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ON THE UNIVERSAL C∗-ALGEBRA GENERATED BY
PARTIAL ISOMETRY

T. KANDELAKI

Abstract. A universal C∗-algebra is constructed which is generated
by a partial isometry. Using grading on this algebra we construct an
analog of Cuntz algebras which gives a homotopical interpretation of
KK-groups. It is proved that this algebra is homotopy equivalent up
to stabilization by 2×2 matrices to M2(C). Therefore those algebras
are KK-isomorphic.

We recall the definition of partial isometry.

Definition 1. Let H1 and H2 be Hilbert spaces and v : H1 −→ H2 be a
bounded linear map. v is called a partial isometry if v∗v is a projection.

We only want to emphasize the following important facts. The projection
p = v∗v is called the support projection for v. Standard equations involving
partial isometries are the following:

v = vv∗v = vp = qv, v∗ = v∗vv∗ = pv∗ = v∗q.

It is known that the above equations can be taken to define a partial isom-
etry.

First of all, our aim is to construct an involutive algebra generated by
one symbol together with the above relations and prove the existence of a
maximal C∗-norm on it. For the general construction and examples see [1].

Let U(v) be the universal involutive complex algebra generated by the
symbols v, v∗. Let J(v) be the two-sided ∗-ideal generated by elements of
the following form:

(a) {v∗} − {v}∗, (b) {v} − {vv∗v},
where {v} and {v∗} denote the elements of U(v) which correspond to v
and v∗ respectively. Then U(v) will denote the factor algebra U(v)/J(v),
which is a complex ∗-algebra and has the universal property that if B is a
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∗-algebra generated by a partial isometry ν, then there exists a canonical
∗-homomorphism κ : U(v) → B such that κ(v) = ν.

We say that an algebra seminorm p on a complex involutive algebra
A is a C∗-seminorm if p(xx∗) = p(x)2. If ‖x‖ = sup{p(x) | p is a C∗-
seminorm on A} is finite for every x ∈ A, then ‖·‖ defines the largest possible
C∗-seminorm on A, and we can form the completion C∗(A) = A/N‖·‖,
N = {x ∈ A | ‖x‖ = 0}. C∗(A) has the universal property that any ∗-
homomorphism from A into a C∗-algebra factors uniquely through the map
A → C∗(A) (which is not necessarily injective) [1].

Proposition 2. There exists a C∗-seminorm ‖ · ‖ on U(v) (which is
the supremum of all C∗-seminorms on the same algebra). Let C∗(v) =
C∗(U(v)) and κ : U(v) → C∗(v) be the canonical ∗-homomorphism; then
C∗(v) has the following universal property: if ϕ : U(v)→ B is a ∗-homo-
morphism into a C∗-algebra B, then there exists a unique ∗-homomorphism
ψ : C∗(v) → B such that the diagram

U(v) κ→ C∗(v)
ϕ
↘ ↓ψ

B

is commutative.

Proof. Let θ be any C∗-seminorm on U(v); then θ(v)2 = θ(v∗v) ≤ 1 be-
cause v∗v is a projection. If e ∈ U(v), then e =

∑

i
λifi1 · · · fini

, where fik

is v or v∗. Thus θ(e) ≤
∑

i
|λi|θ(fi1) · · · θ(fin1

) ≤
∑

i
|λi|. So there exists

π(e) = supθ ‖θ(e)‖, where θ runs over all C∗-seminorms on U(v). It is easy
to check that π is a C∗-seminorm and C∗(v) = C∗(U(v)) has the above
universal property.

The algebra C∗(v) has a Z2-grading which is induced by the automor-
phism defined by v → −v; this graded algebra will be denoted by G∗(v). It
follows from the definition that deg v = 1. If B is a Z2-graded C∗-algebra
and υ is a partial isometry with deg υ = 1, then there exists a unique graded
∗-homomorphism ψ : G∗(v) → B such that ψ(v) = υ.

Now we need a definition of KK-groups in the style given in [2].

Definition 3. A superquasimorphism (sqm) from A to B is a triple Φ =
(φ,G, µ), where φ is a graded homomorphism from A to a Z2-graded algebra
D with a graded (invariant) ideal J C D and G ∈ D is an element of degree
1, such that

(G−G∗)φ(x) ∈ J, (1−G2)φ(x) ∈ J, [φ(x), G] ∈ J
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for x ∈ A, µ : A → B is a homomorphism. This will be writtten as

A
φ→ D

G
B J

µ→ B or shortly Φ : A−− B B.

A mapping between two sqm’s Φ1, Φ2 is a commutative diagram

A
φ1→ D1

G1
B J1

µ1→ B
|| ↓ ↓ ||
A

φ2→ D2
G2
B J2

µ2→ B

;

D1 → D2 maps G1 to G2. We will say that Φ1 is contained in Φ2 if the
vertical homomorphisms are injective and that Φ2 is a quotient of Φ1 if they
are surjective.

If f : A′ → A, g : B → B′ are homomorphisms and Φ : A − − B B is a
sqm then the composition g ◦ Φ ◦ f gives a sqm from A′ to B′.

Let qt : B[0; 1] → B be the evolution at time t. A sqm Π from A to B[0; 1]
will be called a homotopy from Φ to Ψ, if Φ = q0 ◦ Π, Ψ = q1 ◦ Π. Φ and
Ψ will be called equivalent if there is a chain {Φi,i = 0, . . . , n} consisting
of finitely many sqm Φi, such that Φ0 = Φ,Φn = Ψ and, for each i, Φi and
Φi+1 are connected either by a mapping or by a homotopy [2].

Following [2], let us denote by KK(A,B) the set of equivalence classes of

sqm’s from A to
∧
K ⊗B, where

∧
K=

∧
M2 (K) with the standard even grading

on
∧
M2, and K is the algebra of compact operators on a separable Hilbert

space. Choose a fixed (standard) isomorphism
∧
K ⊗

∧
K=

∧
K such that the

identity id∧
K

is homotopic to the embedding j0 mapping x ∈
∧
K to e⊗x with

e a minimal projection of degree 0 in the left upper corner.
On this set there is a (commutative) addition defined by

[Φ1]⊕ [Φ2] = [Φ1 ⊕ Φ2], Φ1 ⊕ Φ2 : A−− . M2(
∧
K ⊗B) '

∧
K ⊗B.

The result will not depend up to an equivalence on the chosen isomorphism

M2(
∧
K ⊗B) '

∧
K ⊗B.

It follows from the definition that every sqm is contained in a sqm with

unital D. Let Φ =A
φ→ D

G
B J

µ→ B be a sqm, where A and D are separable
and D is unital. Let

D′ = {d ∈ D | [φ(x), d] ∈ J,for all x ∈ A} and
J ′ = {d ∈ D | d · φ(x) ∈ J, φ(x) · d ∈ J , for all x ∈ A}.

It is easy to check that D′ is a unital C∗-algebra and J ′ is a closed two-sided
ideal in D′. Note that G ∈ D′, G−G∗ ∈ J ′, and 1−G2 ∈ J ′. Thus G gives
G′, the unitary element in the factor algebra D′/J ′. It is known that every
element of a factor C∗-algebra can be lifted to the C∗-algebra preserving
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the norm [3], [4]. Thus G′ can be lifted to D′ preserving the norm, i.e.,
there exists an element F such that F −G ∈ J ′ and ||F || = 1. The matrix

UF =
(

F −(1− FF ∗)1/2

(1− F ∗F )1/2 F ∗

)

is a unitary element in the M2(D′) and M2(D). Thus we have the following
sqm’s

Φk = A
i0φ→ M2(D)

Uk
B M2(J)

µ→ M2(B), k = 0, 1,

where U0 =
(

F 0
0 0

)

, U1 = UF , i0 is an inclusion in the upper left corner.

It is easy to see that Φ0 ∼ Φ1 because
(a) (1− F ∗F )1/2φ(x) and (1− FF ∗)1/2φ(x) are in J , for all x ∈ A;

(b) UF is homotopic to Ud =
(

F 0
0 F ∗

)

.

Therefore we have

Lemma 4. Every sqm A
φ→ D

G
B J

µ→ B, with unital D, is equivalent

up to 2× 2 matrices to sqm A
i0φ→ M2(D)

U
B M2(J)

µ→ M2(B), where U is a
unitary element in M2(D).

Corollary 5. Every sqm is equivalent up to 2×2 matrices to a sqm with
G a partial isometry.

This corollary can be made more precise if A and D are separable. It
is known that if A → B is an epimorphism of separable C∗-algebras then
any unitary element of B can be lifted to a partial isometry of A [4]. Thus
G′ can be lifted to a parial isometry Υ ∈ D′ because D′ is separable. Note
that (G − Υ)φ(x) ∈ J, [φ(x), Υ] ∈ J. Elementary calculation shows that

Φ′ = A
φ→ D

Υ
B J

µ→ B is a superquasimorphism, which is equivalent to Φ

by the homotopy Π = A
φc→ D[0; 1]

H
B J [0; 1]

ρ→ B[0; 1], where φc(x)(t) =
φ(x),H(t) = G− t(G−Υ) and ρ(f)(t) = µ(f(t)). Thus we get

Lemma 6. Every sqm A
φ→ D

G
B J

µ→ B with separable A is equivalent

to the sqm A → D1
Υ
B J1 → B, where Υ is a partial isometry.

Therefore we have two variants of the definition of KK-groups:
(1) Consider the definition of sqm’s with partial isometry as G. Then we

get the same KK-groups. In this case we have the following universal sqm:
Let A ∗ C∗(v) be the sum of C∗-algebras in the category of C∗-algebras

and ∗-homomorphisms (it is exactly the free product of C∗-algebras). Let
v(A) be the closed two-sided ideal in A ∗ C∗(v) generated by the elements

(v− v∗) · a, (1− v2) · a, [a, v]. Then we have the sqm A i0→ A ∗C∗(v)
v
B v(A)
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which is universal in the following sense: if A
φ→ D

G
B J

µ
→ B is a given sqm,

where G is a partial isometry, then there exist a unique ∗-homomorphism

v(A)
v(µ)→ B and a mapping

A i0→ A ∗ C∗(v)
v
B v(A)

v(µ)→ B
|| ↓ φg ↓ φg ||
A

φ→ D
G
B J

µ→ B

where φg | A = φ and φg | C∗(A)(v) = G. Therefore we have

Theorem 7. KK(A,B) = [v(A),
∧
K ⊗B], where [v(A),

∧
K ⊗B] denotes

the set of homotopy classes of (graded) homomorphisms.

Theorems of such a type come from [5]; see also [2].
(2) Consider a sqm with unital algebras D and unitary element G ∈ D.

In this case we have the following universal sqm:

Let
∧
C (S1) be the standard C∗-algebra of the circle with grading induced

by the automorphism z → −z and let A+ be obtained from A by adjoining

the unit. Let A+•
∧
C (S1) be the sum in the category of unital C∗-algebras

and unital homomorphisms (this is the factor algebra of the free product by
the ideal generated by the element 1A − 1S1) and define z(A) as the closed
ideal generated by the elements [a, z], (z − z∗)a, a ∈ A; then we have

the universal sqm A iA→ A+•
∧
C (S1)

z
B z(A) with the following property: if

Φ is a sqm with unital D and unitary element G, then there exists a unique
homomorphism z(µ) : z(A) → B such that the diagram

A iA→ A+•
∧

C∗ (S1)
z
B z(A)

z(µ)→ B
|| ↓ φz ↓ ||
A

φ→ D
G
B J

µ→ B

is commutative, where φz = φ+ • gz and gz :
∧

C∗ (S1) → D is the homomor-
phism defined by the formula gz(z) = G (because G is a unitary element in
D). We have the following analog of Theorem 7:

Theorem 8. KK(A,B) = [z(A),
∧
K ⊗B].

We give below some homotopic and KK-theoretic properties of C∗-
algebras C∗(v) and G∗(v).

Remark. Let S be the operator on the Hilbert space l2(N) given on the
basis by en → en+1 (it is called the unilateral shift). The Toeplitz algebra T
is the unital separable C∗-subalgebra of l2(N) generated by S. The algebra
T is the universal C∗-algebra generated by an isometry [1]. The algebra
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T has the grading defined by the map S 7−→ −S. We denote this graded
Toeplitz algebra by ̂T. The C∗-algebras C∗(v) and G∗(v) are sufficiently
“large” algebras, because the universal property implies that the canonical
∗-homomorphisms ν : C∗ → T and υ : G∗(A) → ̂T are ∗-epimorphisms.

We will need the folowing ∗-homomorphisms: i0 : M2(C) → M2(M2(C))
and j0 : C∗(v) → M2(C∗(v)) which are ∗-inclusions into the upper left
corner.

We recall that two ∗-homomorphisms f0, f1 : A → B of C∗-algebras are
homotopic if there is a path {ϕt} of ∗-homomorphisms ϕt : A → B such
that t 7−→ ϕt(a) is a norm continuous map from [0; 1] to B for fixed a ∈ A
and such that ϕ0 = f0 , ϕ1 = f1.

Now we are ready to prove

Theorem 9. Let C∗(v) be the universal C∗-algebra of a partial isometry.
There exists a ∗-homomorphism ϕv : M2(C) → M2(C∗(v)) such that ϕvµ is
homotopic to j0, and such that µϕv is homotopic to i0 (here µ stands for both
the evolution map M2(C∗(v)) → M2(M2(C)) and the one C∗(v) → M2(C)).
That is, C∗(v) and M2(C) are homotopy equivalent up to stabilization by
2× 2 matrices.

Proof. Let ϕv : M2(C) → M2(C∗(v)) be defined by the formula
(

0 1
0 0

)

7−→
(

0 v
0 0

)

.

There is homotopy h(t) =
(

cos t · v sin t · v
0 0

)

from
(

v 0
0 0

)

to
(

0 v
0 0

)

,

where t ∈ [0; 1]. Note that h(t) is a partial isometry in M2(C∗(v), for any
t ∈ [0; 1] :

h(t) · h(t)∗
(

cos t · v sin t · v
0 0

) (

cos t · v∗ 0
sin t · v∗ 0

)

=
(

vv∗ 0
0 0

)

.

Thus we have, by the universal property of C∗(v), a path of ∗-homomor-
phisms: Ht : C∗(v) → M2(C∗(v)) which is defined by the formula

Ht(v) =
(

cos t · v sin t · v
0 0

)

such that H0 = j0 and H1 = ϕ0µ. We have to prove now that µϕ0 is
homotopic to i0. Note that µϕ0 is defined by the formula

(

0 1
0 0

)

7−→









0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0









.
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The elements

v′ =









0 1 0 0
0 0 0 0
0 0 0 0
0 0 0 0









and v′′ =









0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0









are unitary equivalent with the unitary element

u =









1 0 0 0
0 0 0 1
0 0 1 0
0 −1 0 0









,

i.e., u∗v′u = v′′. The element u is homotopic to 1 in the group of unitary
elements, by the homotopy

ut =









1 0 0 0
0 cos π

2 t 0 sin π
2 t

0 0 1 0
0 − sin π

2 t 0 cos π
2 t









,

t ∈ [0; 1]. Thus the path of ∗-homomorphisms H ′
t : M2(C) → M2(M2(C)

defined by the formula H ′
t(x) = u∗t i0ut defines the homotopy from i0 to

µϕv.

As an application of the theorem we now have to prove

Corollary 10. The canonical ∗-homomorphism µ : C∗(v) → M2(C) in-
duces an invertible element in KK(C∗(v); M2(C)).

Proof. It follows from the definition of KK-groups that i0 and j0 induce
identity elements of rings KK(C∗(v), C∗(v)) and KK(M2(C),M2(C)). Ho-
momorphisms µ and ϕv give elements of the groups KK(C∗(v),M2(C)) and
KK(M2(C); C∗(v)), respectively. From the theorem it immediately follows
that [ϕv] · [µ] = [1C∗(v)] and [µ] · [ϕv] = [1M2(C)].

Thus C∗-algebras C∗(v) and M2(C) are KK-isomorphic.
Let A be a Z2-graded C∗-algebra. On M2(A) we have two essential

Z2-gradings given by ∗-automorphisms of period 2:
(

a b
c d

)

γ07−→
(

γ(a) γ(b)
γ(c) γ(d)

)

and
(

a b
c d

)

γ17−→
(

γ(a) −γ(b)
−γ(c) γ(d)

)

where γ : A → A is the ∗-automorphism inducing the given Z2-grading on
A. Let M2(A) be the algebra of 2 × 2 matrices with an odd grading and
∧
M2 (C) be the same algebra with an even grading. The partial isometry

e12 =
(

0 1
0 0

)

has degree 1 in the odd grading and so we have the canonical
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Z2-graded ∗-homomorphism ω : G∗(v) →
∧

M2 (C) defined by the formula
ω(v) = e12, which follows from the universal property of G∗(v). It follows
from the above definitions of Z2-gradings that the canonical ∗-inclutions

i0 :
∧

M2 (C) → M2(
∧

M2( C)) and j0 : G∗(v) → M2(G∗(v))

are graded homomorphisms.

We have the following graded analog of Theorem 9.

Theorem 11. Let G∗(v) be the universal Z2-graded algebra of a partial

isometry of degree one. There exists a graded ∗-homomorphism ϕv :
∧

M2

(C) → M2(G∗(v)) such that ωϕv is homotopic to i0 and ϕvω is homotopic

to j0. That is, G∗(v) and
∧

M2(C) are homotopy equivalent up to stabilization
by odd graded 2× 2 matrices.

Proof. It exactly coincides with the proof of Theorem 9.

Corollary 12. The canonical ∗-homomorphism ω induces an invertible

element of KK(G∗(v),
∧

M2 (C)).
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