SEVERAL COHOMOLOGY ALGEBRAS CONNECTED WITH THE POISSON STRUCTURE

Z. GIUNASHVILI

Abstract

The structure of a Lie superalgebra is defined on the space of multiderivations of a commutative algebra. This structure is used to define some cohomology algebra of Poisson structure. It is shown that when a commutative algebra is an algebra of C^{∞}-functions on the C^{∞}-manifold, the cohomology algebra of Poisson structure is isomorphic to an algebra of vertical cohomologies of the foliation corresponding to the Poisson structure.

§ 0. Introduction

0.1. Let M be a finite-dimensional C^{∞}-manifold. We use the following notation: $\Omega^{K}(M), k=1,2, \ldots$, is the $C^{\infty}(M)$-module of differential k form on $M ; V^{k}(M), k=1,2, \ldots$, is the $C^{\infty}(M)$-module of contravariant antisymmetric tensor fields of degree k on $M ; S$ is some foliation on the manifold $M ; V^{k}(M, S), k=1,2, \ldots$, is a submodule of $V^{k}(M)$ consisting of the fields tangent to the leaves of the foliation $S ; \Omega^{k}(M, S), k=1,2, \ldots$, is the $C^{\infty}(M)$-module of homomorphisms from the module $V^{k}(M, S)$ into $C^{\infty}(M) ; \Omega_{s}^{k}(M), k=1,2, \ldots$, is a submodule of $\Omega^{k}(M)$ consisting of k forms vanishing on $V^{k}(M, S)$. Also, we put
$\Omega^{0}(M)=V^{0}(M)=\Omega^{0}(M, S)=V^{0}(M, S)=C^{\infty}(M) ;$
$\Omega^{*}(M)=\underset{k=0}{\oplus} \Omega^{k}(M) ; \quad V^{*}(M)=\underset{k=0}{\oplus} V^{k}(M) ;$
$\Omega^{*}(M, S)=\underset{k=0}{\oplus} \Omega^{k}(M, S) ; \quad V^{*}(M, S)=\underset{k=0}{\oplus} V^{k}(M, S) ; \Omega_{s}^{*}(M)=\underset{k=0}{\oplus} \Omega_{s}^{*}(M)$,
where $\Omega_{s}^{0}(M)$ is a subalgebra of $C^{\infty}(M)$ consisting of functions constant along the leaves of the foliation S.

[^0]0.2. The exterior derivation $d: \Omega^{k}(M) \underset{\sim}{\rightarrow} \Omega^{k+1}(M)$ carries $\Omega_{s}^{k}(M)$ into $\Omega_{s}^{k+1}(M)$ and thus induces a differential $\tilde{d}: \Omega^{k}(M) / \Omega_{s}^{k}(M) \rightarrow \Omega^{k+1}(M) /$ $\Omega_{s}^{k+1}(M)$.

A cohomology of the complex $\left(\Omega^{*}(M) / \Omega_{s}^{*}(M), \widetilde{d}\right)$ is called a relative cohomology of the foliated manifold (M, S). It is a generalization of cohomology of the family of manifold defined in [1]. We denote the p th cohomology space by $H^{p}(M, S)$, and the cohomology algebra $\underset{k=0}{\infty} H^{p}(M, S)$ by $H^{*}(M, S)$.
0.3. Let $R: \Omega^{*}(M) \rightarrow \Omega^{*}(M, S)$ be a restriction map. It is clear that Kernel $(R)=\Omega_{s}^{*}(M)$. If we denote by d_{s} the operator of exterior derivation on $\Omega^{k}(M, S)$, then it can be said that the map R is a homomorphism of the complex $\left(\Omega^{*}(M), d\right)$ into the complex $\left(\Omega^{*}(M, S), d_{s}\right)$. In general, the homomorphism R is not an epimorphism, and therefore, in general, the induced homomorphism $\widetilde{R}:\left(\Omega^{*}(M) / \Omega_{s}^{*}(M), \widetilde{d}\right) \rightarrow\left(\Omega^{*}(M, S), d_{s}\right)$ is not an isomorphism.

If we denote the p th cohomology space of the complex $\left(\Omega^{*}(M, S), d_{s}\right)$ by $H_{s}^{p}(M)$ and the cohomology algebra $\underset{k=0}{\infty} H_{s}^{p}(M)$ by $H_{s}^{*}(M)$, we can say that, in general, the algebras $H^{*}(M, S)$ and $H_{s}^{*}(M)$ are not isomorphic though we have the natural homomorphism $[R]: H^{*}(M, S) \rightarrow H_{s}^{*}(M)$ induced by \widetilde{R}.
0.4. In the case where the manifold M is provided with a Riemannian metric, we have the map of orthogonal projection $\pi: V^{\prime}(M) \rightarrow V^{\prime}(M, S)$. The map π induces the endomorphism π^{*} of the algebra $\Omega^{*}(M)$ defined as $\left(\pi^{*} w\right)\left(v_{1}, \ldots, v_{k}\right)=w\left(\pi v_{1}, \ldots, \pi v_{k}\right)$. It is clear that π^{*} is the projection $\pi^{*} \circ \pi^{*}=\pi^{*}$. We denote the subalgebra $\operatorname{Image}\left(\pi^{*}\right)$ by $\Omega_{v}^{*}(M)$ and call its elements vertical differential forms on the foliated manifold (M, S) (see [2]).

It is easy to check that the operator $\pi^{*} \circ d \equiv d_{v}: \Omega_{v}^{*}(M) \rightarrow \Omega_{v}^{*}(M)$ is a coboundary operator, and we call the cohomology algebra of the complex $\left(\Omega_{v}^{*}(M), d_{v}\right)$ the algebra of vertical cohomologies of the foliation S_{i} and denote it by $H_{v}^{*}(M)$ (see [2]).
0.5. If M is a Riemannian manifold, we can define the reverse map of \widetilde{R} as follows: $\left(R^{-1} w\right)\left(v_{1}, \ldots, v_{k}\right)=w\left(\pi v_{1}, \ldots, \pi v_{k}\right)$, and $\widetilde{R}^{-1}(w)=\left[R^{-1} w\right]$. So, the complexes $\left(\Omega^{*}(M) / \Omega_{s}^{*}(M), \widetilde{d}\right),\left(\Omega^{*}(M, S), d_{s}\right)$, and $\left(\Omega_{v}^{*}(M), d_{s}\right)$ are isomorphic.

For the foliated Riemannian manifold (M, S), three cohomology algebras $H^{*}(M, S), H_{s}^{*}(M)$, and $H_{v}^{*}(M)$ are isomorphic.
0.6. The definition of the complexes $\left(\Omega^{*}(M) / \Omega_{s}^{*}(M), \widetilde{d}\right),\left(\Omega^{k}(M, S), d_{s}\right)$ and $\left(\Omega_{v}^{*}(M), d_{v}\right)$ can be generalized as follows: Let L be a $C^{\infty}(M)$-submodule of $V^{\prime}(M)$, and also be a Lie subalgebra of $V^{\prime}(M)$. Let us denote by $\Omega_{L}^{*}(M)$ a subalgebra of the exterior algebra $\Omega^{*}(M)$ consisting of the forms w such that $w\left(u_{1}, \ldots, u_{n}\right)=0$ for every system $\left\{u_{1}, \ldots, u_{n}\right\} \subset L$. Further,
we denote by $\Omega^{*}(M, L)$ the algebra of $C^{\infty}(M)$-multilinear antisymmetric maps from L^{k} into $C^{\infty}(M)$.

The definition of derivations $d_{L}: \Omega^{*}(M, L) \rightarrow \Omega^{*}(M, L)$ and $\widetilde{d}:$ $\Omega^{*}(M) / \Omega_{L}^{*}(M) \rightarrow \Omega^{*}(M) / \Omega_{L}^{*}(M)$ is clear.

Indeed, the cohomologies of the complex $\left(\Omega^{*}(M, L), d_{L}\right)$ are the cohomologies of the Lie algebra L, with coefficients in $C^{\infty}(M)$, denoted by $H^{*}\left(L, C^{\infty}(M)\right)$ (see [3]).

In the cases considered in $0.1-0.5$, the submodule L is $V^{\prime}(M, S)$.
If there is some projector $\pi: V^{\prime}(M) \rightarrow V^{\prime}(M)$ with Image $(\pi)=L$, then the algebra of vertical cohomologies can be defined as in 0.4. The proof of the fact that the cohomologies of the complexes

$$
\left(\Omega^{*}(M) / \Omega_{L}^{*}(M), \tilde{d}\right), \quad\left(\Omega^{*}(M, L), d_{L}\right), \quad \text { and } \quad\left(\Omega_{v}^{*}(M), d_{v}\right)
$$

are isomorphic is analogous to the proof of the thereom in 0.5 .
We use the above-described generalization in $\S 2$ in considering a cohomology of the Poisson structure.

In $\S 1$ we introduce the notion of Poisson algebra and define its cohomologies. We also describe here some algebraic constructions which help us to arrange a connection between the cohomologies defined in $\S 0$ and the cohomologies of the Poisson structure.

§ 1. Lie Superalgebra Structure on the Space of Multiderivations of a Commutative Algebra. The Poisson Algebra

1.1. Let F be a real or complex vector space. For each positive integer k we denote by $A^{k}(F)$ the space of multilinear antisymmetric maps from F^{k} into F. Also we put $A^{0}(F)=F$ and $A^{*}(F)=\underset{k=0}{\oplus} A^{k}(F)$.
1.2. There is a natural structure of the Lie subalgebra on $A^{\prime}(F)$ defined by the commutator. It might be defined as a structure of the Lie subalgebra on $A^{*}(F)$. The supercommutator $[\alpha, \beta] \in A^{m+n-1}(F)$ of two elements $\alpha \in A^{m}(F)$ and $\beta \in A^{n}(F)$ is defined as follows (see [4]):

$$
\begin{gathered}
{[\alpha, \beta]\left(v_{1}, \ldots, v_{m+n-1}\right)=} \\
=\frac{1}{m!n!} \sum_{s} \operatorname{sgn}(s)\left((- 1) ^ { m n + n } \alpha \left(\beta\left(v_{s(1)}, \ldots, v_{s(n)}\right), v_{s(n+1)}, \ldots\right.\right. \\
\left.\left.\ldots, v_{s(m+n-1)}\right)+(-1)^{m} \beta\left(\alpha\left(v_{s(1)}, \ldots, v_{s(n)}\right), v_{s(n+1)}, \ldots, v_{s(m+n-1)}\right)\right)
\end{gathered}
$$

also, for $v, w \in A^{0}(F)=F$ we put $[\alpha, v]\left(v_{1}, \ldots, v_{m-1}\right)=[v, \alpha]\left(v_{1}, \ldots, v_{m-1}\right)=$ $\alpha\left(v, v_{1}, \ldots, v_{m-1}\right)$ and $[v, w]=0$.
1.3. It is easy to check that the bracket as defined above satisfies the axioms of the Lie superalgebra: For $\alpha \in A^{m}(F), \beta \in A^{n}(F)$ and $\gamma \in A^{k}(F)$ we have (a) $[\alpha, \beta]=(-1)^{m n}[\beta, \alpha]$; (b) $(-1)^{m k}[[\alpha, \beta], \gamma]+(-1)^{m n}[[\beta, \gamma], \alpha]+$ $(-1)^{n k}[[\gamma, \alpha], \beta]=0$.
1.4. One classical notion that can be translated into the language of the bracket defined in $A^{*}(F)$ is the notion of "a Lie algebra structure on F ". A structure of the Lie algebra on F is an element $\mu \in A^{2}(F)$ satisfying the condition $[\mu, \mu]=0$. The latter is equivalent to the Jacobi identity

$$
\mu(\mu(a, b), c)+\mu(\mu(b, c), d)+\mu(\mu(c, a), b)
$$

We call such an element an involutive element.
1.5. An involutive element $\mu \in A^{2}(F)$ defines the linear operator $\widetilde{\mu}$: $A^{*}(F) \rightarrow A^{*}(F), \widetilde{\mu}(\alpha)=[\mu, \alpha]$. It is clear that if $\alpha \in A^{k}(F)$, then $\widetilde{\mu}(\alpha) \in$ $A^{k+1}(F)$. Moreover, the property (b) in 1.3 implies $\widetilde{\mu}^{2}=0$, i.e., $\widetilde{\mu}$ is a coboundary operator and therefore defines some space of cohomologies. As a matter of fact, it is the Chevalley-Eilenberg cohomology of the Lie algebra F with coefficients in F (see [4]).
1.6. Further we shall consider only the case with F as a commutative algebra over the field of real or complex numbers.

In that case, the space $A^{*}(F)$ has a structure of the anticommutative (exterior) algebra defined by the classical formula: For $\alpha \in A^{m}(F), \beta \in$ $A^{n}(F)$, and $a \in A^{0}(F)=F$ we have

$$
\begin{gathered}
(\alpha \beta)\left(v_{1}, \ldots, v_{m+n}\right)= \\
=\frac{1}{m!n!} \sum_{s} \operatorname{sgn}(s) \alpha\left(v_{s(1)}, \ldots, v_{s(m)}\right) \beta\left(v_{s(m+1)}, \ldots, v_{s(m+n)}\right)
\end{gathered}
$$

and $(a \alpha)\left(v_{1}, \ldots, v_{m}\right)=(\alpha a)\left(v_{1}, \ldots, v_{m}\right)=a \cdot \alpha\left(v_{1}, \ldots, v_{m}\right)$.
1.7. Definition. For every positive integer k we denote by $\operatorname{Der}^{k}(F)$ the subspace of such elements α in $A^{k}(F)$ that $\alpha\left(a, a_{1}, a_{2}, \ldots, a_{k}\right)=$ $a \alpha\left(a_{1}, \ldots, a_{k}\right)+a_{1} \alpha\left(a, a_{1}, a_{2}, \ldots, a_{k}\right)$ for every system $\left\{a, a_{1}, \ldots, a_{k}\right\} \subset F$.

Also, we put $\operatorname{Der}^{0}(F)=F$ and $\operatorname{Der}^{*}(F)=\underset{k=0}{\oplus} \operatorname{Der}^{k}(F)$.
We call elements of the space $\operatorname{Der}^{k}(F) k$-derivations of the algebra F, and elements of $\operatorname{Der}^{*}(F)$ multiderivations.
1.8. It is easy to check that the subspace $\operatorname{Der}^{*}(F)$ in $A^{*}(F)$ is closed under the operation of exterior multiplication defined in 1.6 as well as under the bracket defined in 1.2. In other words, $\operatorname{Der}^{*}(F)$ is an anticommutative algebra and a Lie superalgebra. Moreover, these two structures are connected by the following property: For $\alpha \in \operatorname{Der}^{m}(F), \beta \in \operatorname{Der}^{n}(F)$, and $\gamma \in \operatorname{Der}^{*}(F)$ we have (c) $[\alpha, \beta \gamma]=[\alpha, \beta] \cdot \gamma+(-1)^{m n+n} \beta \cdot[\alpha, \gamma]$.
1.9. For $k=0,1,2, \ldots$ let $\wedge^{k} \operatorname{Der}^{\prime}(F)$ be the subspace of $\operatorname{Der}^{k}(F)$ which consists of elements of the form $a v_{1}, \ldots, v_{k}$, where $a \in F$ and $\left\{v_{1}, \ldots, v_{k}\right\} \subset$ $\operatorname{Der}^{\prime}(F)$. The subalgebra $\wedge^{*} \operatorname{Der}^{\prime}(F)=\underset{k=0}{\oplus} \wedge^{k} \operatorname{Der}^{\prime}(F)$ in $\operatorname{Der}^{*}(F)$ is closed under the bracket [,] which has a more explicit form on the elements of the algebra

$$
\begin{gathered}
\wedge^{*} \operatorname{Der}^{\prime}(F):\left[\alpha_{1}, \alpha_{m}, \beta_{1}, \ldots, \beta_{n}\right]= \\
=\sum_{i, j}(-1)^{m+i+j-1}\left[\alpha_{i}, \beta_{j}\right] \alpha_{1} \cdots \widehat{\alpha}_{i} \cdots \alpha_{m} \beta_{1} \cdots \widehat{\beta}_{j} \cdots \beta_{n}
\end{gathered}
$$

where $\left\{\alpha_{1}, \ldots, \alpha_{m}, \beta_{1}, \ldots, \beta_{n}\right\} \subset \operatorname{Der}^{\prime}(F)$, and $\left[\alpha_{i}, \beta_{j}\right]$ is the commutator of α_{i} and β_{j}.
1.10. A Poisson structure on the commutative algebra F is an involutive element (see 1.4) $P \in \operatorname{Der}^{2}(F)$. The pair (F, P) is said to be a Poisson algebra.

As mentioned in 1.5, an involutive element $P \in \operatorname{Der}^{2}(F)$ defines the operator with a vanishing square $\widetilde{P}: \operatorname{Der}^{*}(F) \rightarrow \operatorname{Der}^{*}(F)$. By virtue of the property (c) of the bracket in $\operatorname{Der}^{*}(F)$ (see 1.8) it is easy to check that for $\alpha \in \operatorname{Der}^{m}(F)$ and $\beta \in \operatorname{Der}^{n}(F)$ we have $\widetilde{P}(\alpha \beta)=\widetilde{P}(\alpha) \beta+(-1)^{m} \alpha \widetilde{P}(\beta)$. Such an operator is said to be an antiderivation of degree +1 .

Therefore, on the space of cohomologies defined by \widetilde{P}, we can introduce a structure of anticommutative algebra. This cohomology algebra will be called the cohomology of Poisson structure (F, P). We denote by $H^{k}(F, P)$ the k th cohomology space, and by $H^{*}(F, P)$ the comology algebra $\underset{k=0}{\infty} H^{k}(F, P)$.

§ 2. Various Cohomology Algebras of a Manifold with Poisson Structure and Their Interconnections

2.1. As in Section $1, F$ is a commutative algebra over \mathbb{R} or \mathbb{C}.

The space of k-linear antisymmetric homomorphisms of F-modules from $\left.\left(\operatorname{Der}^{\prime}(F)\right)^{k}\right)$ into F is denoted by $A^{k}\left(\operatorname{Der}^{\prime}(F), F\right), k=1,2, \ldots$ It is assumed that $A^{0}\left(\operatorname{Der}^{\prime}(F), F\right)=F$.

There is a classical operator of derivation on the exterior algebra $A^{*}\left(\operatorname{Der}^{\prime}(F), F\right)=\underset{k=0}{\oplus} A^{k}\left(\operatorname{Der}^{\prime}(F), F\right)$.
2.2. Let P be a Poisson structure on the algebra F. For each $k \in \mathbb{N}, P$ defines the homomorphism $P^{k}: A^{k}\left(\operatorname{Der}^{\prime}(F), F\right) \rightarrow \operatorname{Der}^{k}(F)$ as follows:
for $a \in A^{0}\left(\operatorname{Der}^{\prime}(F), F\right)=F$ we put $P^{0}(a)=a$;
for elements of the form $d a \in A^{\prime}\left(\operatorname{Der}^{\prime}(F), F\right)$, where $a \in F$ and $(d a)(X)=$ $X(a)$, we put $p^{\prime}(d a)(b)=P(a, b), b \in F$;
next, for $w \in A^{k}\left(\operatorname{Der}^{\prime}(F), F\right), k=1,2, \ldots$, we put $\left(P^{k} w\right)\left(a_{1}, \ldots, a_{k}\right)=$ $(-1)^{k} w\left(P^{\prime}\left(d a_{1}\right), \ldots, P^{\prime}\left(d a_{k}\right)\right)$ with every system $\left\{a_{1}, \ldots, a_{k}\right\} \subset F$.
2.3. Let us note some interesting properties of $P^{k}, k=0,1, \ldots$: The map $P^{*}=\underset{k=0}{\oplus} P^{*}: A^{*}\left(\operatorname{Der}^{\prime}(F), F\right) \rightarrow \operatorname{Der}^{\prime}(F)$ is a homomorphism of exterior algebras;

Theorem. The composition map $P^{\prime} \circ d: F \rightarrow \operatorname{Der}^{\prime}(F)$ is a homomorphism of Lie algebras.

Proof. We must prove the identity $P^{\prime}(d P(a, b))=\left[P^{\prime}(d a), P^{\prime}(d b)\right]$ for each $a, b \in F$. By the definitions of P^{\prime} and [,] we have $P^{\prime}(d P(a, b))(c)=$ $\left.\left(P^{\prime}(d a)\right)\left(P^{\prime}(d b) c\right)-\left(P^{\prime}(d b)\right)\left(P^{\prime}(d a) c\right)=P(a, P(b, c))-P(b, P(a, c))\right)$. Now the identity we want to prove follows from the Jacobi identity for P.
2.4. Theorem. The map P^{*} is a homomorphism from the complex $\left(A^{*}\left(\operatorname{Der}^{\prime}(F), F\right), d\right)$ into the complex $\left(\operatorname{Der}^{*}(F), \widetilde{P}\right)$, where d is the classical derivation and \widetilde{P} is defined in 1.5 and 1.11 .

Proof. We must prove the identity $P^{*}(d w)=\left[P, P^{*}(w)\right]$ for every $w \in$ $A^{*}\left(\operatorname{Der}^{\prime}(F), F\right), n=0,1, \ldots$ By the definitions we have

$$
\begin{gathered}
P^{n+1}(d w)\left(a_{1}, \ldots, a_{n+1}\right)=(-1)^{n+1} d w\left(P^{\prime}\left(d a_{1}\right), \ldots, P^{\prime}\left(d a_{n+1}\right)\right)= \\
=(-1)^{n+1}\left(\sum _ { i } (- 1) ^ { i - 1 } (P ^ { \prime } (d a _ { i })) w \left(P^{\prime}\left(d a_{1}\right), \ldots, \widehat{\left.P^{\prime}\left(d a_{i}\right), \ldots, P^{\prime}\left(d a_{n+1}\right)\right)+}\right.\right. \\
\left.\left.+\sum_{i<j}(-1)^{i+j} w\left(\left[P^{\prime}\left(d a_{i}\right), P^{\prime}\left(d a_{j}\right)\right], \ldots, \widehat{P^{\prime}}\left(d a_{i}\right), \ldots, \widehat{P^{\prime}}\left(d a_{j}\right), \ldots\right)\right)\right)= \\
=(-1)^{n+1}\left(\sum_{i}(-1)^{i-1} P\left(a_{i} w\left(P^{\prime}\left(d a_{1}\right), \ldots, \widehat{P^{\prime}}\left(d a_{i}\right), \ldots, P^{\prime}\left(d a_{n+1}\right)\right)\right)+\right. \\
\left.\left.\quad+\sum_{i<j}(-1)^{i+j} w\left(\left[P^{\prime}\left(d a_{i}\right), P^{\prime}\left(d a_{j}\right)\right], \ldots, \widehat{P^{\prime}\left(d a_{i}\right)}, \ldots, \widehat{P^{\prime}\left(d a_{j}\right.}\right), \ldots\right)\right) .
\end{gathered}
$$

On the other hand,

$$
\begin{aligned}
& {\left[P, P^{n}(w)\right]\left(a_{1}, \ldots, a_{n+1}=\sum_{i}(-1)^{i-1} P\left(P^{n}(w)\left(a_{1}, \ldots, \widehat{a_{i}}, \ldots, a_{n+1}\right), a_{i}\right)+\right.} \\
& \quad+\sum_{i<j}(-1)^{i+j-3}\left(P^{n}(w)\right)\left(P\left(a_{i} a_{j}\right), \ldots, \widehat{a_{i}}, \ldots, \widehat{a_{j}}, \ldots\right)=
\end{aligned}
$$

$$
\begin{gathered}
=(-1)^{n+1}\left(\sum_{i}(-1)^{i-1} P\left(a_{i} w\left(P^{\prime}\left(d a_{1}\right), \ldots, \widehat{P^{\prime}\left(d a_{i}\right.}\right), \ldots, P^{\prime}\left(d a_{n+1}\right)\right)\right)+ \\
\left.\left.\left.=\sum_{i<j}(-1)^{i+j} w\left(P^{\prime}\left(d P\left(a_{i} a_{j}\right)\right), \ldots, \widehat{P^{\prime}\left(d a_{i}\right.}\right), \ldots, \widehat{P^{\prime}\left(d a_{j}\right.}\right), \ldots\right)\right)
\end{gathered}
$$

As in the proof of Theorem 2.3, we obtain $\left[P^{\prime}\left(d a_{i}\right), P^{\prime}\left(d a_{j}\right)\right]=P^{\prime}\left(d P\left(a_{i}, a_{j}\right)\right)$, which completes the proof of the theorem.

As a consequence, P^{*} defines a homomorphism from the cohomology of the Lie algebra $\operatorname{Der}^{\prime}(F)$ with coefficients in the algebra F into the cohomology of Poisson structure $H^{*}(F, P)$.
2.5. Further, we consider the case with $F=C^{\infty}(M)$, where M is a finitedimensional C^{∞}-manifold. Then $\operatorname{Der}^{k}(F)$ is the space of contravariant antisymmetric tensor fields of degree k on the manifold M and $A^{k}\left(\operatorname{Der}^{\prime}(F), F\right)$ is the space of differential k-forms on M. These spaces are denoted by $V^{k}(M)$ and $\Omega^{k}(M)$, respectively.

The Poisson structure P on M is a contravariant antisymmetric involutive tensor field of degree 2 .
P induces a homomorphism $\bar{P}: T^{*}(M) \rightarrow T(M)$ from the cotangent bundle of M into the tangent bundle of M. Let $\beta\left(P_{x}^{*}(\alpha)\right)=(\alpha \wedge \beta)\left(P_{x}\right)$ for $x \in M$ and $\alpha, \beta \in T_{x}^{*}(M)$.

The set of subspaces $\left\{\operatorname{Image}\left(\bar{P}_{x} \subset T_{x}(M): x \in M\right\}\right.$ is an integrable distribution (see [5]). Integral manifolds are called symplectic leaves of the Poisson structure P (see [5], [6]).

Thus we have a foliation \mathcal{F}_{p} with different-dimensional leaves induced by the Poisson structure P. Now we use the generalization of the cohomology from in 0.6 , associated with a submodule on the Lie subalgebra $L \subset V^{\prime}(M)$.

Let L be the set of vector fields on the manifold M, tangent to the leaves of the foliation \mathcal{F}_{p}.

Since L is a submodule of $V^{\prime}(M)$ generated by elements of the form $P^{\prime}(d \varphi)$, where $\varphi \in C^{\infty}(M)$, it is clear that w is an element of $\Omega_{L}^{k}(M)$ if and only if $w\left(P^{\prime}\left(d \varphi_{1}\right), \ldots, P^{\prime}\left(d \varphi_{k}\right)\right)=0$ for every system $\left\{\varphi_{1}, \ldots, \varphi_{k}\right\} \subset$ $C^{\infty}(M)$; this is the same as $P^{k}(w)=0$. So we have $\Omega_{L}^{*}(M)=\operatorname{Kernel}\left(P^{*}\right)$.

The consequence of the above result can be formulated as
Theorem. The cohomology algebra of the complex $\left(\Omega^{*}(M) / \Omega_{L}^{*}(M), \widetilde{d}\right)$ (relative cohomologies) is isomorphic to the cohomology algebra of the complex $\left(\operatorname{Im} P^{*}, \widetilde{P}\right)$.
2.6. The homomorphism of bundles $\bar{P}: T^{*}(M) \rightarrow T(M)$ induces homomorphisms of the associated bundles $\wedge^{k} \bar{P}: \wedge^{k} T^{*}(M) \rightarrow \wedge^{k} T(M), k=$ $1,2, \ldots$. We denote by $V^{k}(M, P)$ the subspace of $V^{k}(M)$ consisting of such elements v that $v_{x} \in \operatorname{Image}\left(\wedge^{k} \bar{P}_{x}^{*}\right)$ for every $x \in M$. The subalgebra
$V^{*}(M, P)=\underset{k=0}{\infty} V^{k}(M, P)$ is invariant under the action of th e operator \widetilde{P} (see [7]). Hence we have a complex $\left(V^{*}(M, P), \widetilde{P}\right)$ and the corresponding cohomology algebra denoted by $h^{*}(M, P)$ (see [7]).

Theorem. The cohomology of the Lie algebra L with coefficients in $C^{\infty}(M)$ (in other words, the cohomology of the complex $\left(\Omega^{*}(M, L), d_{L}\right)$ (see $0.6)$) is isomorphic to $h^{*}(M, P)$.

Proof. We construct a homomorphism $P_{L}^{k}: \Omega^{k}(M, L) \rightarrow V^{k}(M, P)$ for each $k=0,1, \ldots$, analogously to the homomorphisms $P^{k}: \Omega^{k}(M) \rightarrow V^{k}(M)$ defined in 2.2. To prove that it is an isomorphism, it is sufficient to show that it is a monomorphism: $P_{L}^{k}(w)=0 \Rightarrow\left(P_{L}^{k}(w)\right)\left(\varphi_{1}, \ldots, \varphi_{k}\right)=0$ for every $\left\{\varphi_{1}, \ldots, \varphi_{k}\right\} \subset C^{\infty}(M) \Rightarrow w\left(P_{L}^{\prime}\left(d \varphi_{1}\right), \ldots, P_{L}^{\prime}\left(d \varphi_{k}\right)\right)=0$. Since L is a module generated by elements of the form $P_{L}^{\prime}(d \varphi), \varphi \in C^{\infty}(M)$, the above identity is equivalent to the identity $w=0$.

References

1. M. A. Singer, A duality theorem for the De Rham theory of a family of manifolds. J. London Math. Soc. (2) 45(1992), 352-362.
2. Jose M. Figueroa-O'Farrill, A topological characterization of classical BRST cohomology. Comm. Math. Phys. 125(1990), No. 1, 181-186.
3. A. Guichardet, Cohomologie des groupes topologiques et des algébres de Lie. Cedic/Fernand Nathan, Paris, 1980.
4. A. Nijenhuis and R. W. Richardson. Cohomology and deformations in graded Lie algebras. Bull. Amer. Math. Soc. 72(1966), 1-29.
5. M. V. Karasev and V. P. Maslov, Nonlinear Poisson brackets. Geometry and quantization. (Russian) Nauka, Moscow, 1990.
6. V. Guillemin and S. Sternberg, Geometric asymptotics. Mathematical Surveys, No. 14, Amer. Math. Soc., Providence, R. I., 1977.
7. Z. Giunashvili, Geometry of Poisson structures. Georgian Math. J. 2 (1995), No. 4, 347-359.
(Received 01.08.1996)
Author's address:
A. Razmadze Mathematical Institute

Georgian Academy of Sciences
1, Aleksidze St., Tbilisi 390093
Georgia

[^0]: 1991 Mathematics Subject Classification. 53B50, 70 H 05.
 Key words and phrases. Lie superalgebra, Poisson structure, vertical cohomology, cohomology of Poisson structure.

