SEVERAL COHOMOLOGY ALGEBRAS CONNECTED WITH THE POISSON STRUCTURE

Z. GIUNASHVILI

ABSTRACT. The structure of a Lie superalgebra is defined on the space of multiderivations of a commutative algebra. This structure is used to define some cohomology algebra of Poisson structure. It is shown that when a commutative algebra is an algebra of C^{∞} -functions on the C^{∞} -manifold, the cohomology algebra of Poisson structure is isomorphic to an algebra of vertical cohomologies of the foliation corresponding to the Poisson structure.

§ 0. INTRODUCTION

0.1. Let M be a finite-dimensional C^{∞} -manifold. We use the following notation: $\Omega^{K}(M)$, k = 1, 2, ..., is the $C^{\infty}(M)$ -module of differential k-form on M; $V^{k}(M)$, k = 1, 2, ..., is the $C^{\infty}(M)$ -module of contravariant antisymmetric tensor fields of degree k on M; S is some foliation on the manifold M; $V^{k}(M, S)$, k = 1, 2, ..., is a submodule of $V^{k}(M)$ consisting of the fields tangent to the leaves of the foliation S; $\Omega^{k}(M, S)$, k = 1, 2, ..., is the $C^{\infty}(M)$ -module of homomorphisms from the module $V^{k}(M, S)$ into $C^{\infty}(M)$; $\Omega^{k}_{s}(M)$, k = 1, 2, ..., is a submodule of $\Omega^{k}(M)$ consisting of k-forms vanishing on $V^{k}(M, S)$. Also, we put

$$\begin{split} \Omega^0(M) &= V^0(M) = \Omega^0(M,S) = V^0(M,S) = C^\infty(M);\\ \Omega^*(M) &= \bigoplus_{k=0}^{\infty} \Omega^k(M); \quad V^*(M) = \bigoplus_{k=0}^{\infty} V^k(M);\\ \Omega^*(M,S) &= \bigoplus_{k=0}^{\infty} \Omega^k(M,S); \quad V^*(M,S) = \bigoplus_{k=0}^{\infty} V^k(M,S); \quad \Omega^*_s(M) = \bigoplus_{k=0}^{\infty} \Omega^*_s(M), \end{split}$$

where $\Omega_s^0(M)$ is a subalgebra of $C^{\infty}(M)$ consisting of functions constant along the leaves of the foliation S.

513

1072-947X/98/1100-0513\$15.00/0 © 1998 Plenum Publishing Corporation

¹⁹⁹¹ Mathematics Subject Classification. 53B50, 70H05.

Key words and phrases. Lie superalgebra, Poisson structure, vertical cohomology, cohomology of Poisson structure.

0.2. The exterior derivation $d : \Omega^k(M) \to \Omega^{k+1}(M)$ carries $\Omega^k_s(M)$ into $\Omega^{k+1}_s(M)$ and thus induces a differential $\tilde{d} : \Omega^k(M)/\Omega^k_s(M) \to \Omega^{k+1}(M)/\Omega^{k+1}_s(M)$.

A cohomology of the complex $(\Omega^*(M)/\Omega^*_s(M), \tilde{d})$ is called a relative cohomology of the foliated manifold (M, S). It is a generalization of cohomology of the family of manifold defined in [1]. We denote the *p*th cohomology space by $H^p(M, S)$, and the cohomology algebra $\bigoplus_{k=0}^{\infty} H^p(M, S)$ by $H^*(M, S)$.

0.3. Let $R : \Omega^*(M) \to \Omega^*(M, S)$ be a restriction map. It is clear that Kernel $(R) = \Omega^*_s(M)$. If we denote by d_s the operator of exterior derivation on $\Omega^k(M, S)$, then it can be said that the map R is a homomorphism of the complex $(\Omega^*(M), d)$ into the complex $(\Omega^*(M, S), d_s)$. In general, the homomorphism R is not an epimorphism, and therefore, in general, the induced homomorphism $\widetilde{R} : (\Omega^*(M)/\Omega^*_s(M), \widetilde{d}) \to (\Omega^*(M, S), d_s)$ is not an isomorphism.

If we denote the *p*th cohomology space of the complex $(\Omega^*(M, S), d_s)$ by $H^p_s(M)$ and the cohomology algebra $\bigoplus_{k=0}^{\infty} H^p_s(M)$ by $H^*_s(M)$, we can say that, in general, the algebras $H^*(M, S)$ and $H^*_s(M)$ are not isomorphic though we have the natural homomorphism $[R]: H^*(M, S) \to H^*_s(M)$ induced by \widetilde{R} .

0.4. In the case where the manifold M is provided with a Riemannian metric, we have the map of orthogonal projection $\pi : V'(M) \to V'(M, S)$. The map π induces the endomorphism π^* of the algebra $\Omega^*(M)$ defined as $(\pi^*w)(v_1, \ldots, v_k) = w(\pi v_1, \ldots, \pi v_k)$. It is clear that π^* is the projection $\pi^* \circ \pi^* = \pi^*$. We denote the subalgebra $\operatorname{Image}(\pi^*)$ by $\Omega_v^*(M)$ and call its elements vertical differential forms on the foliated manifold (M, S) (see [2]).

It is easy to check that the operator $\pi^* \circ d \equiv d_v : \Omega_v^*(M) \to \Omega_v^*(M)$ is a coboundary operator, and we call the cohomology algebra of the complex $(\Omega_v^*(M), d_v)$ the algebra of vertical cohomologies of the foliation S_i and denote it by $H_v^*(M)$ (see [2]).

0.5. If M is a Riemannian manifold, we can define the reverse map of \widetilde{R} as follows: $(R^{-1}w)(v_1,\ldots,v_k) = w(\pi v_1,\ldots,\pi v_k)$, and $\widetilde{R}^{-1}(w) = [R^{-1}w]$. So, the complexes $(\Omega^*(M)/\Omega^*_s(M),\widetilde{d})$, $(\Omega^*(M,S),d_s)$, and $(\Omega^*_v(M),d_s)$ are isomorphic.

For the foliated Riemannian manifold (M, S), three cohomology algebras $H^*(M, S)$, $H^*_s(M)$, and $H^*_v(M)$ are isomorphic.

0.6. The definition of the complexes $(\Omega^*(M)/\Omega^*_s(M), \tilde{d}), (\Omega^k(M, S), d_s)$ and $(\Omega^*_v(M), d_v)$ can be generalized as follows: Let L be a $C^{\infty}(M)$ -submodule of V'(M), and also be a Lie subalgebra of V'(M). Let us denote by $\Omega^*_L(M)$ a subalgebra of the exterior algebra $\Omega^*(M)$ consisting of the forms w such that $w(u_1, \ldots, u_n) = 0$ for every system $\{u_1, \ldots, u_n\} \subset L$. Further, we denote by $\Omega^*(M, L)$ the algebra of $C^{\infty}(M)$ -multilinear antisymmetric maps from L^k into $C^{\infty}(M)$.

The definition of derivations $d_L : \Omega^*(M, L) \to \Omega^*(M, L)$ and $\tilde{d} : \Omega^*(M)/\Omega^*_L(M) \to \Omega^*(M)/\Omega^*_L(M)$ is clear.

Indeed, the cohomologies of the complex $(\Omega^*(M, L), d_L)$ are the cohomologies of the Lie algebra L, with coefficients in $C^{\infty}(M)$, denoted by $H^*(L, C^{\infty}(M))$ (see [3]).

In the cases considered in 0.1 - 0.5, the submodule L is V'(M, S).

If there is some projector $\pi : V'(M) \to V'(M)$ with Image $(\pi) = L$, then the algebra of vertical cohomologies can be defined as in 0.4. The proof of the fact that the cohomologies of the complexes

 $(\Omega^*(M)/\Omega^*_L(M), \widetilde{d}), \quad (\Omega^*(M, L), d_L), \text{ and } (\Omega^*_v(M), d_v)$

are isomorphic is analogous to the proof of the thereom in 0.5.

We use the above-described generalization in $\S2$ in considering a cohomology of the Poisson structure.

In §1 we introduce the notion of Poisson algebra and define its cohomologies. We also describe here some algebraic constructions which help us to arrange a connection between the cohomologies defined in §0 and the cohomologies of the Poisson structure.

§ 1. LIE SUPERALGEBRA STRUCTURE ON THE SPACE OF MULTIDERIVATIONS OF A COMMUTATIVE ALGEBRA. THE POISSON ALGEBRA

1.1. Let F be a real or complex vector space. For each positive integer k we denote by $A^k(F)$ the space of multilinear antisymmetric maps from F^k into F. Also we put $A^0(F) = F$ and $A^*(F) = \bigoplus_{\substack{k=0\\k=0}}^{\infty} A^k(F)$.

1.2. There is a natural structure of the Lie subalgebra on A'(F) defined by the commutator. It might be defined as a structure of the Lie subalgebra on $A^*(F)$. The supercommutator $[\alpha, \beta] \in A^{m+n-1}(F)$ of two elements $\alpha \in A^m(F)$ and $\beta \in A^n(F)$ is defined as follows (see [4]):

$$[\alpha,\beta](v_1,\ldots,v_{m+n-1}) =$$

$$= \frac{1}{m! n!} \sum_s \operatorname{sgn}(s) \left((-1)^{mn+n} \alpha(\beta(v_{s(1)},\ldots,v_{s(n)}),v_{s(n+1)},\ldots,v_{s(m+n-1)}) + (-1)^m \beta(\alpha(v_{s(1)},\ldots,v_{s(n)}),v_{s(n+1)},\ldots,v_{s(m+n-1)})) \right);$$

also, for $v, w \in A^0(F) = F$ we put $[\alpha, v](v_1, \dots, v_{m-1}) = [v, \alpha](v_1, \dots, v_{m-1}) = \alpha(v, v_1, \dots, v_{m-1})$ and [v, w] = 0.

Z. GIUNASHVILI

1.3. It is easy to check that the bracket as defined above satisfies the axioms of the Lie superalgebra: For $\alpha \in A^m(F)$, $\beta \in A^n(F)$ and $\gamma \in A^k(F)$ we have (a) $[\alpha, \beta] = (-1)^{mn}[\beta, \alpha]$; (b) $(-1)^{mk}[[\alpha, \beta], \gamma] + (-1)^{mn}[[\beta, \gamma], \alpha] + (-1)^{nk}[[\gamma, \alpha], \beta] = 0$.

1.4. One classical notion that can be translated into the language of the bracket defined in $A^*(F)$ is the notion of "a Lie algebra structure on F". A structure of the Lie algebra on F is an element $\mu \in A^2(F)$ satisfying the condition $[\mu, \mu] = 0$. The latter is equivalent to the Jacobi identity

$$\mu(\mu(a,b),c) + \mu(\mu(b,c),d) + \mu(\mu(c,a),b).$$

We call such an element an involutive element.

1.5. An involutive element $\mu \in A^2(F)$ defines the linear operator $\tilde{\mu} : A^*(F) \to A^*(F), \, \tilde{\mu}(\alpha) = [\mu, \alpha]$. It is clear that if $\alpha \in A^k(F)$, then $\tilde{\mu}(\alpha) \in A^{k+1}(F)$. Moreover, the property (b) in 1.3 implies $\tilde{\mu}^2 = 0$, i.e., $\tilde{\mu}$ is a coboundary operator and therefore defines some space of cohomologies. As a matter of fact, it is the Chevalley–Eilenberg cohomology of the Lie algebra F with coefficients in F (see [4]).

1.6. Further we shall consider only the case with F as a commutative algebra over the field of real or complex numbers.

In that case, the space $A^*(F)$ has a structure of the anticommutative (exterior) algebra defined by the classical formula: For $\alpha \in A^m(F)$, $\beta \in A^n(F)$, and $a \in A^0(F) = F$ we have

$$(\alpha\beta)(v_1,\ldots,v_{m+n}) =$$

$$= \frac{1}{m! n!} \sum_s \operatorname{sgn}(s) \alpha(v_{s(1)},\ldots,v_{s(m)}) \beta(v_{s(m+1)},\ldots,v_{s(m+n)}),$$

and $(a\alpha)(v_1,\ldots,v_m) = (\alpha a)(v_1,\ldots,v_m) = a \cdot \alpha(v_1,\ldots,v_m).$

1.7. Definition. For every positive integer k we denote by $\text{Der}^k(F)$ the subspace of such elements α in $A^k(F)$ that $\alpha(a, a_1, a_2, \ldots, a_k) = a\alpha(a_1, \ldots, a_k) + a_1\alpha(a, a_1, a_2, \ldots, a_k)$ for every system $\{a, a_1, \ldots, a_k\} \subset F$.

Also, we put $\operatorname{Der}^{0}(F) = F$ and $\operatorname{Der}^{*}(F) = \bigoplus_{k=0}^{\infty} \operatorname{Der}^{k}(F)$.

We call elements of the space $\operatorname{Der}^{k}(F)$ k-derivations of the algebra F, and elements of $\operatorname{Der}^{*}(F)$ multiderivations.

516

1.8. It is easy to check that the subspace $\operatorname{Der}^*(F)$ in $A^*(F)$ is closed under the operation of exterior multiplication defined in 1.6 as well as under the bracket defined in 1.2. In other words, $\operatorname{Der}^*(F)$ is an anticommutative algebra and a Lie superalgebra. Moreover, these two structures are connected by the following property: For $\alpha \in \operatorname{Der}^m(F)$, $\beta \in \operatorname{Der}^n(F)$, and $\gamma \in \operatorname{Der}^*(F)$ we have (c) $[\alpha, \beta\gamma] = [\alpha, \beta] \cdot \gamma + (-1)^{mn+n}\beta \cdot [\alpha, \gamma]$.

1.9. For k = 0, 1, 2, ... let $\wedge^k \operatorname{Der}'(F)$ be the subspace of $\operatorname{Der}^k(F)$ which consists of elements of the form av_1, \ldots, v_k , where $a \in F$ and $\{v_1, \ldots, v_k\} \subset \operatorname{Der}'(F)$. The subalgebra $\wedge^* \operatorname{Der}'(F) = \bigoplus_{k=0}^{\oplus} \wedge^k \operatorname{Der}'(F)$ in $\operatorname{Der}^*(F)$ is closed under the bracket [,] which has a more explicit form on the elements of the algebra

$$\wedge^* \operatorname{Der}'(F) : [\alpha_1, \alpha_m, \beta_1, \dots, \beta_n] =$$
$$= \sum_{i,j} (-1)^{m+i+j-1} [\alpha_i, \beta_j] \alpha_1 \cdots \widehat{\alpha_i} \cdots \alpha_m \beta_1 \cdots \widehat{\beta_j} \cdots \beta_n,$$

where $\{\alpha_1, \ldots, \alpha_m, \beta_1, \ldots, \beta_n\} \subset \text{Der}'(F)$, and $[\alpha_i, \beta_j]$ is the commutator of α_i and β_j .

1.10. A Poisson structure on the commutative algebra F is an involutive element (see 1.4) $P \in \text{Der}^2(F)$. The pair (F, P) is said to be a Poisson algebra.

As mentioned in 1.5, an involutive element $P \in \text{Der}^2(F)$ defines the operator with a vanishing square $\tilde{P} : \text{Der}^*(F) \to \text{Der}^*(F)$. By virtue of the property (c) of the bracket in $\text{Der}^*(F)$ (see 1.8) it is easy to check that for $\alpha \in \text{Der}^m(F)$ and $\beta \in \text{Der}^n(F)$ we have $\tilde{P}(\alpha\beta) = \tilde{P}(\alpha)\beta + (-1)^m \alpha \tilde{P}(\beta)$. Such an operator is said to be an antiderivation of degree +1.

Therefore, on the space of cohomologies defined by P, we can introduce a structure of anticommutative algebra. This cohomology algebra will be called the cohomology of Poisson structure (F, P). We denote by $H^k(F, P)$ the kth cohomology space, and by $H^*(F, P)$ the comology algebra $\bigoplus_{k=0}^{\infty} H^k(F, P)$.

§ 2. VARIOUS COHOMOLOGY ALGEBRAS OF A MANIFOLD WITH POISSON STRUCTURE AND THEIR INTERCONNECTIONS

2.1. As in Section 1, F is a commutative algebra over \mathbb{R} or \mathbb{C} .

The space of k-linear antisymmetric homomorphisms of F-modules from $(\text{Der}'(F))^k$ into F is denoted by $A^k(\text{Der}'(F), F), k = 1, 2, ...$ It is assumed that $A^0(\text{Der}'(F), F) = F$.

There is a classical operator of derivation on the exterior algebra $A^*(\text{Der}'(F), F) = \bigoplus_{k=0}^{\infty} A^k(\text{Der}'(F), F).$

2.2. Let *P* be a Poisson structure on the algebra *F*. For each $k \in \mathbb{N}$, *P* defines the homomorphism $P^k : A^k(\text{Der}'(F), F) \to \text{Der}^k(F)$ as follows:

for $a \in A^0(\text{Der}'(F), F) = F$ we put $P^0(a) = a$;

for elements of the form $da \in A'(\text{Der}'(F), F)$, where $a \in F$ and (da)(X) = X(a), we put $p'(da)(b) = P(a, b), b \in F$;

next, for $w \in A^k(\text{Der}'(F), F)$, k = 1, 2, ..., we put $(P^k w)(a_1, ..., a_k) = (-1)^k w(P'(da_1), ..., P'(da_k))$ with every system $\{a_1, ..., a_k\} \subset F$.

2.3. Let us note some interesting properties of P^k , k = 0, 1, ...: The map $P^* = \bigoplus_{k=0}^{\infty} P^* : A^*(\text{Der}'(F), F) \to \text{Der}'(F)$ is a homomorphism of exterior algebras;

Theorem. The composition map $P' \circ d : F \to Der'(F)$ is a homomorphism of Lie algebras.

Proof. We must prove the identity P'(dP(a, b)) = [P'(da), P'(db)] for each $a, b \in F$. By the definitions of P' and [,] we have P'(dP(a, b))(c) = (P'(da))(P'(db)c) - (P'(db))(P'(da)c) = P(a, P(b, c)) - P(b, P(a, c))). Now the identity we want to prove follows from the Jacobi identity for P. \Box

2.4. Theorem. The map P^* is a homomorphism from the complex $(A^*(\text{Der}'(F), F), d)$ into the complex $(\text{Der}^*(F), \tilde{P})$, where d is the classical derivation and \tilde{P} is defined in 1.5 and 1.11.

Proof. We must prove the identity $P^*(dw) = [P, P^*(w)]$ for every $w \in A^*(\text{Der}'(F), F)$, $n = 0, 1, \dots$ By the definitions we have

$$P^{n+1}(dw)(a_1, \dots, a_{n+1}) = (-1)^{n+1}dw(P'(da_1), \dots, P'(da_{n+1})) =$$

$$= (-1)^{n+1} \Big(\sum_i (-1)^{i-1} (P'(da_i))w(P'(da_1), \dots, \widehat{P'(da_i)}, \dots, P'(da_{n+1})) +$$

$$+ \sum_{i < j} (-1)^{i+j}w([P'(da_i), P'(da_j)], \dots, \widehat{P'(da_i)}, \dots, \widehat{P'(da_j)}, \dots)) \Big) =$$

$$= (-1)^{n+1} \Big(\sum_i (-1)^{i-1} P(a_i w(P'(da_1), \dots, \widehat{P'(da_i)}, \dots, P'(da_{n+1}))) +$$

$$+ \sum_{i < j} (-1)^{i+j}w([P'(da_i), P'(da_j)], \dots, \widehat{P'(da_i)}, \dots, \widehat{P'(da_j)}, \dots) \Big).$$

On the other hand,

$$[P, P^{n}(w)](a_{1}, \dots, a_{n+1}) = \sum_{i} (-1)^{i-1} P(P^{n}(w)(a_{1}, \dots, \widehat{a_{i}}, \dots, a_{n+1}), a_{i}) + \sum_{i < j} (-1)^{i+j-3} (P^{n}(w))(P(a_{i}a_{j}), \dots, \widehat{a_{i}}, \dots, \widehat{a_{j}}, \dots) =$$

$$= (-1)^{n+1} \Big(\sum_{i} (-1)^{i-1} P \big(a_i w \big(P'(da_1), \dots, \widehat{P'(da_i)}, \dots, P'(da_{n+1}) \big) \big) + \\ = \sum_{i < j} (-1)^{i+j} w \big(P'(dP(a_i a_j)), \dots, \widehat{P'(da_i)}, \dots, \widehat{P'(da_j)}, \dots) \big).$$

As in the proof of Theorem 2.3, we obtain $[P'(da_i), P'(da_j)] = P'(dP(a_i, a_j))$, which completes the proof of the theorem. \Box

As a consequence, P^* defines a homomorphism from the cohomology of the Lie algebra Der'(F) with coefficients in the algebra F into the cohomology of Poisson structure $H^*(F, P)$.

2.5. Further, we consider the case with $F = C^{\infty}(M)$, where M is a finitedimensional C^{∞} -manifold. Then $\operatorname{Der}^{k}(F)$ is the space of contravariant antisymmetric tensor fields of degree k on the manifold M and $A^{k}(\operatorname{Der}'(F), F)$ is the space of differential k-forms on M. These spaces are denoted by $V^{k}(M)$ and $\Omega^{k}(M)$, respectively.

The Poisson structure P on M is a contravariant antisymmetric involutive tensor field of degree 2.

P induces a homomorphism $\overline{P} : T^*(M) \to T(M)$ from the cotangent bundle of M into the tangent bundle of M. Let $\beta(P_x^*(\alpha)) = (\alpha \land \beta)(P_x)$ for $x \in M$ and $\alpha, \beta \in T_x^*(M)$.

The set of subspaces {Image($\overline{P}_x \subset T_x(M) : x \in M$ } is an integrable distribution (see [5]). Integral manifolds are called symplectic leaves of the Poisson structure P (see [5], [6]).

Thus we have a foliation \mathcal{F}_p with different-dimensional leaves induced by the Poisson structure P. Now we use the generalization of the cohomology from in 0.6, associated with a submodule on the Lie subalgebra $L \subset V'(M)$.

Let L be the set of vector fields on the manifold M, tangent to the leaves of the foliation \mathcal{F}_{p} .

Since L is a submodule of V'(M) generated by elements of the form $P'(d\varphi)$, where $\varphi \in C^{\infty}(M)$, it is clear that w is an element of $\Omega_L^k(M)$ if and only if $w(P'(d\varphi_1), \ldots, P'(d\varphi_k)) = 0$ for every system $\{\varphi_1, \ldots, \varphi_k\} \subset C^{\infty}(M)$; this is the same as $P^k(w) = 0$. So we have $\Omega_L^*(M) = \text{Kernel}(P^*)$.

The consequence of the above result can be formulated as

Theorem. The cohomology algebra of the complex $(\Omega^*(M)/\Omega^*_L(M), \tilde{d})$ (relative cohomologies) is isomorphic to the cohomology algebra of the complex (Im P^*, \tilde{P}).

2.6. The homomorphism of bundles $\overline{P}: T^*(M) \to T(M)$ induces homomorphisms of the associated bundles $\wedge^k \overline{P}: \wedge^k T^*(M) \to \wedge^k T(M), k = 1, 2, \ldots$ We denote by $V^k(M, P)$ the subspace of $V^k(M)$ consisting of such elements v that $v_x \in \text{Image}(\wedge^k \overline{P}_x^*)$ for every $x \in M$. The subalgebra

 $V^*(M, P) = \bigoplus_{k=0}^{\infty} V^k(M, P)$ is invariant under the action of the operator \widetilde{P} (see [7]). Hence we have a complex $(V^*(M, P), \widetilde{P})$ and the corresponding cohomology algebra denoted by $h^*(M, P)$ (see [7]).

Theorem. The cohomology of the Lie algebra L with coefficients in $C^{\infty}(M)$ (in other words, the cohomology of the complex $(\Omega^*(M, L), d_L)$ (see 0.6)) is isomorphic to $h^*(M, P)$.

Proof. We construct a homomorphism $P_L^k : \Omega^k(M, L) \to V^k(M, P)$ for each $k = 0, 1, \ldots$, analogously to the homomorphisms $P^k : \Omega^k(M) \to V^k(M)$ defined in 2.2. To prove that it is an isomorphism, it is sufficient to show that it is a monomorphism: $P_L^k(w) = 0 \Rightarrow (P_L^k(w))(\varphi_1, \ldots, \varphi_k) = 0$ for every $\{\varphi_1, \ldots, \varphi_k\} \subset C^\infty(M) \Rightarrow w(P_L'(d\varphi_1), \ldots, P_L'(d\varphi_k)) = 0$. Since L is a module generated by elements of the form $P_L'(d\varphi), \varphi \in C^\infty(M)$, the above identity is equivalent to the identity w = 0. \Box

References

1. M. A. Singer, A duality theorem for the De Rham theory of a family of manifolds. J. London Math. Soc. (2) 45(1992), 352–362.

2. Jose M. Figueroa–O'Farrill, A topological characterization of classical BRST cohomology. *Comm. Math. Phys.* **125**(1990), No. 1, 181–186.

3. A. Guichardet, Cohomologie des groupes topologiques et des algébres de Lie. *Cedic/Fernand Nathan, Paris*, 1980.

4. A. Nijenhuis and R. W. Richardson. Cohomology and deformations in graded Lie algebras. *Bull. Amer. Math. Soc.* **72**(1966), 1–29.

5. M. V. Karasev and V. P. Maslov, Nonlinear Poisson brackets. Geometry and quantization. (Russian) *Nauka, Moscow*, 1990.

6. V. Guillemin and S. Sternberg, Geometric asymptotics. *Mathematical Surveys*, No. 14, *Amer. Math. Soc.*, *Providence*, R. I., 1977.

7. Z. Giunashvili, Geometry of Poisson structures. *Georgian Math. J.* **2**(1995), No. 4, 347–359.

(Received 01.08.1996)

Author's address:

A. Razmadze Mathematical Institute Georgian Academy of Sciences1, Aleksidze St., Tbilisi 390093Georgia