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ON SOME CONTACT PROBLEMS FOR BODIES WITH
ELASTIC INCLUSIONS

N. SHAVLAKADZE

Abstract. The paper deals with the contact problems of the theory
of elasticity. The problems are reduced to Prandtl-type integral dif-
ferential equations with a coefficient at the singular operator which
has higher-order zeros at the ends of the integration interval. In some
concrete cases the solution is constructed efficiently. Asymptotic rep-
resentations are obtained.

Investigation of the problem of stress concentration when contact be-
tween different elastic media takes place remains one of the most topical
tasks. Inclusions such as punches and cuts are stress concentrators and
hence the study of the influence of inclusions on the stress-strained state
of solid deformable bodies, as well as the elaboration of methods allowing
one to reduce stress concentration, are of great theoretical and practical
importance. The problems of contact interaction between rigid inclusions
of various geometrical forms and elastic bodies are considered in [1–5]. In
[6] some problems of contact interaction between a piecewise-homogeneous
plane and a rigid inclusion, and also the anti-plane problem of an elastic
half-space and problems of bending of plates with thin-shelled inclusions,
are reduced to integral equations by means of the generalized method of
integral transforms.

As distinct from the previous papers, this paper deals with the problems
of contact interaction between a thin elastic inclusion of varying rigidity
and (a) an elastic half-space which is in the state of anti-plane deformation,
and (b) an elastic piecewise-homogeneous plane.
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§ 1. Anti-Plane Problem for an Elastic Half-Plane with an
Elastic Inclusion

Let an elastic strip-like inclusion 0 ≤ y ≤ b, −∞ < z < ∞ lying in the
plane x = 0 be inserted into the elastic half-space (−∞ < x, z < ∞, y ≥ 0)
with the boundary free from stresses. It is required to find a field of stresses
and displacements if a shearing load of intensity τ0 acting along the Oz-
axis is applied to the outer edge of the above-mentioned inclusion. The
displacement ω along the Oz-axis is assumed to be different from zero, and
ω = ω(x, y). The tangential stresses τyz = γ ∂ω

∂y and τxz =γ ∂ω
∂x , where γ is

the shear modulus, are also assumed to be different from zero.
The problem formulated above is equivalent to the boundary value prob-

lem for the Laplace equation

∂2ω
∂x2 +

∂2ω
∂y2 = 0,

∂ω(x, 0)
∂y

= 0, (x, y) ∈ D, (1.1)

where D :
{

(x, y)
∣

∣|x| < ∞, y ≥ 0
}

\{0, y)
∣

∣0 ≤ y ≤ b
}

; it is required to find,
for problem (1.1), a solution vanishing at infinity, i.e.,

lim
|x|→∞

ω(x, y) = 0 and lim
y→+∞

ω(x, y) = 0.

In passing through the inclusion, the tangential stress τxz undergoes dis-
continuity, while the displacements are continuous:

< τxz(0, y) >= γ <
∂ω(0, y)

∂x
>= µ(y), µ(y) ≡ 0, y > b,

< ω(0, y) >= 0, 0 ≤ y ≤ b,
(1.2)

where < f(0, y) >= f(−0, y)− f(−0, y).
The equation of equilibrium on the (0, y)-part of the inclusion is of the

form

dω(y)
dy

= − 1
E(y)

[

τ0 −
∫ y

0
µ(t)dt

]

, 0 < y < b, (1.3)

while the condition of equilibrium of the inclusion has the form
∫ b
0 µ(t)dt−

τ0 = 0, where E(y) = E0(y)h0(y)
1−ν2

0
, E(y) ≥ 0. Here E0(y) and ν0 are, respec-

tively, the modulus of elasticity and the Poisson coefficient for the material
with an inclusion of small thickness h0(y).

Theorem 1.1. If problem (1.1), (1.2), (1.3) has a solution, then it is
unique.
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Proof. Suppose that the problem has two solutions. Then the “difference”
of these solutions satisfies the basic equations in the absence of external
forces, i.e., for τ0 ≡ 0.

Consider the integral

J =
∫∫

Sh

(Xnu + Ynv + Znw)ds,

where Sh is the boundary of the domain obtained by intersection of the
half-space with the planes Lh (z = h) and L−h (z = −h); Xn, Yn, Zn, u, v,
w are the components of external stresses and displacements on the surface
Sh.

By the Ostrogradskii–Green formula we obtain
∫∫

Sh

(Xnu + Ynv + Znw)ds =
∫∫∫

Vh

{

λθ2 + 2µ(e2
xx + e2

yy + e2
zz +

+2e2
xy + 2e2

xz + 2e2
yz)

}

dx dy dz, (1.4)

where θ = exx + eyy + ezz, exx, eyy, ezz, exy, eyzexz, are the deformation
components and λ, µ are the Lamé constants for the half-space material.

For problem (1.1), (1.2) the integral on the left-hand side of (1.4) takes
the form

∫∫

Sh

(Xnu + Ynv + Znw)ds =
∫ h

−h
dz

∫ b

0
< τxz(0, y) > ω(y)dy +

+
∫∫

Lh

Znωds +
∫∫

L−h

Znωds.

Since the outer normals of the planes Lh and L−h are directed counterwise,
we have

∫∫

Lh
Znωds = −

∫∫

L−h
Znωds. Using condition (1.3), we finally get

∫ h

−h
dz

∫ b

0
< τxz(0, y) > ω(y)dy =

∫ h

−h
dz

∫ b

0
µ(y)ω(y)dy =

= 2h
∫ b

0
ω(y)d

(

∫ y

0
µ(t)dt

)

= 2hω(y)
∫ y

0
µ(t)dt

∣

∣

∣

b

0
−

−2h
∫ b

0
ω′2(y)E(y)dy = −2h

∫ b

0
E(y)ω′2(y)dy. (1.40)

Since the integrand on the right-hand side of (1.4) is a positive definite
quadratic form, in view of representation (1.40), we can conclude that J =
0. This means that in the absence of external forces µ(y) = 0, i.e., the
homogeneous problem admits only the trivial solution.
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Let us represent the harmonic function ω(x, y) in the form

ω(x, y) = ϕ(z) + ϕ(z), z = y + ix,

where ϕ(z) is an analytic function in the half-plane Re z > 0 cut along the
segment [0, b].

Conditions (1.2) yield
[

ϕ′(y) + ϕ′(y)
]+ −

[

ϕ′(y) + ϕ′(y)
]−

= 0,
[

ϕ′(y)− ϕ′(y)
]+ −

[

ϕ′(y)− ϕ′(y)
]−

= −µ(y)
iγ

.

By adding these equations we obtain the boundary value problem of
linear conjugation:

ϕ′+(y)− ϕ′−(y) = −µ(y)
2iγ

, 0 < y < b. (1.5)

By condition (1.1), ϕ′(ix) + ϕ′(ix) = 0. After considering the function

Ψ(z) =

{

ϕ′(z) for Re z > 0,
−ϕ′(z) for Re z < 0

(1.6)

condition (1.5) takes the form

Ψ+(y)−Ψ−(y) = −µ1(y)
2iγ

, |y| < b, (1.7)

where µ1(y) =

{

µ(y), 0 ≤ y < b
µ(−y), −b < y < 0

.

Since Ψ(z) is analytic on the whole plane cut along the segment (−b, b),
the solution of the boundary value problem (1.7) vanishing at infinity can
be given by the formula [7]

Ψ(z) = − 1
4πγ

∫ b

−b

µ1(t)dt
t− z

. (1.8)

Taking into consideration (1.6) and (1.7), the condition for inclusion (1.3)
takes the following form:

1
2πγ

∫ b

−b

µ1(t)dt
t− y

=
1

E(y)

[

τ0(y)−
∫ y

0
µ1(t)dt

]

, |y| < b,

where τ0(y) =

{

τ0, 0 ≤ y < b
−τ0, −b < y < 0,

E(y) = E(−y). Here we have continued

in an odd manner equation (1.4) to the negative values of the argument.
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Introducing the notation
∫ y
0 µ1(t)dt ≡ ν(y) and taking into account the

fact that the function µ1(y) is even, we obtain the Prandtl-type integral
differential equation

ν(y)
E(y)

+
1

2πγ

∫ b

−b

ν′(t)dt
t− y

=
τ0(y)
E(y)

, −b < y < b, (1.9)

provided that ν(−b) = −τ0, ν(b) = τ0.

§ 2. Composite Plane Reinforced with an Inclusion of Finite
Length

We consider a composite elastic plane by which is meant an unbounded
elastic medium composed of two half-planes (y > 0 and y < 0) and having
different elastic constants (E+, µ+ and E−, µ−). They are assumed to be
in a state of plane deformation and are reinforced on the segment (−b, b)
with an inclusion of varying thickness h0(x), with the modulus of elasticity
E0(x) and the Poisson coefficient ν0.

By the inclusion will be meant a thin plate to which vertical and hori-
zontal forces of intensity p0(x) and τ0(x), respectively, are applied. These
functions are continuous on the segment [−b, b]; note that P0(x) ≡ 0 and
τ0(x) ≡ 0 for x 6= (−b, b). When passing through the segment (−b, b),
the stress field undergoes discontinuity, while when passing through the
remainding part of the Ox-axis the stress and displacement fields remain
continuous.

The basic equations of equilibrium of the (−b, x)-part of the inclusion are

E1(x)
du1(x)

dx
=

∫ x

−b

[

τ(t)− τ0(t)
]

dt,

d2

dx2 D1(x)
d2v1(x)

dx2 = p0(x)− p(x),

− b < x < b, (2.1)

where

τ(x) = τ−(x)− τ+(x), E1(x) =
E0(x)h0(x)

1− ν2
0

,

p(x) = p−(x)− p+(x), D1(x) =
E0(x)h3

0(x)
12(1− ν2

0)
,

p±(x) and τ±(x) are respectively the unknown normal and tangential con-
tact stresses on the upper and the lower contour of the inclusion, and u1

and v1 are the displacements of its points in the horizontal and vertical
directions, respectively. E1(x) and D1(x) are positive functions from the
general class of functions.
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The conditions of equilibrium of the inclusion are of the form

∫ b

−b
τ(t)dt =

∫ b

−b
τ0(t)dt ≡ T0,

∫ b

−b
p(t)dt =

∫ b

−b
p0(t)dt ≡ P0,

∫ b

−b
tp(t)dt =

∫ b

−b
tp0(t)dt ≡ M0.

(2.2)

Here the fact that the end sections of the inclusion are free from external
loads is taken into account. We also take into consideration the condition
of compatibility of deformations both of the inclusion and of the elastic
composite plane with a defect along the segment (−b, b).

Using the stress function F (x, y) satisfying the biharmonic equation [7]

∆2F (x, y) = 0, (2.3)

we obtain the formulas for stresses

σx =
∂2F
∂y2 , σy =

∂2F
∂x2 , τxy = − ∂2F

∂x∂y
,

u′ = c
∂2F
∂y2 − d

∂2F
∂x2 , v′′ = −c

∂3F
∂y3 − (2c + d)

∂3F
∂x2∂y

,
(2.4)

where

c, d =

{

c+, d+, y > 0,
c−, d−, y < 0,

c± =
1− µ2

±
E±

, d± =
µ±(1− µ±)

E±
.

Applying the Fourier transform to equations (2.3) and (2.4), we arrive at
the homogeneous equation

F (IV )
j (y)− 2α2F (II)

α (y) + α4Fα(y) = 0, y 6= 0, (2.5)

with the boundary conditions

iα < F ′α(0) >= τα, < cF ′′α + dα2Fα >= 0,

−α2 < Fα(0) >= pα, < cF ′′′α + (2c + d)α2F ′α >= 0,
(2.6)

where the transforms ‖Fα(y), τα, pα‖ =
∫∞
−∞ ‖F (x, y), τ(x), p(x)‖eiαxdx.

Using the arguments from [6], we construct a solution of the one-dimen-
sional discontinuous boundary value problem (2.5), (2.6) in the form

Fα(y) =
3

∑

j=0

xj ˜Yj(y), (2.7)
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where ỹj(y) is the base function of discontinuous solutions,

ỹj(y) = α4E(−1−j)
α (y), j = 0, 1; ỹj(y) = −E(3−j)

α (y), j = 2, 3.

E(0)
α (y) = eα(y),

E(n)
α (y) =

1
4
(− sgn y)n[

|αy| − (n− 1)
]

αn−3e−|αy|, n = ±1,±2, . . . .

The function eα(y− ξ) defined by the formula eα(y) = 1+|αy|
4|α|2 e−|αy| is taken

as the Green’s function.
Having fulfilled the conjugate conditions (2.6), we get

x1 = −α−2pα,
x1 = −iα−1τα, ak2x2 + ak3x3 = −ak0x0 − ak1x1, (2.8)

where akj =< ỹ(k)
j (0) > k = 0, 1.

akj =< ỹ(k)
j (0)c− α2ỹ(k−2)

j (0)
[

c− (−1)k(c + d)
]

>, k = 2, 3.

For our formulas to be more compact, we introduce the functionals
V (j)

k (fn), k = 0, 1, acting on the sequence fn:

c0V
(j)
0 [fn] = c2fj − (c1 − c0)fj+1 − c0fj−1,

c0V
(j)
1 [fn] = (c1 + c0)fj − c2fj+1 − c0fj−2,

(2.9)

where the numbers c0, c1, c2 represent the following combinations of the
elastic constants:

c0 = 4(c+ + c−)2 −
[

(c− − c+)− (d− − d+)
]2

c1 = 4(c+ + c− + d+ + d−)(c+ + c−) +

+ 2
[

(c− − c+)− (d− − d+)
][

c− − c+ + d− − d+
]

c2 = 2(c+ + c− + d+ + d−)
[

(c+ + c−)− (d− − d+)
]

+

+ 4(c+ + c−)(c− − c+ + d− − d+).

Having defined xj (j = 0, 3) from (3.8) and substituted their values in
(2.7), by means of the above introduced functionals (2.9) we can write

Fα(y) = V (0)
0

[

|α|1−nE(n)
α (y)

]

pα + i sgnαV (0)
1

[

|α|1−nE(n)
α (y)

]

τα. (2.10)

Substituting the values of transforms (2.10) in the inversion formulas
and taking into account formulas (2.6) and also the convolution theorem,
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we obtain

σx =
∫ b

−b
R(0)

1 (x− ξ, y)p(ξ)dξ +
∫ b

−b
R(0)

2 (x− ξ, y)τ(ξ)dξ,

τxy =
∫ b

−b
R(1)

1 (x− ξ, y)p(ξ)dξ +
∫ b

−b
R(1)

2 (x− ξ, y)τ(ξ)dξ,

u′ =
∫ b

−b
R(2)

1 (x− ξ, y)p(ξ)dξ +
∫ b

−b
R(2)

2 (x− ξ, y)τ(ξ)dξ,

v′ =
∫ b

−b
R(3)

1 (x− ξ, y)p(ξ)dξ +
∫ b

−b
R(3)

2 (x− ξ, y)τ(ξ)dξ,

(2.11)

where

R(m)
k (x, y) = −(αk)mV (m)

k

[

K(sk−m)
n

]

, m = 0, 1,

(αk)mR(m)
k (x, y) = cV (m)

k

[

K(sk−m)
n

]

−
[

c + αm(c + d)
]

V (m−2)
k

[

K(sk−m)
n

]

,

m = 2, 3, αk = (−1)k+1, sk = sin2 πk
2

,

K(0)
n (x, y) =

(− sgn y)n|y|
4π(x2 + y2)

[y2 − x2

y2 + x2 − (n− 1)
]

,

K(1)
n (x, y) =

(− sgn y)nx
4π(x2 + y2)

[ 2y2

y2 + x2 − (n− 1)
]

, n = 0,±1,±2, . . . .

With the help of the above obtained discontinuous solution (2.11) we can
get limiting values of the displacement field components as y → 0. As a
result, we obtain

u′(x) = Ap(x) +
B
π

∫ b

−b

τ(t)dt
t− x

,

v′(x) = −Aτ(x) +
B
π

∫ b

−b

p(t)dt
t− x

,

(2.12)

where

A =
a+b−(b+ + a−)− a−b+(b+ + a−)

2c0
,

B =
a+b−(b+ + a−) + a−b+(b+ + a−)

2c0
,

a± = 3c± − d±, b± = c± + d±.

Taking into account the contact conditions

u′(x) = u′1(x),
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v′(x) = v′1(x)

and substituting formulas (2.12) in conditions (2.1), we arrive at the system
of integral differential equations

Aψ′′(x)− B
π

∫ b

−b

ϕ′(t)dt
t− x

=
ϕ(x)
E1(x)

+
f1(x)
E1(x)

,

Aϕ′′(x) +
B
π

∫ b

−b

ψ′′′(t)dt
t− x

=
ψ(x)
D1(x)

+
f2(x)
D1(x)

,

− b < x < b, (2.13)

where

ϕ(x) =
∫ x

−b
τ(t)dt, ψ(x) =

∫ x

−b
dt

∫ t

−b
p(τ)dτ,

f1(x) =
∫ k

−b
τ0(t)dt, f2(x) =

∫ x

−b
dt

∫ t

−b
p0(τ)dτ.

Thus the solution of the above formulated problem is reduced to that of
the system of integral differential equations (2.13) under conditions (2.2).

In the case of a homogeneous plane, A = 0 and system (2.13) is divided
into two independent integral differential equations. If the inclusion expands
(i.e., p0(x) = 0), then the problem is reduced to the Prandtl-type integral
differential equation

ϕ(x)
E1(x)

− B
π

∫ b

−b

ϕ′(t)dt
t− x

=
f1(x)
E1(x)

, −b < x < b, (2.14)

provided that ϕ(−b) = 0, ϕ(b) = T0.
The uniqueness theorem for the problem stated above can be proved

analogously to the proof of Theorem 1.1.

§ 3. Solution of a Prandtl-type Integral Differential
Equation

Let us consider the integral differential equation

µ(x)− λ
π

E(x)
∫ b

−b

µ′(t)dt
t− x

= f(x), |x| < b, (3.1)

where λ > 0, E(x) 6= 0 (except maybe x = ±b), f(x) are given functions
satisfying Hölder’s condition on the segment [−b, b], and µ(x) is an unknown
Hölder continuous function.

If the function E(x) ≡ const or E(x) 6= 0 for all −b ≤ x ≤ b, then
equation (3.1) is equivalent to a Fredholm integral equation of second kind.
Assuming

√
b2 − x2/E(x) to be the entire analytic function of x, with the

help of the solution of Riemann’s problem we construct a regular integral
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equation equivalent to equation (3.1) and admitting an effective solution
when

√
b2 − x2/E(x) is a polynomial [8]. In a more general case when the

last function has first-order derivative satisfying Hölder’s condition (except
perhaps the values x = ±b), we constructed the above-mentioned regular
integral equation [9]. The obtained integral equation admits an effective
solution if and only if the function

√
b2 − x2/E(x) is either a polynomial or

a rational function.
In all the above-mentioned cases the function µ′(x) possesses a square

root order singularity at the points x = ±b. When the function E(x)
has higher-order zeros n (n > 1) at the points x = ±b, due to physical
considerations, the function µ′(x) is expected to be bounded or vanishing at
the ends of the segment [−b, b]. Such a study is carried out in [10]. Passage
in both parts of equation (3.1) to the limit respectively at the points x = ±b
results in

µ(±b) = f(±b). (3.2)

Conditions (3.2) are natural ones, since in the contact problems of elastic-
ity described in Sections 1 and 2 they express the conditions of equilibrium
of the inclusion.

We rewrite equation (3.1) as follows:

µ(x)− f(x)
E(x)

− λ
π

∫ b

−b

µ′(t)− f ′(t)
t− x

dt =
λ
π

∫ b

−b

f ′(t)dt
t− x

, |x| < b.

Introducing the notation µ(x)− f(x) = ν(x), we obtain

ν(x)
E(x)

− λ
π

∫ b

−b

ν′(t)dt
t− x

= g(x), |x| < b, (3.3)

where

g(x) =
λ
π

∫ b

−b

f ′(t)dt
t− x

. (3.4)

By (3.2) the unknown function ν(x) satisfies the following supplementary
conditions:

ν(±b) = 0. (3.5)

Consider now the Cauchy-type integral

Φ(x) =
1

2πi

∫ b

−b

ν(t)dt
t− x

, (3.6)

which obviously represents a function holomorphic everywhere on the plane,
except maybe the segment [−b, b].
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From (3.6), taking into account conditions (3.5) and differentiating by
parts, we obtain

Φ′(x) =
1

2πi

∫ b

−b

ν′(t)dt
t− x

, (3.7)

On the basis of the well-known properties of Cauchy-type integrals [7],
from (3.6) and (3.7) by passing to the limit we get

ν(x) = Φ+(x)− Φ−(x),
∫ b

−b

ν′(t)dt
t− x

= πi
[

Φ′+(x) + Φ′−(x)
]

,
(3.8)

where Φ+(x) and Φ−(x) are respectively the limiting values of the functions
Φ(z) in the upper and the lower half-plane.

We restrict ourselves to considering the case with E(x) =
√

b2 − x2(b2 −
x2)nP0(x), where n ≥ 1 is a natural number and p0(x) is a polynomial
satisfying the condition P0(x) > 0, P0(−x) = P0(x), for −b ≤ x ≤ b.

Bearing in mind the branch of E(z) satisfying the condition E+(x) =
−E−(x) ≡ E(x) > 0 for (−b < x < b), by virtue of (3.8) we rewrite
equation (3.3) as

Φ′+(x) +
i

λE+(x)
Φ+(x) + Φ′−(x) +

i
λE−(x)

Φ−(x) =
ig(x)

λ
. (3.9)

Let us introduce a new function

F (z) =
[

Φ′(z) +
i

λE(z)
Φ(z)

]
√

b2 − z2 (3.10)

which is evidently holomorphic everywhere on the plane, except maybe the
segment [−b, b], vanishing at infinity, continuously extendable up to the
internal points of the segment both from the upper and from the lower
half-planes.

Then equation (3.9) takes the form

F+(z)− F−(x) =
ig(x)

λ

√

b2 − z2. (3.11)

The solution of this problem can be represented as follows:

F (z) =
1

2πi

∫ b

−b

F+(t)− F−(t)
t− z

dt, (3.12)

where the point z belongs to the domain occupied by the whole plane, except
maybe the segment [−b, b].
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From (3.10) we have

Φ′+(x) +
i

λE(x)
Φ+(x) =

F+(x)√
b2 − z2

, Φ′−(x)− i
λE(x)

Φ−(x) = − F−(x)√
b2 − z2

.

Integration of these first kind differential equations results in

Φ+(x) = Φ+(0)e−iθ(x) +
∫ x

0
ei[θ(t)−θ(x)] F+(t)√

b2 − z2
dt,

Φ−(x) = −Φ−(0)eiθ(x) −
∫ x

0
e−i[θ(t)−θ(x)] F−(t)√

b2 − z2
dt,

(3.13)

where θ = 1
λ

∫ x
0

dt
E(t) , |x| < b.

According to (3.8) and (3.13) we have

ν(x)=ν(0) cos θ(x)+ν1 sin θ(x)+
∫ x

0

cos(θ(t)− θ(x))√
b2 − t2

[

F+(t)+F−(t)
]

dt+

+i
∫ x

0

sin(θ(t)− θ(x))√
b2 − t2

[

F+(t)− F−(t)
]

dt, where ν1 = − 1
π

∫ b

−b

ν(t)dt
t

.

Owing to (3.8), the last expression takes the form

ν(x) = ν(0) cos θ(x) + ν1 sin θ(x) +
∫ x

0

A(t) sin(θ(t)− θ(x))√
b2 − t2

dt +

+
∫ x

0

B(t) cos(θ(t)− θ(x))√
b2 − t2

dt, (3.14)

where

A(x) = −g(x)
λ

√

b2 − x2, B(x) =
1

πλ

∫ b

−b

g(t)
√

b2 − t2

t− x
dt. (3.15)

Representing formula (3.14) in terms of

ν(x)=
[

ν(0)+
∫ x

0

A(t)√
b2 − t2

sin θ(t)dt+
∫ x

0

B(t)√
b2 − t2

cos θ(t)dt
]

cos θ(x) +

+
[

ν1−
∫ x

0

A(t)√
b2 − t2

cos θ(t)dt+
∫ x

0

B(t)√
b2 − t2

sin θ(t)dt
]

sin θ(x), (3.16)

and taking into consideration that the functions sin θ(x) and cos θ(x) have
no limit at the points x = ±b, we conclude that for condition (3.5) to



ON SOME CONTACT PROBLEMS 297

be fulfilled it is necessary and sufficient that the following conditions be
fulfilled:

lim
x→±b

[

ν(0) +
∫ x

0

A(t) sin θ(t)√
b2 − t2

dt +
∫ x

0

B(t) cos θ(x)√
b2 − t2

dt
]

= 0,

lim
x→±b

[

ν1 −
∫ x

0

A(t) cos θ(t)√
b2 − t2

dt +
∫ x

0

B(t) sin θ(x)√
b2 − t2

dt
]

= 0.
(3.17)

Thus we have proved

Lemma.For the solution of equation (3.1) to satisfy conditions (3.5) it
is necessary and sufficient that the function f(x) satisfy conditions (3.17).

By virtue of (3.4), (3.15) we can conclude that for conditions (3.17) to
be fulfilled it is sufficient that the function f(x) be even (odd), whence it
follows that the unknown function µ(x) is even (odd).

In particular, if the function f(x) is even, then from (3.17) we obtain

ν(0) = −
∫ b

0

A(t) sin θ(t)√
b2 − t2

dt +
∫ b

0

B(t) cos θ(x)√
b2 − t2

, ν1 = 0,

but if the function f(x) is odd, then

ν(0) = 0, ν1 =
∫ b

0

A(t) cos θ(t)√
b2 − t2

dt−
∫ b

0

B(t) sin θ(x)√
b2 − t2

.

To determine the asymptotic behavior of the function ν′(x) let us perform
some simple transformations in formula (3.16):

ν(x) =
[

ν(0) + λA0(0)− λ2B1(0)− λ2
∫ x

0
A′1(t) sin θ(t)dt−

− λ2
∫ x

0
B′

1(t) cos θ(t)dt
]

cos θ(x) +
[

ν1 + λB0(0) + λ2A1(0) +

+ λ2
∫ x

0
A′1(t) cos θ(t)dt− λ2

∫ x

0
B′

1(t) sin θ(t)dt
]

sin θ(x)−

− λA0(x) + λ2B1(x),

where

A0(x) =
A(x)E(x)√

b2 − x2
, A1(x) = A′0(x)E(x),

B0(x) =
B(x)E(x)√

b2 − x2
, B1(x) = B′

0(x)E(x).
(3.18)

The function ν′(x) has the form

ν′(x) =
[

− λ2A′1(x) sin θ(x)− λ2B′
1(x) cos θ(x)

]

cos θ(x) +
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+
[

λ2A′1(x) cos θ(x)− λ2B′
1(t) sin θ(x)

]

sin θ(x)−

− P (x)
λE(x)

sin θ(x) +
R(x)
λE(x)

cos θ(x)− λA′0(x) + λ2B′
1(x) =

= −λA′0(x)− P (x)
λE(x)

sin θ(x) +
R(x)
λE(x)

cos θ(x), (3.19)

where

P (x) = ν(0) + λA0(0)− λ2B1(0)− λ2
∫ x

0
A′1(t) sin θ(t)dt−

− λ2
∫ x

0
B′

1(t) cos θ(t)dt,

R(x) = ν1 + λB0(0) + λ2A1(0) + λ2
∫ x

0
A′1(t) cos θ(t)dt−

− λ2
∫ x

0
B′

1(t) sin θ(t)dt.

Taking into account conditions (3.17) and also formulas (3.18), we obtain

lim
x→±b

P (x) = 0, lim
x→±b

R(x) = 0. (3.20)

Let f ′(x) be a Hölder-continuous function on the segment [−b, b] and let
f ′(±b) = 0. Then by virtue of formulas (3.3), (3.15), and (3.18) we arrive at

the following expressions: A′0(x) = O
(

(b2−x2)
)n− 1

2 , B′
0(x) = O

(

(b2−x2)
)n

in the vicinity of the points x = ±b. If f ′(±b) 6= 0, then we have A′0(x) =
O

(

(b2− x2)n− 1
2 ln b−x

b+x

)

, B′
0(x) = O

(

(b2− x2)n ln b−x
b+x

)

in the vicinity of the
points x = ±b.

If f ′(x) ∈ H∗(−b, b), i.e., it has a singularity of integrable order at the
points x = ±b: f ′(x) = f0(x)

(b2−x2)α , where 0 < α < 1, f0(x) belongs to
the Hölder class in a vicinity of the points x = ±b, then by an analogous
reasoning we get A′0(x) = O

(

(b2 − x2)n−α− 1
2
)

, B′
0(x) = O

(

(b2 − x2)n−α
)

.
Taking into consideration (3.20) and applying l’Hospital’s rule, useful in

evaluating indeterminate forms, we have

lim
x→±b

P (x)
E(x)

= lim
x→±b

−λ2A′1(x) sin θ(x)− λ2B′
1(x) cos θ(x)

E′(x)
= 0,

i.e.
P (x)
E(x)

= (b2 − x2)n−β lnm
(b− x

b + x

)

α(x),

lim
x→±b

R(x)
E(x)

= lim
x→±b

λ2A′1(x) cos θ(x)− λ2B′
1(x) sin θ(x)

E′(x)
= 0,

i.e.
R(x)
E(x)

= (b2 − x2)n−β lnm
(b− x

b + x

)

β(x),
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where α(x) and β(x) are bounded functions in the vicinity of the points
x = ±b, α(x) 6= 0, β(x) 6= 0 for x = ±b, 1

2 ≤ β < 3
2 ; m = 0 for f ′(±b) = 0

or f ′(x) ∈ H∗(−b, b), m = 1 for f ′(±b) 6= 0.
Thus the following theorems are proved.

Theorem 3.1. If the function f ′(x) belongs to the Hölder class on the
segment [−b, b] and f ′(±b) = 0, then equation (3.3) has a solution which can
be represented by formula (3.14), and in the vicinity of the points x = ±b
the representation ν′(x) = O

(

(b2 − x2)n− 1
2
)

is valid.

Theorem 3.2. If the function f ′(x) belongs to the Hölder class on the
segment [−b, b] and f ′(±b) 6= 0, then equation (3.3) has a solution which can
be represented by formula (3.14), and in the vicinity of the points x = ±b
we have the representation

ν′(x) = O
(

(b2 − x2)n− 1
2 ln

(b− x
b + x

))

.

Theorem 3.3. If the function f ′(x) belongs to the Hölder class in the
interval (−b, b) and at the points x = ±b it has a singularity of order α with
0 < α < 1, then equation (3.3) has a solution which can be represented by
formula (3.14), and in the vicinity of the points x = ±b the estimate

ν′(x) = O
(

(b2 − x2)n−β)

with 1/2 < β < 3/2

is valid.

Thus for the function µ′(x) the following theorem holds.

Theorem 3.4. If the right-hand side of the integral differential equation
(3.1) satisfies the condition: if f ′(x) belongs to the Hölder class on the
segment [−b, b] or f ′(x) ∈ H∗(−b, b), then equation (3.1) has a solution in
the vicinity of the points x = ±b which can be represented as

µ′(x) = f ′(x) + (b2 − x2)n−β lnm
(b− x

b + x

)

γ(x),

where 1
2 ≤ β < 3

2 , γ(x) is the bounded function in the vicinity of the points
x = ±b, γ(x) 6= 0 for x = ±b, m = 0 or m = 1.

Consequently, in problems of contact interaction of the theory of elasticity
described in Sections 1 and 2 we have stated that the jump of tangential
contact stress between the upper and the lower end of the inclusion can be
bounded or can tend to zero in the vicinity of the inclusion ends.
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