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ON THE SOLVABILITY OF NONLINEAR BOUNDARY
VALUE PROBLEMS FOR FUNCTIONAL DIFFERENTIAL

EQUATIONS

I. KIGURADZE AND B. PŮŽA

Abstract. Sufficient conditions are established for the solvability of
the boundary value problem

dx(t)
dt

= p(x, x)(t) + q(x)(t),

l(x, x) = c(x) ,

where p : C(I; Rn)× C(I; Rn) → L(I; Rn), q : C(I; Rn) → L(I; Rn),
l : C(I, Rn)× C(I; Rn) → Rn, and cn : C(I, Rn) → Rn are continu-
ous operators, and p(x, ·) and l(x, ·) are linear operators for any fixed
x ∈ C(I; Rn).

1. Formulation of the Main Results

1.1. Formulation of the problem. Let n be a natural number, I =
[a, b], −∞ < a < b + ∞ and p : C(I; Rn) × C(I; Rn) → L(I, Rn), q :
C(I; Rn) → L(I; Rn), l : C(I;Rn) × C(I;Rn) → Rn and c : C(I; Rn) →
Rn be continuous operators. We consider the vector functional differential
equation

dx(t)
dt

= p(x, x)(t) + q(x)(t) (1.1)

with the boundary condition

l(x, x) = c(x) . (1.2)

By a solution of (1.1) we mean an absolutely continuous vector function
x : I → Rn which satisfies it almost everywhere in I, and by a solution of
problem (1.1), (1.2) a solution of (1.1) satisfying condition (1.2).

1991 Mathematics Subject Classification. 34K10.
Key words and phrases. Functional differential equation, Volterra operator, boundary

value problem, existence theorem.

251
1072-947X/98/0500-0251$15.00/0 c© 1998 Plenum Publishing Corporation



252 I. KIGURADZE AND B. PŮŽA

In the present paper, we use the results proved in [1,2] to establish new
sufficient conditions for the solvability of problem (1.1), (1.2). The results
obtained are made more concrete for the boundary value problem

dx(t)
dt

=
m

∑

i=1

Pi(x)(t)x (τi(t)) + q(x)(t) , (1.3)

m0
∑

i=1

Hi(x)x (ti) = c(x) , (1.4)

where Pi : C(I, Rn) → L(I;Rn×n) (i = 1, . . . ,m) and Hi : C(I; Rn) → Rn

(i = 1, . . . ,m0) are continuous operators, and ti ∈ I (i = 1, . . . ,m0) and
τj : I → I (i = 1, . . . , m) are measurable functions.

1.2. Basic notation and terms. Throughout this paper the following
notation and terms are used.

R =]−∞, +∞[, R+ = [0,+∞[ .

Rn is the space of n-dimensional column vectors x = (xi)n
i=1 with ele-

ments xi ∈ R (i = 1, . . . , n) and the norm

‖x‖ =
n

∑

i=1

|xi| .

Rn×n is the space of n×n matrices X = (xik)n
i,k=1 with elements xik ∈ R

(i, k = 1, . . . , n) and the norm

‖X‖ =
n

∑

i,k=1

|xik| ;

Rn
+ = {(xi)n

i=1 ∈ Rn : xi ≥ 0 (i = 1, . . . , n)},
Rn×n

+ = {(xik)n
i,k=1 ∈ Rn×n : xik ≥ 0 (i, k = 1, . . . , n)} .

If x, y ∈ Rn and X, Y ∈ Rn×n, then

x ≤ y ⇔ y − x ∈ Rn
+, X ≤ Y ⇔ Y −X ∈ Rn×n

+ .

If x = (xi)n
i=1 ∈ Rn and X = (xik)n

i,k=1 ∈ Rn×n, then

|x| = (|xi|)n
i=1, |X| = (|xik|)n

i,k=1.

X−1 is the inverse matrix of X; E is the unit matrix; det(X) is the
determinant of the matrix X; r(X) is the spectral radius of the matrix X.

A vector or a matrix function is said to be continuous, summable, etc. if
all its components have such a property.
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C(I;Rn) is the space of continuous vector functions x : I → Rn with the
norm

‖x‖C = max{‖x(t)‖ : t ∈ I} .

If x = (xi)n
i=1 ∈ C(I; Rn), then |x|C = (‖xi‖C)n

i=1 .
C(I; Rn×n) is the space of continuous matrix functions X : I → Rn×n .
L(I; Rn) is the space of summable vector functions x : I → Rn with the

norm

‖x‖L =

b
∫

a

‖x(t)‖ dt .

L(I; Rn×n) is the space of summable matrix functions x : I → Rn×n.
If Y ∈ C(I; Rn×n) and l0 : C(I;Rn) → Rn and p0 : C(I; Rn) → L(I;Rn)

are linear operators, then l0(Y ) ∈ Rn×n and p0(Y ) ∈ L(I; Rn×n) are the
matrix satisfying, for every u ∈ Rn, the equalities

l0(Y u) = l0(Y )u, p0(Y u)(t) = p0(Y )(t)u for t ∈ I .

It0,t = [t0, t] for t ≥ t0 and It0,t = [t, t0] for t < t0 .
A linear operator p is called a Volterra∗ operator with respect to t0 ∈ I,

if for arbitrary t ∈ I and x ∈ C(I;Rn) satisfying the condition x(s) = 0 for
s ∈ It0,t we have p(x)(s) = 0 for almost all s ∈ It0,t .

1.3. Problem (1.1), (1.2). We consider the case where:

(i) the operators p : C(I; Rn)×C(I;Rn) → L(I; Rn) and l : C(I; Rn)×
C(I;Rn) → Rn are continuous and for arbitrary x ∈ C(I;Rn) the
operators p(x, ·) : C(I; Rn) → L(I; Rn) and l(x, ·) : C(I; Rn) → Rn

are linear;
(ii) there exist a summable function α : [a, b] → R+ and a positive

number α0 such that for arbitrary x and y ∈ C(I;Rn) the following
inequalities are satisfied:

‖p(x, y)(t)‖ ≤ α(t)‖y‖C for almost all t ∈ I, ‖l(x, y)‖ ≤ α0‖y‖C ;

(iii) the operators q : C(I; Rn) → L(I; Rn) and c : C(I; Rn) → Rn are
continuous and

lim
%→∞

1
%

b
∫

a

η(t, %) dt = 0, lim
%→∞

η0(%)
%

= 0 ,

where η(t, %) = sup{‖q(x)(t)‖ : ‖x‖C ≤ %}, η0(%) = sup{‖c(x)‖ :
‖x‖C ≤ %}.

Following [2] we introduce

∗See [3–5].
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Definition 1.1. Let p and l be the operators satisfying conditions (i) and
p0 : C(I; Rn) → L(I; Rn) and l0 : C(I; Rn) → Rn be the linear operators.
We say that the pair of operators (p0, l0) belongs to the set En

p,l if there is
a sequence xk ∈ C(I;Rn) (k = 1, 2, . . . ) such that for any y ∈ C(I; Rn) we
have

lim
k→∞

t
∫

a

p(xk, y)(s) ds =

t
∫

a

p0(y)(s) ds uniformly on I , (1.5)

lim
k→∞

l(xk, y) = l0(y) . (1.6)

Definition 1.2. We say that a pair of operators (p, l) belongs to the
Opial class On

0 , if p and l satisfy conditions (i) and (ii), and for any (p0, l0) ∈
En

p,l the problem

dy(t)
dt

= p0(y)(t) , (1.7)

l0(y) = 0 (1.8)

has only the trivial solution.

Theorem 1.1. If

(p, l) ∈ On
0 (1.9)

and the operators q and c satisfy conditions (iii), then problem (1.1), (1.2)
is solvable.

The proof of this theorem is contained in [2] (see [2], Corollary 1.1).

Let t0 be an arbitrary fixed point of I. We introduce a sequence of
operators Yj : C(I;Rn) → C(I; Rn×n) and zj : C(I;Rn) × C(I; Rn) →
C(I; Rn) (j = 1, 2, . . . ) by

Y1(x)(t) = E, Yj+1(x)(t) = E +

t
∫

t0

p(x, Yj(x))(s) (j = 1, 2, . . . ) (1.10)

z1(x, y)(t) =

t
∫

t0

p(x, y)(s) ds , zj+1(x, y)(t) =

=

t
∫

t0

p(x, zj(x, y))(s) ds (i = 1, 2, . . . ) . (1.11)
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If for some x ∈ C(I; Rn) and natural j the matrix l(x, Yj(x)) is non-
singular, we set

zj,k(x, y)(t) = zk(x, y)(t)−
−Yk(x)(t)[l(x, Yj(x))]−1l(x, zj(x, y)) (k = 1, 2, . . . ) . (1.12)

Theorem 1.2. Suppose that conditions (i)–(iii) are satisfied, and there
exist t0 ∈ I, δ > 0, A ∈ Rn×n

+ and natural numbers j0 and k0 such that

r(A) < 1 (1.13)

and for arbitrary x and y ∈ C(I; Rn) the inequalities

|det(l(x, Yj0(x))| > δ (1.14)

and

|zj0,k0(x, y)|C ≤ A|y|C (1.15)

hold, where Yj and zj,k are the operators given by (1.10)–(1.12). Then
problem (1.1), (1.2) is solvable.

If p satisfies conditions (i) and (ii) and for some t0 ∈ I and arbitrary
fixed x ∈ C(I; Rn) the operator p(x, ·) : C(I; Rn) → L(I;Rn) is a Volterra
operator with respect to t0, then for any x ∈ C(I;Rn) the differential equa-
tion

dy(t)
dt

= p(x, y)(t) (1.16)

has a unique fundamental matrix∗ Y (x) : I → Rn×n satisfying the initial
condition

Y (x)(t0) = E (1.17)

(see [1], Lemma 1.2). In this case, Theorem 1.2 takes the following form.

Theorem 1.3. Suppose that conditions (i)–(iii) are satisfied, and there
is t0 ∈ I such that for any x ∈ C(I;Rn) the operator p(x, ·) is a Volterra
operator with respect to t0. Furthermore, let

inf
{∣

∣

∣ det
(

l
(

x, Y (x)
))

∣

∣

∣ : x ∈ C(I;Rn)
}

> 0 (1.18)

where Y (x) is the fundamental matrix of system (1.16), satisfying the initial
condition (1.17). Then problem (1.1), (1.2) is solvable.

∗That is, the matrix whole columns form a basis of the solution space of equation
(1.16).
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Remark 1.1. Theorem 1.3 is a generalization of a theorem of R. Conti
([6], Theorem 2) and Corollary 1.4′ from [2] to differential systems of form
(1.1).

1.4. Problem (1.3), (1.4). Problem (1.3), (1.4) is obtained from (1.1),
(1.2) for

p(x, y)(t) =
m

∑

i=1

Pi(x)(t)y(τi(t)), l(x, y) =
m0
∑

i=1

Hi(x)y(ti) . (1.19)

In order to guarantee that conditions (i) and (ii) be satisfied, we consider
the case where:

(iv) the operators Pi : C(I; Rn) → L(I; Rn×n) (i = 1, . . . ,m) and
Hi : C(I; Rn) → Rn×n (i = 1, . . . , m0) are continuous and there
are a summable function α : I → R+ and a positive number α0

such that for any x ∈ C(I; Rn) and t ∈ I the following inequalities
hold:

m
∑

i=1

‖Pi(x)(t)‖ ≤ α(t) ,
m0
∑

i=1

‖Hi(x)‖ ≤ α0 .

From (1.19) and (1.10) we obtain

Y1(x)(t) = E, Yj+1(x)(t) =

= E +
m

∑

i=1

t
∫

t0

Pi(x)(s)Yj(τi(s)) ds (j = 1, 2, . . . ) . (1.20)

Together with this we introduce the sequence of operators

Z1(x)(t) =
m

∑

i=1

∣

∣

∣

∣

t
∫

t0

|Pi(x)(s)| ds
∣

∣

∣

∣

,

Zj+1(x)(t) =
m

∑

i=1

∣

∣

∣

∣

t
∫

t0

|Pi(x)(s)|Zj(x)(τi(s)) ds
∣

∣

∣

∣

(j = 1, 2, . . . ) .

(1.21)

Corollary 1.1. Suppose that conditions (iii), (iv) are satisfied, and there
exist t0 ∈ I, δ > 0, A ∈ Rn×n

+ , and natural numbers j0 and k0, such that
r(A) < 1 and for arbitrary x ∈ C(I; Rn) the inequalities

∣

∣

∣det

(

m0
∑

i=1

Hi(x)Yj0(x)(t)

)

∣

∣

∣ > δ (1.22)



SOLVABILITY OF NONLINEAR BOUNDARY VALUE PROBLEMS 257

and

∣

∣

∣Yk0(x)(t)

(

m0
∑

i=1

Hi(x)Yj0(x)(ti)

)−1
∣

∣

∣

m0
∑

i=1

|Hi(x)|Zj0(x)(ti) +

+Zk0(x)(t) ≤ A for t ∈ I (1.23)

hold, where Yj and Zk are the operators given by (1.20) and (1.21).
Then problem (1.3), (1.4) is solvable.

Corollary 1.2. Suppose that conditions (iii), (iv) are satisfied, and there
is t0 ∈ I such that

(t− τi(t))(t− t0) ≥ 0 for t ∈ I (i = 1, . . . ,m) . (1.24)

Furthermore, let

inf

{

∣

∣

∣ det

(

m0
∑

i=1

Hi(x)Y (x)(ti)

)

∣

∣

∣ : x ∈ C(I;Rn)

}

> 0 , (1.25)

where Y (x) id the fundamental matrix of the differential system

dy(t)
dt

=
m

∑

i=1

Pi(x)(t)y(τi(t)) ,

satisfying the initial condition

Y (x)(t0) = E .

Then problem (1.3), (1.4) is solvable.

2. Auxiliary Statements

Lemma 2.1. Let p0 : C(I; Rn) → L(I; Rn) and l0 : C(I; Rn) → Rn×n

be linear operators, and let there exist a summable function α : I → R+
such that for any y ∈ C(I; Rn) the inequality

‖p0(y)(t)‖ ≤ α(t)‖y‖C for almost all t ∈ I (2.1)

holds. Furthermore, let p0 be a Volterra operator with respect to some t0 ∈
I. Then equation (1.7) has a unique fundamental matrix Y0 satisfying the
initial condition

Y (t0) = E (2.2)

and the condition

det (l0(Y0)) 6= 0 (2.3)

is necessary and sufficient for problem (1.7), (1.8) to have only the trivial
solution.
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Proof. According to Lemma 1.2 in [1], for any c0 ∈ R, equation (1.7) has a
unique solution satisfying the initial condition

y(t0) = c0 .

It follows that this equation has a unique fundamental matrix satisfying the
initial condition (2.2) and each of its solutions admits a representation

y(t) = Y0(t)c0 .

It follows that problem (1.7), (1.8) has only the trivial solution if and only
if the system of algebraic equations

l0(Y0)c0 = 0

has only the trivial solution, i.e., condition (2.3) is satisfied.

Lemma 2.2. Let p and l be the operators satisfying conditions (i), (ii),
and C(I; Rn) → L(I; Rn) and l0 : C(I;Rn) → Rn be linear operators.
Furthermore, let there exist t0 ∈ I and xk ∈ C(I; Rn) (k = 1, 2, . . . ) such
that for any natural k the operator p(xk, ·) is a Volterra operator with respect
to t0 and for any y ∈ C(I; Rn) conditions (1.5) and (1.6) hold. Then p0 is
a Volterra operator with respect to t0, satisfying condition (2.1), and

lim
k→∞

l(xk, Y (xk)) = l0(Y0) , (2.4)

where Y (xk) is the fundamental matrix of the equation

dy(t)
dt

= p(xk, y)(t) , (2.5)

satisfying the condition
Y (xk)(t0) = E ,

and Y0 is the fundamental matrix of (1.7) satisfying condition (2.2).

Proof. By (1.5), for any s and t ∈ I we have

t
∫

s

p0(y)(ξ) dξ = lim
k→∞

t
∫

s

p(xk, y)(ξ) dξ .

Since p(xk, ·) is a Volterra operator with respect to t0 it clearly follows that
p0 is also Volterra operator with respect to t0. On the other hand, using
condition (ii), we get from the last equality

‖
t

∫

s

p0(y)(ξ) dξ‖ ≤ |
t

∫

s

α(ξ) dξ| ‖y‖C .

Dividing both sides by t− s and passing to the limit for s → t we get (2.1).
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By Corollary 1.6 in [1], it follows from (i), (ii), (1.5), (2.1) and from the
unique solvability of the Cauchy problem for (1.7) with the initial condition
at t0 that

lim
k→∞

‖Y (t)− Y0‖C = 0 . (2.6)

On the other hand, by (1.6)

lim
k→∞

‖l(xk, Y0)− l0(Y0)‖ = 0 . (2.7)

Taking into account (ii), (2.6) and (2.7), we find

‖l(xk, Y (xk))− l0(Y0)‖ ≤
≤ ‖l(xk, Y (xk)− Y0)‖+ ‖l(xk, Y0)− l0(Y )‖ ≤

≤ α0‖Yk − Y0‖C + ‖l(xk, Y0)− l0(Y0)‖ → 0 for k →∞ .

Consequently, equality (2.4) holds.

Lemma 2.3. Let conditions (i), (ii) hold and let there exist t0 ∈ I such
that for any x ∈ C(I;Rn) the operator p(x, ·) is a Volterra operator with
respect to t0. Then inequality (1.18) is necessary and sufficient for condition
(1.9) to hold.

Proof. First we prove the necessity. Assume the contrary, that (1.9) holds,
but (1.18) is violated. Then there is a sequence xk ∈ C(I;Rn) (k = 1, 2, . . . )
such that

lim
k→∞

det
(

l
(

xk, Y (xk)
)

)

= 0 . (2.8)

It follows from (i), (ii) and Lemma 2.1 in [1] that, without loss of generality,
we can assume that conditions (1.5) and (1.6) hold for any y ∈ C(I;Rn),
where (p0, l0) ∈ En

p,c. Then, by Lemma 2.2 and equality (2.8), the operator
p0 is a Volterra operator with respect to t0, inequality (2.1) holds, and

det
(

l0(Y0)
)

= 0 ,

where y0 is the fundamental matrix of (1.7), satisfying condition (2.2).
Therefore, it follows from Lemma 2.1 that problem (1.7), (1.8) has a non-
trivial solution. This is a contradiction to (1.9), which proves that (1.18)
holds.

Now we turn to proving the sufficiency. Let (p0, l0) ∈ En
p,l. Then by

Definition 1.1 there is a sequence xk ∈ C(I;Rn) (k = 1, 2 . . . ) such that for
any y ∈ C(I; Rn) conditions (1.5) and (1.6) hold. If we now apply Lemma
2.2, it becomes clear that the operator p0 is a Volterra operator with respect
to t0, and conditions (2.1), (2.4) hold, where Y0 is the fundamental matrix
of equation (1.7), satisfying condition (2.2). On the other hand, by (1.18)
condition (2.4) implies (2.3). By Lemma 2.1, this inequality implies that
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problem (1.7), (1.8) has only the trivial solution. Now since (p0, l0) ∈ En
p,l

was arbitrary, condition (1.9) is obvious.

3. Proofs of Main Results

Proof of Theorem 1.2. According to Theorem 1.1 it is enough to show that
for any (p0, l0) ∈ En

p,l problem (1.7), (1.8) has only the trivial solution.
By Definition 1.1 there is a sequence xk ∈ C(I; Rn) (k = 1, 2, . . . ) such

that for any y ∈ C(I; Rn) conditions (1.5) and (1.6) hold. Using (ii), (1.5),
and (1.6), we get from (1.10)

lim
k→∞

Yj(xk)(t) = Y 0
j (t) uniformly on I (j = 1, 2, . . . ), (3.1)

lim
k→∞

zj(xk, y)(t) = z0
j (y)(t) uniformly on I (j = 1, 2, . . . ) (3.2)

for any y ∈ C(I; Rn) and

lim
k→∞

l(xk, Yj(xk)) = l0(Y 0
j ) (j = 1, 2, . . . ), (3.3)

where

Y 0
1 (t) = E, Y 0

j+1(t) = E +

t
∫

t0

p0(Y 0
j )(s) ds (j = 1, 2, . . . ) ,

z0
1(y)(t) =

t
∫

t0

p0(y)(s) ds, z0
j+1(y)(t) =

t
∫

t0

p0(z0
j (y))(s) ds (j = 1, 2, . . . ) .

By (3.1)–(3.3) we get from (1.12), (1.14) and (1.15)

det(l0(Y 0
j0)) 6= 0 (3.4)

and

|z0
j0,k0

(y)|C ≤ A|y|C , (3.5)

where
zj0,k0(y)(t) = z0

k0
(y)(t)− Y 0

k0
(t)

[

l0(Y 0
j0)

]−1
l0(z0

j0) .

According to Theorem 1.2 in [1], it follows from (1.13), (3.4), and (3.5)
that problem (1.7), (1.8) has only the trivial solution.

Theorem 1.1 and Lemma 2.3 immediately imply Theorem 1.3.

Remark 3.1. In the case where p(x, ·) is a Volterra operator with respect
to t0 for any x ∈ C(I; Rn), then by Lemma 2.3, Theorem 1.1 and 1.3 are
equivalent.
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Proof of Corollary 1.1. As we already noted, problem (1.3), (1.4) is obtained
from problem (1.1), (1.2) when the operators p and l are given by (1.19).
In this case, obviously, conditions (1.14) and (1.22) are equivalent. On the
other hand, using (1.19) and (1.21), it follows from (1.11) that

|zj(x, y)(t)| ≤ Zj(x)(t)|y|C for t ∈ I (j = 1, 2, . . . )

and

|l(x, zj(x, y))| ≤
m0
∑

i=1

|Hi(x)|Zj(x)(ti)|y|C (j = 1, 2, . . . ) .

Using these inequalities, we get from (1.12) and (1.23)

|zj0,k0(x, y)(t)| ≤ Zk0(x)(t)|y|C + |Yk0(x)(t)|
(

m0
∑

i=1

Hi(x)Yj0(x)(ti)
)−1∣

∣

∣×

×
m0
∑

i=1

|Hi(x)
∣

∣

∣Zj0(x)(ti)|y|C ≤ A|y|C for t ∈ I .

Consequently, inequality (1.15) holds. This argument proves that all condi-
tions of Theorem 1.2 are satisfied, which guarantees the unique solvability
of the problem under consideration.

Corollary 1.2 is obtained from Theorem 1.3. It is enough to take into
account that condition (1.24) and the equality

p(x, y)(t) =
m

∑

i=1

Pi(x)(t)y(τi(t))

guarantee that p(x, ·) is a Volterra operator with respect to t0 for any x∈
C(I; Rn).
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