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ALLIED INTEGRALS, FUNCTIONS, AND SERIES FOR
THE UNIT SPHERE *

O. DZAGNIDZE

Abstract. Among the functions defined on the two-dimensional unit
sphere we distinguish functions generalizing the conjugate integral,
the conjugate function, and the conjugate series which depend on one
variable. We establish the properties of these functions whose struc-
tures essentially differ from those of integrals, functions, and series
based on the theory of analytic functions of two complex variables.

Introduction

0.1. Let a function F (X, Y, Z) be defined on the two-dimensional unit
sphere σ = {(X, Y, Z) : Z2 + Y 2 + Z2 = 1} and F ∈ L(σ). Denote by
UF (z, y, z) the Poisson integral for the three-dimensional unit ball B =
{(x, y, z) : x2 + y2 + z2 < 1} with density F (X, Y, Z), (X, Y, Z) ∈ σ,
(x, y, z) ∈ B, which has the form

UF (x, y, z) =

=
1
4π

∫

σ

F (X, Y, Z)
1− (x2 + y2 + z2)

[(X − x)2 + (Y − y)2 + (Z − z)2]3/2 dS. (0.1)

By introducing the spherical coordinates (r, θ, φ), x = r sin θ cos φ, y =
r sin θ sin φ, z = r cos θ (0 ≤ r < 1, 0 ≤ θ ≤ π, 0 ≤ φ ≤ 2π), the function F
is transformed to a function f(θ, φ) defined on the rectangle R = {(θ, φ) :
0 ≤ θ ≤ π, 0 ≤ φ ≤ 2π} so that f(θ, φ) · sin θ ∈ L(R). Hence UF (x, y, z)
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takes the form (see, e.g., [2], p. 445)

Uf (r, θ, φ) =
1
4π

π
∫

0

2π
∫

0

f(θ′, φ′)Pr(θ, φ; θ,′ φ′) sin θ′ dθ′dφ′, (0.2)

which is called the spherical Poisson integral of f(θ, φ), (θ, φ) ∈ R.
The spherical Poisson kernel Pr can be represented as follows (see, e.g.,

[3], pp. 335 and 143):

Pr(θ, φ; θ′, φ′)=
1− r2

(1− 2r[cos θ cos θ′+sin θ sin θ′ cos(φ−φ′)]+r2)3/2 (0.3)

and

Pr(θ, φ; θ′, φ′) = 1 +
∞
∑

n=1

(2n + 1)rnPn(cos θ)Pn(cos θ′) +

+2
∞
∑

n=1

(2n + 1)rn
n

∑

m=1

(n−m)!
(n + m)!

Pnm(cos θ)Pnm(cos θ′) cos m(φ− φ′). (0.4)

First and second order derivatives with respect to θ and to φ of the
spherical Poisson integral Uf (r, θ, φ) have been investigated, together with
their boundary values, in [4]–[9].

0.2. The main objects for one-dimensional Fourier analysis are functions
defined on or inside the circle. Among them functions which in the circle
can be represented by the Poisson integrals, and their conjugate functions
(conjugate Poisson integrals) play a special role, since the Poisson integral
and the conjugate Poisson integral make up a pair which is an analytic
function inside the circle. This analyticity enables one to represent the
radial derivative of the Poisson integral in terms of the derivative of the
conjugate Poisson integral with respect to a polar angle. If the density of
the Poisson integral possesses the summable conjugate function with a finite
derivative at some point φ0, then by virtue of Smirnov’s theorem ([10], p.
263; [11], p. 583) and Fatou’s theorem ([10], p. 100) this derivative is an
angular limit at the point (1, φ0) for the radial derivative of the Poisson
integral.

Analogous questions naturally arise for the spherical Poisson integral
Uf (r, θ, φ). The representation of the radial derivative ∂

∂r Uf (r, θ, φ) becomes
a more difficult problem, in particular, because of the fact that for functions
defined in the three-dimensional real ball there is no theory that would be
analogous to the theory of analytic functions in the disk. The formula for
∂
∂r Uf (r, θ, φ) considered in the author’s paper “The radial derivative with
boundary values of the spherical Poisson integral” has turned out to be
closely connected with functions that have not been considered previously.
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This paper is dedicated to the investigation of such functions having an
independent interest for Fourier analysis on the sphere.

Namely, the triple of harmonic functions U∗f (r, θ, φ), ˜Uf (r, θ, φ) and
˜U∗f (r, θ, φ) in the ball is connected with the spherical Poisson integral Uf (r,
θ, φ). These functions are called allied with Uf harmonic functions with re-
spect to θ, to φ, and to (θ, φ), respectively (see §1). The triple of harmonic
functions P ∗r (θ, φ; θ′, φ′), ˜Pr(θ, φ; θ′, φ′) and ˜P ∗r (θ, φ; θ′, φ′) in the ball is con-
nected with the spherical Poisson kernel Pr(θ, φ; θ′, φ′). These functions are
called allied with Pr kernels with respect to θ, to φ, and to (θ, φ). These
kernels can be regarded as generalizations of the conjugate Poisson kernel
Qr(t) =

∑∞
n=1 rn sin nt (see §2). Moreover, the triple of allied harmonic

functions admits representations in the form of integrals with allied kernels
and are called by the author allied integrals with Uf . These integrals are
generalizations of the conjugate Poisson integral (see §3). If f(θ, φ) ∈ L2,
then in L2 there exist functions f∗(θ, φ), ˜f(θ, φ), and ˜f∗(θ, φ) called allied
with f(θ, φ) functions with respect to θ, φ, and (θ, φ). In that case the
allied integrals are Poisson integrals for the allied functions (see §4). We
have derived an estimate of the L2-norm of the functions f∗, ˜f , and ˜f∗

through the L2-norms of the function f ∈ L2. The obtained inequalities
can be regarded as generalizations of M. Riesz’s inequality ([10], p. 253) for
the ball when p = 2 (see §5). The application of the above arguments to
the Fourier–Laplace series S[f ], f ∈ L(R), enables us to obtain the allied
Laplace series S∗[f ], ˜S[f ], and ˜S∗[f ] with respect to θ, to φ, and to (θ, φ),
respectively. For f ∈ L2 these Laplace series become Fourier–Laplace se-
ries S[f∗], S[ ˜f ], and S[ ˜f∗], respectively. This fact generalizes, for the ball,
Smirnov’s equality ([10], p. 263; [11], p. 583) and M. Riesz’s equality ([10],
p. 253) when p = 2 (see §6).

0.3. In what follows we shall use the representation of the spherical Pois-
son integral as a series (see, e.g., [2], p. 444)

Uf (r, θ, φ) = a00 +
∞
∑

n=1

an0rnPn(cos θ) +

+
∞
∑

n=1

rn
n

∑

m=1

(

anm cos mφ + bnm sin mφ
)

Pnm(cos θ), (0.5)

coinciding with the Abel–Poisson mean values (A-mean values) of the fol-
lowing Fourier–Laplace series S[f ] for the function f(θ, φ) ∈ L(R) (see, e.g.,
[2], p. 444):

S[f ] = a00 +
∞
∑

n=1

an0Pn(cos θ) +
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+
∞
∑

n=1

n
∑

m=1

(

anm cosmφ + bnm sin mφ
)

Pnm(cos θ), (0.6)

where the Fourier–Laplace coefficients an0, anm, bnm of the function f are
defined by the following equalities:

an0 =
2n + 1

4π

π
∫

0

2π
∫

0

f(θ′, φ′)Pn(cos θ′) sin θ′ dθ′dφ′, (0.7)

anm =
2n + 1

2π
· (n−m)!
(n + m)!

π
∫

0

2π
∫

0

f(θ′, φ′)Pnm(cos θ′)×

× cos mφ′ sin θ′ dθ′dφ′, (0.8)

bnm =
2n + 1

2π
(n−m)!
(n + m)!

π
∫

0

2π
∫

0

f(θ′, φ′)Pnm(cos θ′)×

× sin mφ′ sin θ′ dθ′dφ′. (0.9)

The Legendre polynomials Pn(x) and the associated Legendre functions
Pnm(x) figuring in these equalities are defined on [−1, 1] by the following
equalities:

Pn(x) =
1

n!2n ·
dn

dxn (x2 − 1)n, n = 0, 1, 2, . . . , (0.10)

Pnm(x) = (1− x2)
1
2 m dm

dxm Pn(x) = (0.11)

=
(1− x2)

1
2 m

n!2n

dn+m

dxn+m (x2 − 1)n, (0.12)

1 ≤ m ≤ n, n = 1, 2, . . . ,

where (1 − x2)
1
2 is a non-negative value of the square root. Note that

P 0
n(x) = Pn(x), and Pnm(x) = 0 for m > n.

Remark 0.1. In defining the associated Legendre functions, some authors
use the multiplier (−1)m (see, e.g., [3], p. 98 or 107; [12], p. 240, formula
(7.12.7); [13], p. 67, 191), while others do not (see, e.g., [14], p. 481; [15],
p. 246; [16], p. 384).

Remark 0.2. In the case where the associated Legendre functions are de-
fined by equality (0.11) or (0.12), they are sometimes called Ferrers’ func-
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tions ([15], p. 246) and denoted by the symbol Tm
n (x) ([3], p. 93) or Pn,m(x)

([14], p. 481; [16], p. 3841).

Remark 0.3. In what follows Pnm(x) will be assumed to be defined by
equality (0.11) or (0.12). If Pnm(x) were defined by the multiplier (−1)m,
then the terms of series (0.4) would have (−1)m · (−1)m = 1 as multipliers,
while in series (0.5) and (0.6) (−1)m would arise the first time from the
coefficients anm and bnm and the second time from the Legendre functions.
As a result, the products anmPnm(x) and bnmPnm(x) would have (−1)m ·
(−1)m = 1 as multipliers. Thus, what will be proved for the Fourier series
with functions Pnm(x) defined by equality (0.11) or (0.12) will also be true
for the Fourier series with associated Legendre functions with multipliers
(−1)m.

§ 1. Allied Harmonic Functions

1.1. We introduce the following functions connected with representation
(0.5) of the harmonic function Uf (r, θ, φ) in the ball B :

U∗f (r, θ, φ) =
∞
∑

n=1

an0λn0rnPn(cos θ) +

+
∞
∑

n=1

rn
n

∑

m=1

λnm
(

anm cos mφ + bnm sin mφ
)

Pnm(cos θ) (1.1)

and

˜U∗f (r, θ, φ) =
∞
∑

n=1

rn
n

∑

m=1

λnm
(

anm sin mφ− bnm cos mφ
)

Pnm(cos θ), (1.2)

where the numbers λnm are defined by the equalities

λnm =
1

n + m
+

1
n−m + 1

for 0 ≤ m ≤ n, n = 1, 2, . . . . (1.3)

Besides the functions U∗f and ˜U∗f , we introduce one more function again
connected with representation (0.5) of the function Uf ,

˜Uf (r, θ, φ) =
∞
∑

n=1

rn
n

∑

m=1

(

anm sin mφ− bnm cos mφ
)

Pnm(cos θ). (1.4)

It will be proved below that the functions U∗f , ˜U∗f = ( ˜Uf )∗ ≡ ˜U∗f and ˜Uf are
harmonic in the ball B (see Theorem 1.1).

1On pages 420–423 of [16] one will also find the tables of surface spherical harmonics
and solid spherical harmonics for 0 ≤ n ≤ 4, 0 ≤ m ≤ 4.
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The functions U∗f , ˜Uf , and ˜U∗f will be called allied with Uf harmonic
functions with respect to θ, to φ, and to (θ, φ), respectively.

Speaking in general, if there is a harmonic function in the ball B

U(r, θ, φ) = A00 +
∞
∑

n=1

An0rnPn(cos θ) +

+
∞
∑

n=1

rn
n

∑

m=1

(

Anm cosmφ + Bnm sinmφ
)

Pnm(cos θ), (1.5)

then the function

˜U(r, θ, φ) =
∞
∑

n=1

rn
n

∑

m=1

(

Anm sinmφ−Bnm cos mφ
)

Pnm(cos θ) (1.6)

will be called the allied function of U(r, θ, φ) with respect to φ.
Similarly, using the numbers λnm, one can define the functions U∗(r, θ, φ)

and ˜U∗ allied with the function U(r, θ, φ) with respect to θ and to (θ, φ).

1.2. Now we shall prove the theorem on the functions U∗f , ˜U∗f , and ˜Uf

being harmonic for f ∈ L(R).

Theorem 1.1. For every function f(θ, φ), summable on the rectangle
R, the functions U∗f (r, θ, φ), ˜U∗f (r, θ, φ), and ˜Uf (r, θ, φ) defined by equalities
(1.1)–(1.4) are hamonic functions in the ball B.

Proof. If we introduce the functions

αn(θ) = an0λn0Pn(cos θ),

βn(θ, φ) =
n

∑

m=1

λnm
(

anm cos mφ + bnm sin mφ
)

Pnm(cos θ),
(1.7)

then series (1.1) will take the form

U∗f (r, θ, φ) =
∞
∑

n=1

rnαn(θ) +
∞
∑

n=1

rnβn(θ, φ). (1.8)

By virtue of equality (0.8) we shall have

anmPnm(cos θ) =
2n + 1

2π

π
∫

0

2π
∫

0

f(θ′φ′)
(n−m)!
(n + m)!

×

× Pnm(cos θ)Pnm(cos θ′) cosmφ′ sin θ′ dθ′dφ′. (1.9)
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But since for 0 ≤ θ ≤ π, 0 ≤ θ′ ≤ π, 1 ≤ m ≤ n, n = 1, 2, . . . , the inequality

(n−m)!
(n + m)!

∣

∣Pnm(cos θ)Pnm(cos θ′)
∣

∣ < 1 (1.10)

is fulfilled (see [3], p. 418, or [17], p. 271), we obtain |anmPnm(cos θ)| <
1
2 nI(f), where

I(f) =

π
∫

0

2π
∫

0

|f(θ′φ′)| sin θ′ dθ′dφ′. (1.11)

A similar estimate holds for bnmPnm(cos θ) and an0Pn(cos θ). Thus we
have the estimates

|an0Pn(cos θ)| < 1
4

nI(f), |anmPnm(cos θ)| < 1
2

nI(f),

|bnmPnm(cos θ)| < 1
2

nI(f),
(1.12)

∣

∣(anm cos mφ + bnm sin mφ)Pnm(cos θ)
∣

∣ < nI(f) (1.13)

for the above-mentioned n, m, θ and all φ.
Since2

|λnm| ≤
3
2

, 0 ≤ m ≤ n, n = 1, 2, . . . , (1.14)

from (1.7) we obtain, in view of (1.12) and (1.13), the equalities

|αn(θ)| < 1
2

nI(f), |βn(θ, φ)| < 2n2I(f) (1.15)

for all θ, φ and n = 1, 2, . . . .
Therefore the power series

∑∞
n=1 n2rn converging for r < 1 is, to within

a constant multiplier, a majorant series for series (1.1). This implies that
series (1.1) converges uniformly and absolutely in every closed ball B0 =
{(x, y, z) : x2 + y2 + z2 ≤ r2

0}, where 0 < r0 < 1. Thus the sum of series
(1.1) exists and is continuous in the unit open ball. We denote this sum by
U∗f (r, θ, φ).

2By equality (1.3) we have λn0 = λn1 = 1
n + 1

n+1 ≤
3
2 for all n = 1, 2, . . . . A simple

calculation shows that

λn,m+1 − λn,m = 2m ·
2n + 1

[(n + 1)2 −m2](n2 −m2)
> 0

for 1 ≤ m ≤ n− 1 and n = 1, 2, . . . . Therefore

λn1 < λn2 < · · · < λn,n−1 < λnn =
1
2n

+ 1 ≤
3
2

, n = 1, 2, . . . .
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Now we shall show that the function U∗f (r, θ, φ) is harmonic in B. For this
it is sufficient to prove that the function U∗f (r, θ, φ) in the ball B satisfies
the equation

∂
∂r

(

r2 ∂ψ
∂r

)

+
1

sin θ
∂
∂θ

(

sin θ
∂ψ
∂θ

)

+
1

sin2 θ
∂2ψ
∂φ2 = 0. (1.16)

Using the function βn(θ, φ) from equality (1.7), we introduce the function
v(r, θ, φ) = rnβn(θ, φ) for which we have the equalities

∂v
∂r

= nrn−1βn, r2 ∂v
∂r

= nrn+1βn,
∂
∂r

(

r2 ∂v
∂r

)

= n(n + 1)rnβn; (1.17)

sin θ
∂v
∂θ

= rn sin
∂
∂θ

βn,

1
sin θ

∂
∂θ

(

sin θ
∂v
∂θ

)

= r2
( ∂2

∂θ2 βn + cot θ
∂
∂θ

βn

)

;
(1.18)

1
sin2 θ

∂2v
∂φ2 = rn 1

sin2 θ
∂2

∂φ2 βn. (1.19)

By inequality (1.15) we have the estimate
∣

∣

∣

∂
∂r

(

r2 ∂v
∂r

)∣

∣

∣ ≤ 4n4rnI(f) (1.20)

while (1.18), (1.19) give
∣

∣

∣

1
sin θ

∂
∂θ

(

sin θ
∂v
∂θ

)∣

∣

∣ ≤ rn
(

∣

∣

∣

∂2

∂θ2 βn

∣

∣

∣ +
1

sin θ

∣

∣

∣

∂
∂θ

βn

∣

∣

∣

)

, (1.21)

∣

∣

∣

1
sin2 θ

∂2v
∂φ2

∣

∣

∣ ≤
rn

sin2 θ

∣

∣

∣

∂2

∂φ2 βn

∣

∣

∣. (1.22)

It is necessary to estimate | ∂
∂θ βn|, | ∂2

∂θ2 βn| and | ∂2

∂φ2 βn|. To this end,
we use S. Bernstein’s well-know inequality ([10], p.118; [11], p. 47): the
inequality

|T ′n(x)| ≤ n · max
0≤x≤2π

|Tn(x)| (1.23)

is fulfilled for a trigonometric polynomial Tn(x) of order not higher than n.
Since Pnm(cos θ), 0 ≤ m ≤ n, is a trigonometric polynomial of order n,

by (1.23) we conclude that
∣

∣

∣anm
d
dθ

Pnm(cos θ)
∣

∣

∣ ≤ n · max
0≤θ≤π

|anmPnm(cos θ)|, (1.24)

∣

∣

∣bnm
d
dθ

Pnm(cos θ)
∣

∣

∣ ≤ n · max
0≤θ≤π

|bnmPnm(cos θ)| (1.25)

hold for all θ, 0 ≤ θ ≤ π.
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Now using inequality (1.12) we obtain
∣

∣

∣an0
d
dθ

Pn(cos θ)
∣

∣

∣ <
1
4

n2I(f), (1.26)
∣

∣

∣anm
d
dθ

Pnm(cos θ)
∣

∣

∣ ≤
1
2

n2I(f),
∣

∣

∣bnm
d
dθ

Pnm(cos θ)
∣

∣

∣ ≤
1
2

n2I(f) (1.27)

for all θ, 0 ≤ θ ≤ π, and n = 1, 2, . . . .
Inequalities (1.26) and (1.27) imply

max
0≤θ≤π

∣

∣

∣

d
dθ

(

an0Pn(cos θ)
)

∣

∣

∣ ≤
1
4

n2I(f), n = 1, 2, . . . , (1.28)

max
0≤θ≤π
0≤φ≤2π

∣

∣

∣

∂
∂θ

(

anm cos mφ + bnm sin mφ
)

Pnm(cos θ)
∣

∣

∣ ≤ n2I(f) (1.29)

for 1 ≤ m ≤ n, n = 1, 2, . . . .
Using (1.7), (1.28), and (1.29) we obtain

∣

∣

∣

d
dθ

αn(θ)
∣

∣

∣ ≤
1
2

n2I(f), n = 1, 2, . . . , (1.30)
∣

∣

∣

∂
∂θ

βn(θ, φ)
∣

∣

∣ ≤ 2 n3I(f), n = 1, 2, . . . , (1.31)

for all (θ, φ), 0 ≤ θ ≤ π, 0 ≤ φ ≤ 2π. By virtue of inequalities (1.23) and
(1.31) we obtain the estimate

∣

∣

∣

∂2

∂θ2 βn(θ, φ)
∣

∣

∣ ≤ 2n4I(f), n = 1, 2, . . . . (1.32)

Further, since

∂2

∂φ2 βn(θ, φ) =

= −
n

∑

m=1

m2λnm(anm cosmφ + bnm sin mφ)Pnm(cos θ), (1.33)

by (1.13) and (1.14) we have

max
0≤θ≤π
0≤φ≤2π

∣

∣

∣

∂2

∂φ2 βn(θ, φ)
∣

∣

∣ ≤ 2n4I(f), n = 1, 2, . . . . (1.34)

On account of estimates (1.31), (1.32), and (1.33) inequalities (1.21) and
(1.22) imply that

∣

∣

∣

1
sin θ

∂
∂θ

(

sin θ
∂v
∂θ

)∣

∣

∣ ≤
4

sin θ
n4rnI(f), n = 1, 2, . . . , (1.35)
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∣

∣

∣

1
sin2 θ

∂2v
∂φ2

∣

∣

∣ ≤
2

sin2 θ
n4rnI(f), n = 1, 2, . . . , (1.36)

for all (θ, φ), 0 < θ < π, 0 ≤ φ ≤ 2π.
From (1.20), (1.35), and (1.36) it follows that the power series

∑∞
n=1 n4rn,

which converges for r < 1, is, to within a constant multiplier, the majo-
rant series for the series3

∑∞
n=1

∂
∂r (r2 ∂

∂r )rnβn(θ, φ),
∑∞

n=1
1

sin θ
∂
∂θ (sin θ ∂

∂θ )
rnβn(θ, φ),

∑∞
n=1

1
sin2 θ

∂2

∂φ2 rnβn(θ, φ). Therefore these series uniformly and
absolutely converge in the ball B0 of radius r0 < 1. Hence in these series
the operation of differentiation can be put before the summation sign, which
enables us to conclude that the function U∗f (r, θ, φ) satisfies equation (1.16)
so that it is harmonic in B.

Applying similar arguments, it can be proved that the functions ˜U∗f (r, θ, φ)
and ˜Uf (r, θ, φ) are harmonic in the ball B.

1.3. The proof of Theorem 1.1 enables one to state that the harmonicity
preserves after the transformation of the coefficients.

Theorem 1.2. Let the function Φ(θ, φ) be summable on R. Denote its
Fourier–Laplace coefficients by An0, Anm, Bnm and consider the harmonic
in the ball B function which is the spherical Poisson integral for Φ(θ, φ)

UΦ(r, θ, φ) = A00 +
∞
∑

n=1

[

An0rnPn(cos θ) +

+ rn
n

∑

m=1

(Anm cos mφ + Bnm sin mφ)Pnm(cos θ)
]

. (1.37)

Assume that a sequence of real numbers µnm is given such that the rela-
tions

|µnm| ≤ cnp for 1 ≤ m ≤ n, n = 1, 2, . . . , (1.38)

are fulfilled for some fixed constants c > 0 and p > 0.
Then the three series

∞
∑

n=1

∂
∂r

(

r2 ∂
∂r

)[

µn0An0rnPn(cos θ) +

+rn
n

∑

m=1

µnm(Anm cosmφ + Bnm sin mφ)Pnm(cos θ)
]

, (1.39)

∞
∑

n=1

1
sin θ

∂
∂θ

(

sin θ
∂
∂θ

)[

µn0An0rn +

3It is a well-known fact that the values θ = 0 and θ = π do not prevent one from
making the same conclusions for the whole ball B ([2], p. 273).
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+rn
n

∑

m=1

µnm(Anm cos mφ + Bnm sinmφ)Pnm(cos θ)
]

, (1.40)

∞
∑

n=1

1
sin2 θ

∂2

∂φ2

[

µn0An0rn +

+rn
n

∑

m=1

µnm(Anm cosmφ + Bnm sin mφ)Pnm(cos θ)
]

(1.41)

converge absolutely and uniformly in each closed ball B0 of radius r0 < 1
and the sum of the series

∞
∑

n=1

[

µn0An0rnPn(cos θ) +

+rn
n

∑

m=1

µnm(Anm cos mφ + Bnm sin mφ)Pnm(cos θ)
]

(1.42)

is a harmonic function in the ball B.

§ 2. Allied Kernels

We introduce the functions

P ∗r (θ, φ; θ′, φ′) =
∞
∑

n=1

(2n + 1)λn0rnPn(cos θ)Pn(cos θ′) +

+ 2
∞
∑

n=1

(2n + 1)rn
n

∑

m=1

λnm · (n−m)!
(n + m)!

×

× Pnm(cos θ)Pnm(cos θ′) cos m(φ− φ′), (2.1)

˜P ∗r (θ, φ; θ′, φ′) = 2
∞
∑

n=1

(2n + 1)rn
n

∑

m=1

λnm · (n−m)!
(n + m)!

×

× Pnm(cos θ)Pnm(cos θ′) sin m(φ− φ′), (2.2)

where λnm are defined by equality (1.3). Besides, we introduce one more
function

˜Pr(θ, φ; θ′, φ′) = 2
∞
∑

n=1

(2n + 1)rn
n

∑

m=1

(n−m)!
(n + m)!

×

× Pnm(cos θ)Pnm(cos θ′) sin m(φ− φ′). (2.3)

The functions P ∗r , ˜Pr, and ˜P ∗r = ( ˜Pr)∗ ≡ ˜P ∗r will be called allied kernels
with the Poisson kernel Pr with respect to θ, to φ, and to (θ, φ), respectively.

Let us establish some properties of the functions P ∗r , ˜P ∗r , and ˜Pr.
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2.1. First, we shall prove that the following equalities are valid:

2π
∫

0

˜P ∗r (θ, φ; θ′, φ′) dφ′ = 0, (2.4)

2π
∫

0

˜Pr(θ, φ; θ′, φ′) dφ′ = 0, (2.5)

π
∫

0

2π
∫

0

P ∗r (θ, φ; θ′, φ′) sin θ′ dθ′dφ′ = 0, (2.6)

π
∫

0

2π
∫

0

˜P ∗r (θ, φ; θ′, φ′)Pk(cos θ′) sin θ′ dθ′dφ′ = 0, k = 1, 2, . . . , (2.7)

π
∫

0

2π
∫

0

˜Pr(θ, φ; θ′, φ′)Pk(cos θ′) sin θ′ dθ′dφ′ = 0, k = 1, 2, . . . . (2.8)

Equalities (2.4) and (2.5) are immediately obtained from equalities (2.2)
and (2.3) by taking into account that the termwise integration is correct on
account of inequalities (1.10) and (1.14).

To prove (2.6) note that equality (2.1) implies

2π
∫

0

P ∗r (θ, φ; θ′, φ′) dφ′ = 2π
∞
∑

n=1

(2n + 1)λn0rnPn(cos θ)Pn(cos θ′). (2.9)

Hence
π

∫

0

2π
∫

0

P ∗r sin θ′ dθ′dφ′ =

= 2π
∞
∑

n=1

λn0rnPn(cos θ)

π
∫

0

(2n + 1)Pn(cos θ′) sin θ′ dθ′ =

= 2π
∞
∑

n=1

λn0rnPn(cos θ)

1
∫

−1

(2n + 1)Pn(x) dx.

If we now use the equality (see, for instance, [3], p. 33, equality (34), or
[12], p. 228, equality (7.8.2))

(2n + 1)Pn(x) = P ′n+1(x)− P ′n−1(x), P−1(x) = 0 (2.10)
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and the equalities Pn(1) = 1, Pn(−1) = (−1)n, then we shall obtain the
relations

1
∫

−1

Pn(x) dx = 0 =

π
∫

0

Pn(cos θ′) sin θ′ dθ′, n = 1, 2, . . . . (2.11)

We have thus proved equality (2.6).
Equalities (2.7), (2.8) are obtained from (2.2), (2.3) by virtue of the

fact that on the rectangle R each of the systems (Pnm(cos θ′) · cos mφ) and
(Pnm(cos θ′) · sin mφ) is orthogonal to the system (Pk(cos θ′)) with respect
to the measure sin θ′ dθ′dφ′, i.e.,

π
∫

0

2π
∫

0

Pk(cos θ′)Pnm(cos θ′) cos mφ′ sin θ′ dθ′dφ′ = 0, (2.12)

1 ≤ m ≤ n, k = 1, 2, . . . , n = 1, 2, . . . ,
π

∫

0

2π
∫

0

Pk(cos θ′)Pnm(cos θ′) sin mφ′ sin θ′ dθ′dφ′ = 0, (2.13)

1 ≤ m ≤ n, k = 1, 2, . . . , n = 1, 2, . . . .

Equalities (2.7), (2.8) also hold for k = 0 but in that case they are weaker
than equalities (2.4), (2.5).

2.2. Let us now prove

Theorem 2.1. The functions P ∗r , ˜P ∗r , and ˜Pr defined by equalities (2.1)–
(2.3) are harmonic functions in the unit open ball B.

Proof. In the first place, inequalities (1.10) and (1.14) imply that the power
series

∑∞
n=1 n2rn, converging for r < 1, is the majorant one for series (2.1)–

(2.3) so that the functions P ∗r , ˜P ∗r , and ˜Pr are continuous in B.
To show that these functions are harmonic in B we shall use the same

arguments as in proving Theorem 1.1 with the only difference that there the
presence of the function f ∈ L(R) was used to obtain adequate estimates.
By analogy, we introduce the function

γn(θ, φ; θ′, φ′) =
n

∑

m=1

2(2n + 1)λnm
(n−m)!
(n + m)!

×

× Pnm(cos θ)Pnm(cos θ′) cosm(φ− φ′), (2.14)

for which by virtue of eastimates (1.10) and (1.14) we have the estimate
∣

∣γn(θ, φ′; θ′, φ′)
∣

∣ ≤ 9n2, (2.15)



226 O. DZAGNIDZE

which repeats estimate (1.15) to within a constant multiplier.
If we introduce the function w(r, θ, φ; θ′, φ′) = rnγn(θ, φ′; θ′, φ′), for w we

shall obtain inequalities similar to (1.20)–(1.22).
Further, by inequality (1.23) we obtain the estimate

∣

∣

∣

d
dθ

Pnm(cos θ)
∣

∣

∣ ≤ n · max
0≤θ≤π

|Pnm(cos θ)|, (2.16)

which with (1.10) taken into account give the inequality
∣

∣

∣

∣

∂
∂θ

( (n−m)!
(n + m)!

Pnm(cos θ)Pnm(cos θ′) cos m(φ− φ′)
)

∣

∣

∣

∣

≤ n. (2.17)

Therefore
∣

∣

∣

∂
∂θ

γn(θ, φ; θ′, φ′)
∣

∣

∣ ≤ 9n3, (2.18)

which is similar to estimate (1.31).
It is now clear how to complete the proof of the theorem.

§ 3. Allied Integrals

Theorem 3.1. For every function f(θ, φ)∈L(R) the functions U∗f (r, θ, φ),
˜U∗f (r, θ, φ), and ˜Uf (r, θ, φ) defined by equalities (1.1)–(1.4) admit the follow-
ing integral representations:

U∗f (r, θ, φ) =
1
4π

π
∫

0

2π
∫

0

f(θ′, φ′)P ∗r (θ, φ; θ′, φ′) sin θ′ dθ′dφ′, (3.1)

˜U∗f (r, θ, φ) =
1
4π

π
∫

0

2π
∫

0

f(θ′, φ′) ˜P ∗r (θ, φ; θ′, φ′) sin θ′ dθ′dφ′, (3.2)

˜Uf (r, θ, φ) =
1
4π

π
∫

0

2π
∫

0

f(θ′, φ′) ˜Pr(θ, φ; θ′, φ′) sin θ′ dθ′dφ′. (3.3)

Proof. Taking into account equalities (0.7)–(0.8), from equality (2.1) we
obtain

1
4π

π
∫

0

2π
∫

0

f(θ′, φ′)P ∗r (θ, φ; θ′, φ′) sin θ′ dθ′dφ′ =

=
∞
∑

n=1

λn0rnPn(cos θ) · 2n + 1
4π

π
∫

0

2π
∫

0

f(θ′, φ′)Pn(cos θ′) sin θ′ dθ′dφ′ +
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+
∞
∑

n=1

rn
n

∑

m=1

λnmPnm(cos θ)
[

cos mφ · 2n + 1
2π

· (n−m)!
(n + m)!

×

×
π

∫

0

2π
∫

0

f(θ′, φ′)Pnm(cos θ′) cos mφ′ sin θ′ dθ′dφ′ +

+sin mφ · 2n + 1
2π

· (n−m)!
(n + m)!

×

×
π

∫

0

2π
∫

0

f(θ′, φ′)Pnm(cos θ′) sin mφ′ sin θ′ dθ′dφ′
]

= U∗f (r, θ, φ).

Here termwise integration is correct because of the uniform convergence of
series (1.1) with respect to (θ, φ) ∈ R for r < 1 (see the proof of Theorem
1.1).

Equalities (3.2) and (3.3) are proved similarly.
Integrals (3.1), (3.3), and (3.2) will be called allied integrals with the

integral Uf (r, θ, φ) with respect to θ, to φ, and to (θ, φ), respectively.

§ 4. Allied Functions

By Theorem 1.1, to each function f ∈ L(R) there corresponds with the
aid of the Poisson integral Uf a triple of the harmonic functions U∗f , ˜U∗f ,
and ˜Uf in the ball B, which admits representations (1.1), (1.2), and (1.4)
in the form of allied series, and representations (3.1)–(3.3) in the form of
allied integrals.

We pose the natural question under what conditions these series will be
Fourier–Laplace series and the integrals will be spherical Poisson integrals.

For the integrals (for the series see §6) the answer for the space L2(R) is
stated as

Theorem 4.1. For every function f(θ, φ) ∈ L2(R) there exist functions
f∗(θ, φ) ∈ L2(R), ˜f∗(θ, φ) ∈ L2(R), and ˜f(θ, φ) ∈ L2(R) such that the
equalities

U∗f (r, θ, φ) = Uf∗(r, θ, φ), (4.1)

˜U∗f (r, θ, φ) = U
f̃∗

(r, θ, φ), (4.2)

˜Uf (r, θ, φ) = U
f̃
(r, θ, φ) (4.3)
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hold in the ball B, i.e. (see equalities (3.1)–(3.3)),

1
4π

π
∫

0

2π
∫

0

fP ∗r sin θ′ dθ′dφ′ =
1
4π

π
∫

0

2π
∫

0

f∗Pr sin θ′ dθ′dφ′, (4.4)

1
4π

π
∫

0

2π
∫

0

f ˜P ∗r sin θ′ dθ′dφ′ =
1
4π

π
∫

0

2π
∫

0

˜f∗Pr sin θ′ dθ′dφ′, (4.5)

1
4π

π
∫

0

2π
∫

0

f ˜Pr sin θ′ dθ′dφ′ =
1
4π

π
∫

0

2π
∫

0

˜fPr sin θ′ dθ′dφ′. (4.6)

Proof. For f ∈ L2(R) we have Parseval’s equality (see, for instance, [16], p.
349)

π
∫

0

2π
∫

0

f2(θ′, φ′) sin θ′ dθ′dφ′ = 4πa2
00 + 4π

∞
∑

n=1

1
2n + 1

a2
n0 +

+2π
∞
∑

n=1

1
2n + 1

n
∑

m=1

(n + m)!
(n−m)!

(a2
nm + b2

nm). (4.7)

Series (4.7) is therefore convergent. In that case the series obtained from
(4.7) will converge if instead of (anm, bnm) we successively put

(λnmanm, λnmbnm), (−λnmbnm, λnmanm), (−bnm, anm). (4.8)

Hence by the Riesz–Fischer theorem we obtain the existence of the func-
tions f∗ ∈ L2(R), ˜f∗ ∈ L2(R) and ˜f ∈ L2(R) with the Fourier–Laplace
coefficients (4.8). Series (1.1), (1.2), and (1.4) are therefore A-mean values
of the Fourier–Laplace series S[f∗], S[ ˜f∗] and S[ ˜f ]. This in turn means
that the harmonic functions U∗f (r, θ, φ), ˜U∗f (r, θ, φ), and ˜Uf (r, θ, φ) are the

spherical Poisson integrals for f∗, ˜f∗, and ˜f , respectively. This is equivalent
to equalities (4.1)–(4.3), which completes the proof of the theorem.

The functions f∗, ˜f , and ˜f∗ from Theorem 4.1 will be called allied with
f functions with respect to θ, to φ, and to (θ, φ).

§ 5. L2-Inequalities for f∗, ˜f∗, and ˜f

For the operators transforming f ∈ L2(R) into f∗ ∈ L2(R), ˜f∗ ∈ L2(R),
and ˜f ∈ L2(R) the following statement holds.
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Theorem 5.1. For every function f ∈ L2(R) we have the inequalities

π
∫

0

2π
∫

0

( ˜f∗)2 sin θ′ dθ′dφ′ ≤
π

∫

0

2π
∫

0

(f∗)2 sin θ′ dθ′dφ′, (5.1)

π
∫

0

2π
∫

0

(f∗)2 sin θ′ dθ′dφ′ ≤ 9
4

π
∫

0

2π
∫

0

f2 sin θ′ dθ′dφ′, (5.2)

π
∫

0

2π
∫

0

( ˜f)2 sin θ′ dθ′dφ′ ≤
π

∫

0

2π
∫

0

f2 sin θ′ dθ′dφ′ (5.3)

and the equalities

π
∫

0

2π
∫

0

( ˜f∗)2 sin θ′ dθ′dφ′ =

=

π
∫

0

2π
∫

0

(f∗)2 sin θ′ dθ′dφ′ − 4π
∞
∑

n=1

2n + 1
n2(n + 1)2

a2
n0, (5.4)

π
∫

0

2π
∫

0

( ˜f)2 sin θ′ dθ′dφ′=2π
∞
∑

n=1

1
2n + 1

n
∑

m=1

(n + m)!
(n−m)!

(a2
nm+b2

nm), (5.5)

π
∫

0

2π
∫

0

( ˜f)2 sin θ′ dθ′dφ′ =

=

π
∫

0

2π
∫

0

f2 sin θ′ dθ′dφ′ − 4πa2
00 − 4π

∞
∑

n=1

1
2n + 1

a2
n0. (5.6)

Proof. Using the same reasoning as for the proof of Theorem 4.1, we obtain
the equalities

π
∫

0

2π
∫

0

( ˜f∗)2 sin θ′ dθ′dφ′ =

= 2π
∞
∑

n=1

1
2n + 1

n
∑

m=1

(n + m)!
(n−m)!

λ2
nm(a2

nm + b2
nm), (5.7)

π
∫

0

2π
∫

0

(f∗)2 sin θ′ dθ′dφ′ = 4π
∞
∑

n=1

1
2n + 1

λ2
n0a

2
n0 +
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+2π
∞
∑

n=1

1
2n + 1

n
∑

m=1

(n + m)!
(n−m)!

λ2
nm(a2

nm + b2
nm), (5.8)

π
∫

0

2π
∫

0

( ˜f∗)2 sin θ′ dθ′dφ′ =

=

π
∫

0

2π
∫

0

(f∗)2 sin θ′ dθ′dφ′ − 4π
∞
∑

n=1

1
2n + 1

λ2
n0a

2
n0. (5.9)

Equalities (5.7) and (5.8) imply (5.1) and (5.2) with (1.14) and (4.7)
taken into account. Equality (5.4) is obtained from (5.9) by virtue of the
fact that λn0 = 2n+1

n(n+1) . Furthermore, since (−bnm, anm) are the Fourier–

Laplace coefficients for the function ˜f(θ, φ), we obtain (5.5) and (5.6) from
Parseval’s equality. Equality (5.3) follows in turn from (5.6).

§ 6. Allied Series

The technique used to make series (1.1), (1.2), and (1.4) correspond to
series (0.5) enables one to write the allied series S∗, ˜S∗, and ˜S for any
Laplace series S obtained formally from series (1.5) by substituting r = 1.
In particular, the series

S∗[f ] =
∞
∑

n=1

( 1
n

+
1

n + 1

)

an0Pn(cos θ) +

+
∞
∑

n=1

n
∑

m=1

( 1
n + m

+
1

n−m + 1

)

×

×
(

anm cos mφ + bnm sin mφ
)

Pnm(cos θ), (6.1)

˜S∗[f ] =
∞
∑

n=1

n
∑

m=1

( 1
n + m

+
1

n−m + 1

)

×

×
(

anm sin mφ− bnm cos mφ
)

Pnm(cos θ), (6.2)

˜S[f ] =
∞
∑

n=1

n
∑

m=1

(

anm sin mφ− bnm cosmφ
)

Pnm(cos θ) (6.3)

are the allied Laplace series to the Fourier–Laplace series (0.6) with respect
to θ, to (θ, φ), and to φ, respectively.

The proof of Theorem 4.1 gives rise to

Theorem 6.1. For every function f ∈ L2(R) there exist functions f∗ ∈
L2(R), ˜f∗∈L2(R), and ˜f ∈ L2(R) for which the series S∗[f ], ˜S∗[f ] and ˜S[f ]
are the Fourier–Laplace series, i.e., S∗[f ]=S[f∗], ˜S∗[f ]=S[ ˜f∗], ˜S[f ]=S[ ˜f ].
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Remark 6.1. Using the numbers λnm defined by equality (1.3), we intro-
duce the polynomials

P ∗n(x) =
( 1

n
+

1
n + 1

)

Pn(x) (n = 1, 2, . . . ) (6.4)

and

P ∗nm =
( 1

n + m
+

1
n−m + 1

)

Pnm(x) (6.5)

(1 ≤ m ≤ n, n = 1, 2, . . . ),

which will be called allied Legendre polynomials and allied Legendre func-
tions, respectively.

Then equalities (1.1), (1.2), (6.1) and (6.2) can be rewritten as

U∗f (r, θ, φ) =
∞
∑

n=1

an0rnP ∗n(cos θ) +

+
∞
∑

n=1

rn
n

∑

m=1

(

anm cos mφ + bnm sinmφ
)

P ∗nm(cos θ), (6.6)

˜U∗f (r, θ, φ) =
∞
∑

n=1

rn
n

∑

m=1

(

anm sin mφ− bnm cosmφ
)

P ∗nm(cos θ), (6.7)

S∗[f ] =
∞
∑

n=1

an0P ∗n(cos θ) +

+
∞
∑

n=1

n
∑

m=1

(

anm cosmφ + bnm sin mφ
)

P ∗nm(cos θ), (6.8)

˜S∗[f ] =
∞
∑

n=1

n
∑

m=1

(

anm sin mφ− bnm cosmφ
)

P ∗nm(cos θ). (6.9)
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t. I. Paris, Gauthier-Villars, 1957.
14. V. I. Smirnov, A course on higher mathematics, v. III, part 2.

(Russian) Gostekhizdat, Moscow, 1957.
15. G. Sansone, Orthogonal functions. Interscience Publishers, New

York, 1959.
16. V. I. Levin and Yu. I. Grosberg, Differential equations of mathema-

tical physics. (Russian) Gostekhizdat, Moscow–Leningrad, 1951.
17. L. Robin, Fonctions sphériques de Legendre et fonctions sphéröıdales,
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