr + Pr − 1 = Tθ,φP ∗r −
∂
∂φ

˜P ∗r (1.24)

hold, where the allied harmonic kernels P ∗r and ˜P ∗r in the ball B are defined
by equalities (0.10) and (0.11), and the operator Tθ,φ by equality (1.2).

Proof. If we itroduce the values A00 = 1, An0 = (2n + 1)Pn(cos θ′), Anm =
2(2n+1)(n−m)!

(n+m)!Pnm(cos θ′) cos mφ′, Bnm =2(2n+1) (n−m)!
(n+m)!Pnm(cos θ′) sin mφ′,

and use the equality cos m(φ− φ′) = cos mφ cos mφ′ + sin mφ sin mφ′, then
series (0.1) will take the form of series (0.2) with the coefficients we have
just introduced. From the resulting series we can obtain equality (1.23).

§ 2. Boundary values of the radial derivative ∂
∂r Uf

The formula obtained in §1 for ∂
∂r Uf makes it possible to find the bound-

ary values of ∂
∂r Uf with the aid of the author’s previous results. By equality

(1.1) it is clear that the fact that ∂
∂r Uf has an angular limit (limit) imposes

restrictions of differential nature on the functions f∗ and ˜f∗.

2.1. The corresponding result for f ∈ L2(R) consists in the following
statement:

Theorem 2.1. Let the function f ∈ L2(R). If the function f is contin-
uous at the point (θ0, φ0) with 0 < θ0 < π, the function ˜f∗ has a continuous
partial derivative at (θ0, φ0), and the function f∗ is twice differentiable2

(twice continuously differentiable) at the point (θ0, φ0), then the radial deri-
vative ∂

∂r Uf (r, θ, φ) has an angular limit (has a limit) at the point (1, θ0, φ0)
which is equal to the value of

1
2

[

a00 − f(θ0, φ0) +
∂2f∗

∂θ2 (θ0, φ0) + cot θ0
∂f∗

∂θ
(θ0, φ0) +

cot2 θ0
∂2f∗

∂φ2 (θ0, φ0)−
∂ ˜f∗

∂φ
(θ0, φ0)

]

(2.1)

or, which is the same,

1
2

[

a00 − f(θ0, φ0) + Tθ,φf∗(θ0, φ0)−
∂ ˜f∗

∂φ
(θ0, φ0)

]

. (2.2)

2The function λ(x, y) is called twice differentiable at the point (x0, y0) if in a neighbor-
hood of (x0, y0) there exist partial derivatives λ′x(x, y), λ′y(x, y) and they are differentiable
at (x0, y0). Moreover, if λ′x(x, y) and λ′y(x, y) are continuously differentiable at the point
(x0, y0), then the function λ(x, y) is called twice continuously differentiable at (x0, y0).



30 O. DZAGNIDZE

Proof. The fact that the function f is continuous at the point (θ0, φ0) implies
that by the well known theorem (see, for instance, [9]. p. 209; [10], p. 243)
the Poisson integral Uf (r, θ, φ) has a limit at (θ0, φ0) (though instead of
the continuity it is sufficient that f have a finite limit at (θ0, φ0)). Since
f ∈ L2(R), the functions U∗f and ˜U∗f in equality (1.1) can be replaced by Uf∗

and U
f̃∗

, respectively, in accordance with equalities (0.12). The continuity

of the partial derivative ∂
∂φ

˜f∗ at the point (θ0, φ0) implies that ∂
∂φ Uf̃∗

(see
[11], Theorem 8.2) has a limit at the point (1, θ0, φ0) which is equal to the

value of ∂f̃∗

∂φ (θ0, φ0). Further, since the function f∗ is twice differentiable
(twice continuously differentiable) at the point (θ0, φ0), all second order
derivatives of Uf∗ have angular limits at the point (1, θ0, φ0) (limits) which
are equal to the values of the corresponding derivatives of f∗ at (θ0, φ0) (see
[12], Theorems 3.6 and 5.5).

§ 3. boundary values of derivatives with respect to cartesian
derivatives of the Poisson integral

Applying the well known rules, derivatives with respect to the Cartesian
coordinates of UF (x, , y, z) can be expressed by derivatives with respect to
spherical coordinates (for −1 < z < 1, 0 < θ < π, 0 < r < 1) as follows
(see, for instance, [13], p.107):

∂
∂x

UF = sin θ cosφ
∂
∂r
Uf +

1
r

cos θ cos φ
∂
∂θ
Uf −

− 1
r

sin φ
sin θ

∂
∂φ

Uf , (3.1)

∂
∂y

UF = sin θ sin φ
∂
∂r
Uf +

1
r

cos θ sin φ
∂
∂θ
Uf +

+
1
r

cos φ
sin θ

∂
∂φ

Uf , (3.2)

∂
∂z

UF = cos θ
∂
∂r
Uf −

1
r

sin θ
∂
∂θ
Uf . (3.3)

The derivatives figuring in the right-hand sides of equalities (3.1)–(3.3)
have angular limits (limits) at the point (1, θ0, φ0) with 0 < θ0 < π, if f(θ, φ)
is differentiable (continuously differentiable) at the point (θ0, φ0) (see [11],
Theorems 6.1 and 8.3). On the other hand, for ∂

∂r Uf to have an angular
limit (limit), we had to impose certain restrictions on f∗ and ˜f∗. Hence the
following statements are valid.
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Theorem 3.1. Let the function f ∈ L2(R) be differentiable (continu-
ously differentiable) at the point (θ0, φ0) with 0 < θ0 < π. If the func-
tion ˜f∗ has a partial derivative ∂

∂φ
˜f∗ continuous at (θ0, φ0) and the func-

tion f∗ is twice differentiable (twice continuously differentiable) at the point
(θ0, φ0), then the derivatives of (3.1)–(3.3) have angular limits (have limits)
at (1, θ0, φ0) which are calculated by equalities (3.1)–(3.3), in whose right-
hand sides (θ, φ) is replaced by (θ0, φ0), ∂

∂θ Uf and ∂
∂φ Uf by ∂f

∂θ (θ0, φ0) and
∂f
∂φ (θ0, φ0), respectively, and, finally ∂

∂r Uf is replaced by value (2.1) or (2.2).

Theorem 3.2. Let for the function f ∈ L(R) there exist summable allied
functions f∗ and ˜f∗ on R such that U∗f = Uf∗ and ˜U∗f = U

f̃∗
. If the

function f is differentiable (continuously differentiable) at the point (θ0, φ0)
with 0 < θ0 < π, the function ˜f∗ has a partial derivative ∂

∂φ
˜f∗ continuous

at (θ0, φ0) and the function f∗ is twice differentiable (twice continuously
differentiable) at the point (θ0, φ0), then the derivatives of (3.1)–(3.3) have
angular limits (have limits) at the point (1, θ0, φ0) which are calculated by
equalities (3.1)–(3.3) in whose right-hand sides (θ, φ) is replaced by (θ0, φ0),
∂
∂θ Uf and ∂

∂φ Uf by ∂f
∂θ (θ0, φ0) and ∂f

∂φ (θ0, φ0) respectively and, finally ∂
∂r Uf

is replaced by value (2.1) or (2.2).

Remark 3.1. Since the spherical Poisson integral is a harmonic function
in the open unit ball, it satisfies the Laplace equation

2r
∂Uf

∂r
+ r2 ∂2Uf

∂r2 +
∂2Uf

∂θ2 + cot θ
∂Uf

∂θ
+

1
sin2 θ

∂2Uf

∂φ2 = 0. (3.4)

If the first term here is replaced by its value from formula (1.3), then for
r2 ∂2Uf

∂r2 we shall have

r2 ∂2Uf

∂r2 = −a00 + Uf − Tθ,φU∗f +

+
∂
∂φ

˜U∗f −
∂2Uf

∂θ2 − cot θ
∂Uf

∂θ
− 1

sin2 θ
∂2Uf

∂φ2 . (3.5)

To find the boundary values for ∂2Uf

∂r2 it is sufficient to use in an appropriate
manner the same facts as we used in finding the boundary values for ∂Uf

∂r .
In a similar manner we obtain the formula

r2 ∂2Pr

∂r2 =− 1 + Pr − Tθ,φP ∗r +
∂ ˜P ∗r
∂φ

− ∂2Pr

∂θ2 −

− cot θ
∂Pr

∂θ
− 1

sin2 θ
∂2Pr

∂φ2 . (3.6)
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t. II. Gauthier–Villars, Paris, 1958.
9. V. I. Levin and Yu. I. Grosberg, Differential equations of mathematical

physics. (Russian) Gostekhizdat, Moscow–Leningrad, 1951.
10. R. Courant und D. Hilbert, Methoden der Mathematischen Physik,

Bd. II. Verlag von Julius Springer, Berlin, 1937.
11. O. P. Dzagnidze, Boundary values of derivatives of the Poisson inte-

gral for a ball and the representation of functions of two variables. (Russian)
Trudy Tbiliss. Mat. Inst. 98(1990), 52–98.

12. O. P. Dzagnidze, Boundary properties of second order derivatives of
the spherical Poisson integral. (Russian) Proc. A. Razmadze Math. Inst.
102(1993), 9–27.

13. D. Jackson, Fourier series and orthogonal polynomials. The Carus
Mathematical Monographs, No. 6, Published by the Mathematical Associa-
tion of America, Oberlin, Ohio, 1941.

(Received 18.12.1995)

Author’s address:
A. Razmadze Mathematical Institute
Georgian Academy of Sciences
1, M. Aleksidze St., Tbilisi 380093
Georgia


