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TO THE PROBLEM OF A STRONG DIFFERENTIABILITY
OF INTEGRALS ALONG DIFFERENT DIRECTIONS

G. LEPSVERIDZE

Abstract. It is proved that for any given sequence (σn, n ∈ N) =
Γ0 ⊂ Γ, where Γ is the set of all directions in R2 (i.e., pairs of ortho-
gonal straight lines) there exists a locally integrable function f on R2

such that: (1) for almost all directions σ ∈ Γ\Γ0 the integral
∫

f
is differentiable with respect to the family B2σ of open rectangles
with sides parallel to the straight lines from σ; (2) for every direction
σn ∈ Γ0 the upper derivative of

∫

f with respect to B2σn equals +∞;

(3) for every direction σ ∈ Γ the upper derivative of
∫

|f | with respect
to B2σ equals +∞.

§ 1. Statement of the problem. Formulation of the main
result

Let B(x) be a differentation basis at the point x ∈ Rn (see [1]). The
family {B(x) : x ∈ Rn} is called a differentiation basis in Rn.

For f ∈ Lloc(Rn) and x ∈ Rn let us denote respectively by DB(f)(x)
and DB(f)(x) the upper and the lower derivative of the integral

∫

f with
respect to B at x [1]. When these two derivatives are equal their common
value is denoted by DB(f)(x) and the basis B is said to differentiate

∫

f if
the relation DB(f)(x) = f(x) holds almost everywhere.

Let B2 denote the differentiation basis in Rn consisting of all n-dimen-
sional open intervals, and B2(x) be the family of sets from B2 containing
x.

Let σ be the union of n mutually orthogonal straight lines in Rn (n ≥ 2)
which intersect at the origin. The set of such unions will be denoted by
Γ(Rn). Elements of this set will be called directions. Note that Γ(R2)
corresponds in the one-to-one manner to the interval [0, π

2 ) (see [2]).
For a fixed direction σ we denote by B2σ the differentiation basis in Γ(Rn)

which is formed by all n-dimensional open rectangles with the sides parallel
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to the straight lines from σ. If B2σ differentiates
∫

f at x, then the integral
∫

f is said to be strongly differentiable with respect to σ at x.
The following problem was proposed by Zygmund (see [1], Ch. IV): Given

a function f ∈ L(R2), is it possible to choose a direction σ such that
∫

f
would be strongly differentiable with respect to σ?

Let W (Rn) (n ≥ 2) denote a class of locally integrable functions on
Rn whose strong upper derivatives DB2σ (f)(x) are equal to +∞ almost
everywhere along each fixed direction σ. When solving Zygmund’s problem,
Marstrand [3] showed that the class W (R2) is not empty, and thus his answer
to the above stated problem was negative. A stronger result was obtained
by López Melero [4] and Stokolos [5].

In connection with Zygmund’s problem we had the following question
[2]: Given a pair of directions σ1 and σ2 differing from each other, does
there exist an integrable function f such that the integral

∫

f is strongly
differentiable a.e. with respect to σ1 and strongly differentiable with respect
to σ2 on the null set only? Theorems 1 and 2 from [2] give a positive answer
to this question.

It is known ([1], Ch. III) that if
∫

|f | is strongly differentiable almost
everywhere, then the same holds for

∫

f . Papoulis [6] showed that the
converse proposition does not hold in general. Namely, there exists an inte-
grable function f on R2 such that the integral

∫

f is strongly differentiable
almost everywhere, while

∫

|f | is strongly differentiable on the null set only.
Zerekidze [7] has obtained a stronger result from which it follows that for
every function f from W (Rn) there exists a measurable function g such
that |f | = |g| and

∫

g is strongly differentiable almost everywhere along all
directions. In other words, changing the sign of the function on some set, we
can improve the differentiation properties of the integral in all directions.

There arises a question whether the following alternative holds: Given
function f from W (R2), can the differentiation properties of the integral
∫

f after changing the sign of the function be improved in all directions or
they do not improve in none of them?

The following theorem gives a negative answer to this question and
strengthens the results of Papoulis [6] and Marstrand [3].

Theorem. Let the sequence of directions (σn)∞n=1 be given. There exists
a locally integrable function f on R2 such that:

(1) for almost all directions σ (σ 6= σn, n ∈ N),

DB2σ (f)(x) = f(x) a.e.;

(2) for every direction σn (n ∈ N),

DB2σn
(f)(x) = +∞ a.e.;



TO THE PROBLEM OF A STRONG DIFFERENTIABILITY 159

(3) for every direction σ,

DB2σ (|f |)(x) = +∞ a.e.

Remark. If the sequence (σn)∞n=1 consists of a finite number of directions,
then in item (1) instead of ”for almost all directions” it should be written
“for all directions”.

Corollary. There is a function f ∈ Lloc(R2) such that:
(a) the integral

∫

|f | is strongly differentiable a.e. in none of the direc-
tions;

(b) for almost all irrational directions the integral
∫

f is strongly differ-
entiable a.e., while for the rational directions it is strongly differentiable on
the null set only.

§ 2. Auxiliary Assertions. Proof of the Main Result

Before passing to the formulation of auxiliary assertions let us introduce
some notation and definitions.

For the set G, G ⊂ R2, ∂G is assumed to be the boundary of the set G
and G its closure. By E we denote the unit square in R2.

Given a natural number n, let us construct two collections of straight
lines: x = en−1 and y = en−1, e = 0, 1, . . . , n, which define the rectangular
net En in the unit square E and divide it into open square intervals En

k ,
k = 1, 2, . . . , n2, with sides of length n−1.

For the rectifiable curve c denote by d(c) its length.
The set of measurable functions on Rn taking only the values −1 and 1

will be denoted by S(Rn).
For the measurable set G, G ⊂ R2, the number λ, 0 < λ < 1, and the

direction σ, denote by Hσ(χG , λ) the union of all those open rectangles R
from B2σ for which

|R|−1
∫

R

χG(y)dy ≥ λ,

where χG is the characteristic function of the set G. If, moreover, σ is a
standard direction, then the set Hσ(χG , λ) will be denoted by H(χG , λ).

Furthermore, for the interval I = (0, e1)× (0, e2) and the numbers λ and
c (0 < λ < 1, 1 < c < ∞) we define the interval Q(I, λ, c) as follows:

Q(I, λ, c) =
[

− cλ−1e1, (1 + cλ−1)e1
]

×
[

− e2, 2e2
]

.
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Let σ be a fixed direction and let f ∈ Lloc(Rn). In the present work we
consider the following maximal Hardy–Littlewood functions:

MB2σf(x) = sup
R∈B2σ(x)

|R|−1
∫

R

|f(y)|dy,

M∗
B2σ

f(x) = sup
R∈B2σ(x)

|R|−1
∣

∣

∣

∫

R

f(y)dy
∣

∣

∣.

The validity of the following two assertions can be easily verified.

Lemma 1. Let 0 < ε < 1 and nε = 9ε−1. Let, moreover, c be a conti-
nuous rectifiable curve in the unit square E and let d(c) < 1. Then for every
natural number n, n ≥ nε, the following relation holds:

∣

∣

∣ ∪
k∈τn

En
k

∣

∣

∣ ≤ ε,

where τn is a collection of those natural numbers for which the square En
k

from the rectangular net En intersects with the curve c.

Lemma 2. Let σ1 be a fixed direction from Γ(R2). Let Iσ1 be a rectangle
from B2σ1 and B be a circle (on the plane). Then:

(1)
∣

∣Hσ1(χ
Iσ1 , λ)

∣

∣ > λ−1 ln(λ−1)|Iσ1 |, 0 < λ < 1;
(2) for every direction σ,

∣

∣Hσ(χB , λ)
∣

∣ > λ−1 ln(λ−1)|B|, 0 < λ < 2−1.

Lemma 3 (Zerekidze [7]). Let ε > 0. There exists a function s ∈
S(Rn) such that

∣

∣

∣

∫

γ

s(x)dη
∣

∣

∣ < ε,

where γ is an arbitrary interval in Rn and dη is the Lebesgue linear measure
on γ.

Lemma 4 ([2]). Let I = (0, e1)× (0, e2) and let σ be an arbitrary non-
standard direction from Γ(R2). There exists a number c(σ), 1 < c(σ) < ∞,
such that for every λ, 0 < λ < 1,

Hσ(χI , λ) ⊂ Q(I, λ, c(σ)).

If, moreover, c(σ)λ−1e1 ≤ e2, then
∣

∣Hσ(χI , λ)
∣

∣ ≤ 9c(σ)λ−1|I|.

Proof of the theorem. The proof of the theorem is divided into several parts.
1◦. We define some auxiliary sets.
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For any natural n ≥ 2 denote

Γn =
{

σ ∈ Γ(R2) : 0 ≤ α(σ) < 2−(n+1) · n−1} ∪

∪
{

σ ∈ Γ(R2) : π2−1 − 2−(n+1) · n−1 < α(σ) < π2−1}, 1

cn = sup
{

c(σ) : σ ∈ Γ(R2)\Γn}

,

βn = max
{

exp(cnn222n); 2
(

n−1
∑

n1=2

n1βn1 +
n−1
∑

n1=2

λn1

)

}

, (1)

λn = 2
(

nβn +
n−1
∑

n1=2

(n1βn1 + λn1)
)

. (2)

Let In = (0, en
1 )× (0, en

2 ) be the interval for which

en
2 = cnn2nβnen

1 .

Assume
Qn = Q(In, (n2nβn)−1, cn).

Denote by Q∗n the interval with the same center of symmetry as Qn but
with edges four times larger. Next, for e = 1, 2, . . . , n denote by In

e , Qn
e ,

and Q∗n
e those rectangles from B2σe which are obtained from the intervals

In, Qn, and Q∗n by rotation with respect to the center of symmetry (the
centers of symmetry of the intervals In, Qn, and Q∗n coincide).

Assume

Hn
e = Hσe(χIn

e
, β−1

n ) ∪Q∗n
e , e = 1, 2, . . . , n,

a2 = 1/2, an = rn−1(Mn−1
mn−1

)−1, n > 2.

The sets Hn
e (e = 1, 2, . . . , n) are compact. We use Lemma 1.3 from

[1] and cover almost the whole unit square E by the sequence of non-
intersecting sets Hn

1j , j = 1, 2, . . . , homothetic to Hn
1 such that all sets

Hn
1j are contained in the unit square and have a diameter less than an. By

applying a similar treatment to the sets Hn
e , e = 2, . . . , n, we obtain

∣

∣

∣E\
∞
∪

j=1
Hn

ej

∣

∣

∣ = 0, diam(Hn
ej) ≤ an, e = 1, 2, . . . , n, j = 1, 2, . . . . (3)

Let Pn
ej (e = 1, 2, . . . , n, j = 1, 2, . . . ) denote the homothety transforming

the set Hn
e to Hn

ej . Assume

In
ej = Pn

ej(I
n
e ), Qn

ej = Pn
ej(Q

n
e ) Q∗n

ej = Pn
ej(Q

∗n
e ).

1For the direction σ, the number 0 ≤ α < π
2 is defined as the angle between the

positive direction of the axis ox and the straight line from σ lying in the first quadrant
of the plane.
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Denote by bn the circle with center at the point (2−1, 2−1) and of radius
rn, 0 < rn < 1. Choose a number rn so small that the conditions rn < rn−1

and H(χbn
, λ−1

n ) ⊂ E are fulfilled.
For the direction σ denote the set Hσ(χbn

, λ−1
n ) by hn(σ) and for the

standard direction use the notation hn = H(χbn
, λ−1

n ). Let mn be a fixed
natural number satisfying the condition

1 ≤ mn|hn| ≤ 2. (4)

Let Mn
1 ,Mn

2 , . . . , Mn
mn

be a collection of natural numbers such that
Mn

1 < Mn
2 < · · · < Mn

mn
. Let us consider the rectangular nets EMn

1 ,
EMn

2 , . . . , EMn
mn . Denote by qn

ki (k = 1, 2, . . . , mn, i = 1, 2, . . . , (Mn
k )2) the

homothety transforming the unit square E to the square EMn
k

i from the
rectangular net EMn

k . Assume (σ ∈ Γ(R2)),

Bn
ki = qn

ki(bn), hn
ki(σ) = qn

ki(h
n(σ)),

Gn
k (σ) =

(Mn
k )2

∪
i=1

hn
ki(σ),

Ω2
k(σ) =

k−1
∪

k1=1
G2

k1
(σ), k > 1,

Ωn
k (σ) =

n−1
∪

n1=2

mn1∪
k1=1

Gn1
k1

(σ) ∪
k−1
∪

k2=1
Gn

k2
(σ), n > 2,

θ2
k =

k−1
∑

k1=1

(M2
k1

)2, k > 1,

θn
k =

n−1
∑

n1=2

mn1
∑

k1=1

(Mn1
k1

)2 +
k−1
∑

k2=1

(Mn
k2

)2, n > 2,

wn
k = 2r−1

n Mn
k−1, k > 1,

ωn
k = 2θn

k sup
σ∈Γ(R2)

{

|E\Ωn
k (σ)|−1}.

Choose numbers Mn
k , k = 1, 2, . . . , mn, increasing so rapidly that the

relation

Mn
k ≥ max

{

2η−1
n ; d(∂hn); 9ωn

k ; Mn−1
mn−1

; kn}

(5)

is fulfilled.
2◦. We shall construct the function sought for.
Let B∗n

ki be the circle with the same center as Bn
ki and a twofold larger

radius. Assume

An
1 =

{

1, 2, . . . , (Mn
1 )2

}

,
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An
k =

{

i : EM∗
k

i ∩
(

E\
( k−1
∪

k1=1

(Mn
k1

)2

∪
i1=1

B∗n
k1i1

))

6= ∅
}

(k = 2, . . . , m2).

Let Sn ∈ S(R2). The functions ψn, gn, and fn will be defined for n =
2, 3, . . . , as follows:

ψn(x) = βn

n
∑

e=1

Nn
∑

j=1

χIn
ej

(x), gn(x) = λnSn(x)
mn
∑

k=1

∑

i∈An
k

χBn
ki

(x),

fn(x) = gn(x) + ψn(x).

The index function is defined as the series f(x) =
∑∞

n=2 fn(x).
Let us prove that f ∈ L(R2). We have ‖f‖1 ≤

∑∞
n=2

(

‖ψn‖1 + ‖gn‖1
)

.
First we estimate ‖ψn‖1. Using Lemma 2(a) and formula (1), we obtain

‖ψn‖1 ≤ ln−1(βn)
n

∑

e=1

∞
∑

j=1

βn ln(βn)|In
ej | ≤

≤ ln−1(βn)
n

∑

e=1

∣

∣

∣

∞
∪

j=1
Hn

ej

∣

∣

∣ = n ln−1(βn) < 2−n.

Similarly, applying Lemma 2(b) and relations (1), (2), (4) we have

‖gn‖1 ≤ ln−1(λn)
(

mn
∑

k=1

(Mn
k )2

∑

i=1

λn ln(λn)|Bn
ki
|
)

≤

≤ ln−1(λn)mn|hn| < 2−n.

The two latter relations yield the desired inclusion.
3◦. Here we shall prove that for almost all directions σ (σ 6= σn, n ∈ N)

the integral
∫

f is strongly differentiable a.e.
(a) Let us first estimate the maximal function M∗

B2σ
gn. Introduce the

sets
Bn = supp(gn) =

mn∪
k=1

∪
i∈An

k

Bn
ki, B∗n =

mn∪
k=1

∪
i∈An

k

B∗n
ki

and let ρn =
∑mn

k=1(M
n
k )2.

By Lemma 3 we can assume that

sup
γ

∣

∣

∣

∫

γ

sn(x)dη
∣

∣

∣ ≤ rn(2n+1λnρnMn
mn

)−1, (6)

where γ is an arbitrary interval of an arbitrary straight line in R2 and dη is
the Lebesgue measure on γ.
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Let us show that for every direction σ and for all x from R2\B∗n the
inequality

M∗
B2σ

gn(x) ≤ 2−n, n = 2, 3, . . . . (7)

is fulfilled. This inequality will be proved only for the case where σ is a
standard direction, since the general case has a similar proved.

Let us fix a natural number n (n ≥ 2), a point x from R2\B∗n, and a
interval R from B2(x). We assume that R ∩ Bn 6= ∅ and (k1, i) (1 ≤ k1 ≤
mn, 1 ≤ i ≤ (Mn

k1
)2) is a pair of natural numbers for which

R ∩Bn
k1i1 6= ∅. (8)

From the inclusion x ∈ R2\B∗n we have

dist(x,Bn
k1i1) ≥ dist(∂B∗n

k1i1 , B
n
k1i1) ≥ rn(Mn

k1
)−1 ≥ rn(Mn

mn
)−1.

Taking also the inclusion x ∈ R and (8) into consideration, we get

diam(R) ≥ rn(Mn
mn

)−1.

Let R = R1 × R2. It follows from the last relation that at least for one
p (p = 1, 2) the length of the interval Rp is underestimated as follows:

|Rp|1 ≥ 2−1rn(Mn
mn

)−1. (9)

Without loss of generality we assume that p = 1. We have (see (9), (6))

|R|−1
∣

∣

∣

∫

R

gn(y)dy
∣

∣

∣ ≤ λn|R|−1
mn
∑

k=1

∑

i∈An
k

∣

∣

∣

∫

R

sn(y)χBn
ki

(y)dy
∣

∣

∣ ≤

≤ λn|R|−1
mn
∑

k=1

∑

i∈An
k

∫

R2

∣

∣

∣

∫

R1

sn(y1, y2)χR1
(y1, y2)χBn

ki
(y1, y2)dy1

∣

∣

∣dy2 ≤

≤ λn|R1|−1ρn sup
γ

∣

∣

∣

∫

γ

sn(y)dη
∣

∣

∣ ≤ 2−n.

To complete the proof of relation (7) it remains to note that R ∈ B2(x)
and is arbitrary.

Let us now show that |B∗| = 0, where B∗ = limn→∞ sup B∗n.
Indeed, using relations (4) and Lemma 2 (b), we obtain

∞
∑

n=2

|B∗n| ≤
∞
∑

n=2

β−1
n ln−1(βn)

mn
∑

k=1

(Mn
k )2

∑

i=1

λn ln(λn)|B∗n
ki | ≤

≤ 4
∞
∑

n=2

β−1
n ln−1(βn)

mn
∑

k=1

|hn| ≤ 8
∞
∑

n=2

β−1
n ln−1(βn) < ∞.
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Thus |B∗| = 0, and hence for every x ∈ R2\B∗ there exists a number p1(x)
such that

x ∈ R2\B∗n for n ≥ p1(x). (10)

This and inequality (7) imply that for every direction σ and for all x from
R2\B∗ the following relation is fulfilled:

M∗
B2σ

gn(x) ≤ 2−n for n ≥ p1(x). (11)

(b) We will now proceed to the estimation of MB2σψn. Taking into
account Lemma 4, we find that each one of the following inclusions are
fulfilled:

Hσ(χIn , (n2nβn)−1) ⊂ Q(In, (n2nβn)−1, c(σ)) ⊂ Qn

for σ ∈ Γ(R2)\Γn.

Without loss of generality, we assume that every direction σn, n ∈ N, is
not standard. Suppose (k = 1, 2, . . . , n),

Γn
k =

{

σ ∈ Γ(R2); |α(σ)− α(σk)| < 2−(n+1)n−1}.

Since the rotation is a measure-preserving transformation and the centers of
symmetry of the intervals In and Qn coincide, from the previous inclusion it
follows (by virtue of the homothety properties) that the following inclusions
hold:

Hσ(χIn
ki

, (n2nβn)−1) ⊂ Qn
ki for σ ∈ r(R2)\

n
∪

e=1
Γn

e , (12)

k = 1, 2, . . . , n, j = 1, 2, . . . .

The definition of the rectangles Qn
ej and Q∗n

ej immediately implies that for
every direction σ there exists a rectangle En

ej(σ) ∈ B2σ possessing the prop-
erty

Qn
ej ⊂ En

ej(σ) ⊂ Q∗n
ej . (13)

We have |Q∗n
ej | = 16|Qn

ej | ≤ 144cnβn2nn|In
ej |. On the other hand, by

Lemma 2 (a) we have
∣

∣Hσe(χIn
ej

, β−1
n )

∣

∣ ≥ βn ln(βn)|In
ej | ≥ cnn222nβn|In

ej |.

The last two relations imply
∞
∑

n=2

∣

∣

∣

n
∪

e=1

∞
∪

j=1
Q∗n

ej

∣

∣

∣ ≤ 144
∞
∑

n=2

n−12−n
n

∑

e=1

∞
∑

j=1

|Hn
ej | =

= 144
∞
∑

n=2

n−12−n
n

∑

e=1

∣

∣

∣

∞
∪

j=1
Hn

ej

∣

∣

∣ ≤ 144
∞
∑

n=2

2−n < ∞.
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Hence |Q∗| = 0, where Q∗ = limn→∞ sup
n
∪

e=1

∞
∪

j=1
Q∗n

ej .

This in turn implies that for all points x from E\Q∗ there exists a number
P2(x) such that

x ∈ E\
n
∪

e=1

∞
∪

j=1
Q∗n

ej for n ≥ P2(x). (14)

Further we have
∣

∣

∣

n
∪

e=1
Γn

e

∣

∣

∣ ≤
n

∑

e=1

|Γn
e | =

n
∑

e=1

n−12−n = 2−n.

Consequently |Γ| = 0, where Γ = limn→∞ sup
n
∪

e=1
Γn

e .

This implies that for every direction σ from Γ(R2)\Γ there exists a num-
ber n(σ) such that

σ ∈ Γ(R2)\
n
∪

e=1
Γn

e for n ≥ n(σ). (15)

Now let us show that if σ ∈ Γ(R2)\Γ and x ∈ E\Q∗, then

MB2σψn(x) ≤ 2−n for n ≥ P2(x, σ), (16)

where P2(x, σ) = max
{

P2(x);n(σ)
}

.
Indeed, let us fix a direction σ from Γ(R2)\Γ, a point x from E\Q∗

and a rectangle Rσ from B2σ(x). Let n be a fixed natural number and
n ≥ P2(x, σ). Since σ ∈ Γ(R2)\Γ and n ≥ P2(x, σ) ≥ n(σ), it follows from
(12), (13), and (15) that for all e, j (e = 1, 2, . . . , n, j = 1, 2, . . . ) the chain
of inclusions

Hσ(χIn
ej

, (n2nβn)−1) ⊂ Qn
ej ⊂ En

ej(σ) ⊂ Q∗n
ej (17)

is fulfilled. Since x ∈ E\Q∗ and n ≥ P2(x, σ) ≥ P2(x), from (14) and (13)
we have

x ∈ E\
n
∪

e=1

∞
∪

j=1
Q∗n

ej ⊂ E\
n
∪

e=1

∞
∪

j=1
En

ej(σ).

Let {j1, . . . , jse} (e = 1, 2, . . . , n) be a set of natural numbers for which
|Rσ ∩ In

eji
| > 0, i = 1, 2, . . . , se. If we observe that the set Rσ ∩ En

eji

(i = 1, 2, . . . , se, e = 1, 2, . . . , n) is a rectangle from B2σ containing at least
one point from E\Hσ(χIn

ej
, (n2nβn)−1) (see (17)), then we obtain

∣

∣Rσ ∩ En
eji

(σ)
∣

∣

−1
∫

Rσ∩En
eji

(σ)

χIn
eji

(y)dy =

=
∣

∣Rσ ∩ En
eji

(σ)
∣

∣

−1∣
∣Rσ ∩ In

eji

∣

∣ ≤ (n2nβn)−1,
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and consequently
∣

∣Rσ ∩ In
eji

∣

∣ ≤ (n2nβn)−1
∣

∣Rσ ∩ En
eji

(σ)
∣

∣, e = 1, 2, . . . , n, i = 1, 2, . . . , se.

Next, since the rectangles Q∗n
ej , j = 1, 2, . . . , do not intersect for every fixed

e (and hence the rectangles En
ej(σ), j = 1, 2, . . . ), we have

∣

∣

∣

se∪
i=1

(

Rσ ∩ En
eji

(σ)
)

∣

∣

∣ ≤ |Rσ|, e = 1, 2, . . . , n.

The two last relations yield

|Rσ|−1
∫

Rσ

ψn(y)dy = βn|Rσ|−1
n

∑

e=1

∞
∑

j=1

∣

∣Rσ ∩ In
eji

∣

∣ ≤

≤ βn|Rσ|−1
n

∑

e=1

se
∑

i=1

(n2nβn)−1
∣

∣Rσ ∩ En
eji

(σ)
∣

∣ =

= n−12−n|Rσ|−1
n

∑

e=1

∣

∣

∣

se∪
i=1

(

Rσ ∩ En
eji

(σ)
)

∣

∣

∣ ≤ 2−n.

To complete the proof of (16), it remains to note that Rσ ∈ B2σ(x) and
is arbitrary.

(c) Let us show that for almost all directions σ the maximal function
M∗

B2σ
f is finite a.e. on R2. Suppose

P (x, σ) = max{P1(x); P2(x, σ)}.

Fix a direction σ from Γ(R2)\Γ, a point x from E\(Q∗ ∪ B∗), and a
rectangle Rσ from B2σ(x).

We have

|Rσ|−1
∣

∣

∣

∫

Rσ

f(y)dy
∣

∣

∣ ≤
P (x,σ)
∑

n=2

|Rσ|−1
∫

Rσ

|fn(y)|dy +

+|Rσ|−1
∣

∣

∣

∫

Rσ

∑

n=p(x;σ)+1

fn(y)dy
∣

∣

∣ = a1(x,Rσ) + a2(x,Rσ)

and

a1(x, Rσ) ≤
P (x,σ)
∑

n=2

MB2σψn(x) +
P (x,σ)
∑

n=2

MB2σgn(x) ≤

≤
P (x,σ)
∑

n=2

‖ψn‖L∞ +
P (x,σ)
∑

n=2

‖gn‖L∞ ≤
P (x,σ)
∑

n=2

(nβn + mnλn).
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Estimate now a2(x,Rσ). Using the theorem on the passage to the limit
under the integral sign as well as relations (7) and (16), we obtain

a2(x,Rσ) ≤
∑

n=p(x,σ)+1

|Rσ|−1
∣

∣

∣

∫

Rσ

fn(y)dy
∣

∣

∣ ≤

≤
∞
∑

n=p(x,σ)+1

(MB2σψn(x) + M∗
B2σ

gn(x)) ≤ 2.

Hence

|Rσ|−1
∣

∣

∣

∫

Rσ

f(y)dy
∣

∣

∣ ≤
p(x,σ)
∑

n=2

(nβn + mnλn) + 2 < ∞.

Since the right-hand side of this inequality does not depend on a choice of
rectangles from B2σ(x), we get

M∗
B2σ

f(x) < ∞, σ ∈ Γ(R2)\Γ, x ∈ E\(Q∗ ∪B∗).

Consequently for σ ∈ Γ(R2)\Γ and for x ∈ E\(Q∗ ∪B∗) we have

−∞ < DB2σ
(f)(x) ≤ DB2σ (f)(x) < +∞.

Using now the Besicovitch theorem on possible values of upper and lower
derivatives (see [1], Ch. V), we obtain (|Γ| = |Q∗ ∪B∗| = 0) and for almost
every direction σ (σ 6= σn, n ∈ N) the relation DB2σ (f)(x) = f(x) is fulfilled
a.e.

4◦. It will now be shown that for every direction σs (s ∈ N) the strong
upper derivative of the integral

∫

f is equal to +∞ a.e. on E.
To this end we fix a natural number s and notice that |Js| = 1, where

Js = limn→∞ sup
Nn∪
j=1

Hσs(χIn
sj

, β−1
n ). Indeed,

1 =
∣

∣

∣ lim
n→∞

sup
Nn∪
j=1

Hn
sj

∣

∣

∣ ≤
∣

∣

∣ lim
n→∞

sup
Nn∪
j=1

Hσs(χIn
sj

, β−1
n

∣

∣

∣ +

+
∣

∣

∣ lim
n→∞

sup
Nn∪
j=1

Q∗n
sj

∣

∣

∣ = |Js|+ |Q∗| = |Js|.

Let Ds =
∞
∩

n=2
Dn

s , where Dn
s =

{

y ∈ E : DB2,σs(fn)(y) = fn(y)
}

.

Since the basis B2 differentiates the integrals of the bounded functions
(see [1], Ch. III), it is evident that |Dn

s | = 1 for every n = 2, 3, . . . .
Let us fix a point x from Js ∩Ds\(Q∗ ∪B∗) and prove that

DB2σs
(f)(x) = +∞. (18)



TO THE PROBLEM OF A STRONG DIFFERENTIABILITY 169

Since x ∈ Js, it is clear that there exists a sequence of pairs of natural
numbers (nq, iq)∞q=1 such that

x ∈ Hσs(χ
I

nq
siq

, β−1
nq

), q = 1, 2, . . .

which by the construction of the sets Hσs(χ
I

nq
siq

, β−1
nq

) implies that there

exists a rectangle Rσs
q from B2σs(x) such that Rσs

q ⊂ Hnq
siq

, Rσs
q ⊃ Inq

siq
and

|Rσs
q |−1

∫

Rσs
q

χ
I

nq
siq

(y)dy ≥ β−1
nq

, q = 1, 2, . . . . (19)

Without loss of generality we may assume that nq ≥ p(x, s), q = 1, 2, . . . ,
where p(x, s) = max{p1(x); p2(x); s}. We have

|Rσs
q |−1

∫

Rσs
q

fn(y)dy = |Rσs
q |−1

∫

Rσs
q

(
p(x,s)
∑

n=2

fn(y)
)

dy +

+|Rσs
q |−1

∫

Rσs
q

(
∑

p(x,s)<n<nq

fn(y)
)

dy + |Rσs
q |−1

∫

Rσs
q

(
∞
∑

n=nq

fn(y)
)

dy =

= a1(x1, Rσs
q ) + a2(x1, Rσs

q ) + a3(x1, Rσs
q ). (20)

Consider the limits limq→∞ ai(x,Rσs
a ), i = 1, 2, 3,

(a) First let us show that the limit of a1(x,Rσs
q ) for q → ∞ is equal to

f(x). Indeed, since x ∈ E\Dn
s , diam(Rσs

q ) < anq ↘ 0, q →∞, we have

lim
q→∞

a1(x,Rσs
q ) =

p(x,s)
∑

n=2

lim
q→∞

|Rσs
q |−1

∫

Rσs
q

fn(y)dy =

=
p(x,s)
∑

n=2

DB2σs
(fn)(x) =

p(x,s)
∑

n=2

fn(x).

Let n ≥ p(x, s). Then by (10) and (14) we have

x ∈ E\
(

B∗n ∪
n
∪

e=1

∞
∪

j=1
Q∗n

ej

)

⊂ E\ supp(fn).

Hence
∑∞

n=p(x,s) fn(x) = 0 and consequently,

lim
q→∞

a1(x,Rσs
q ) =

∞
∑

n=2

fn(x) = f(x). (21)
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(b) Let us now show that the values a2(x,Rσs
q ), q = 1, 2, . . . , are nonnega-

tive. We shall assume that {n : p(x, s) < n < nq} 6= ∅. Using the fact that
the functions ψn (n = 2, 3, . . . ) are nonnegative, we obtain

a2(x, Rσs
q ) ≥

∑

p(x,s)<n<nq

|Rσs
q |−1

∫

Rσs
q

gn(y)dy =

=
∑

p(x,s)<n<nq

mn
∑

k=1

∑

i∈An
k

λn|Rσs
q |−1

∫

sn(y)χBn
ki

(y)χ
Rσs

q
(y)dy. (22)

It is sufficient to show that for k = 1, . . . ,mn, i = 1, . . . , (Mn
k )2 we have

Bn
ki ∩Rσs

q = ∅, p(x, s) < n < nq. (23)

Towards this end we fix the natural numbers n, k, i (p(x, s) < n < nq,
k = 1, 2, . . . , mn, i = 1, 2, . . . , (Mn

k )2). Since p1(x) ≤ p(x, s) < n < nq, it is
obvious that x ∈ E\B∗n (see (10)) and

dist(x,Bn
ki) ≥ dist(∂B∗n

ki , Bn
ki) = rn(Mn

k )−1.

If, moreover, we recall that rn ≥ rnq−1 and Mn
k < Mnq−1

mnq−1 , then we
obtain

dist(x,Bn
ki) ≥ (Mnq−1

mnq−1
)−1rnq = anq .

On the other hand, Rσs
q ⊂ Hnq

siq
and diam(Rσs

q ) < anq (see (3)). Hence
diam(Rσs

q ) < dist(x,Bn
ki), and since x ∈ Rσs

q , we have Rσs
q ∩Bn

ki = ∅. Thus
(23) is valid and hence (see (22))

lim
q→∞

a2(x,Rσs
q ) ≥ 0. (24)

(c) Let us show that as q →∞ the limit of the value a3(x, Rσs
q ) is more

than unity. Using the theorem on the passage to the limit under the integral
sign as well as the fact that the function ψn is nonnegative, and relations
(19), (11),we have

a3(x,Rσs
q ) = |Rσs

q |−1
∫

Rσs
q

fnq (y)dy +
∞
∑

n=nq+1

|Rσs
q |−1

∫

Rσs
q

fn(y)dy ≥

≥ |Rσs
q |−1

∫

Rσs
q

fnq (y)dy −
∞
∑

n=nq

|Rσs
q |−1

∣

∣

∣

∫

Rσs
q

gn(y)dy
∣

∣

∣ ≥

≥ 1−
∞
∑

n=nq

M∗
B2σs

gn(x) ≥ 1−
∞
∑

n=nq

2−n, q = 1, 2, . . . .
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Consequently,

lim
q→∞

a3(x,Rσs
q ) ≥ 1. (25)

Now we are able to establish (18). Indeed (see (20), (21), (24), (25)),

lim
q→∞

|Rσs
q |−1

∫

Rσs
q

f(y)dy = lim
q→∞

(

a1(x, Rσs
q ) + a2(x,Rσs

q ) +

+a3(x,Rσs
q )

)

≥ f(x) + 1

and hence DB2σs
(f)(x) > f(x), x ∈ Js\(Q∗∪B∗∪D) which by virtue of the

above-mentioned Besicovitch theorem implies that (|Js\(Q∗∪B∗∪D)| = 1)

DB2σs
(f)(x) = +∞ a.e. on E.

5◦. We shall prove that for every direction σ the strong upper derivative
of the integral

∫

|f | in the direction σ is equal to +∞ a.e. on E.
(a) Let us prove first that

∣

∣

∣ lim
n→∞

sup
mn∪
k=1

Gn
k (σ)

∣

∣

∣ = 1. (26)

Indeed, since

∞
∑

n=p

mn
∑

k=1

|Gn
k (σ)| =

∞
∑

n=p

mn|hn| = ∞,

for any p = 2, 3, . . . , we have

∞
∏

n=p

mn
∏

k=1

(1− 2−1|Gn
k (σ)|) = 0

and hence to prove (26) it is sufficient to show that
∣

∣

∣E\
( n−1
∪

n1=p

mn1∪
k1=1

Gn1
k1

(σ) ∪
k
∪

k2=1
Gn

k2
(σ)

)

∣

∣

∣ ≤

≤
n−1
∏

n1=p

mn1
∏

k1=1

(

1− 2−1|Gn1
k1

(σ)|
)

k
∏

k2=1

(

1− 2−1|Gn
k2

(σ)|
)

(27)

for every fixed direction σ and numbers n, p, k (n = 2, 3, . . . , p = 2, . . . , n−1,
k = 1, . . . , mn).

The proof of this relation will be carried out by induction. Indeed,
∣

∣E\Gp
1(σ)

∣

∣ = 1− |Gp
1(σ)| ≤ 1− 2−1|Gp

1(σ)|.
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Without loss of generality, we assume that n > 2, k > 1 and
∣

∣

∣E\
( n−1
∪

n1=p

mn1∪
k1=1

Gn1
k1

(σ) ∪
k−1
∪

k2=1
Gn

k2
(σ)

)

∣

∣

∣ ≤

≤
n−1
∏

n1=p

mn1
∏

k1=1

(

1− 2−1|Gn1
k1

(σ)|
)

k−1
∏

k2=1

(

1− 2−1|Gn
k2

(σ)|
)

. (28)

Owing to this relation, we can prove (27). Assume

a1(σ) =
{

i : EMn
k

i ∩
( n−1

∪
n1=p

mn1∪
k1=1

∂Gn1
k1

(σ) ∪
k−1
∪

k2=1
∂Gn

k2
(σ)

)

6= ∅
}

,

a2(σ) =
{

i : EMn
k

i ⊂
n−1
∪

n1=p

mn1∪
k1=1

Gn1
k1

(σ) ∪
k−1
∪

k2=1
Gn

k2
(σ)

}

,

a3(σ) =
{

1, 2, . . . , (Mn
k )2

}

\(a1(σ) ∪ a2(σ)).

For n1, k1, i1 (n1 = 2, 3, . . . , k1 = 1, 2, . . . , mn, i1 = 1, 2, . . . .(Mn1
k1

)2)
assume further

an1
k1i1(σ) =

{

i : EMn
k

i ∩ ∂hn1
k1i1(σ) 6= ∅

}

.

Clearly, for every triple of natural numbers n1, k1, i1 (n1 = 2, 3, . . . ,
k1 = 1, 2, . . . , mn, i1 = 1, 2, . . . .(Mn1

k1
)2) it follows from the condition Mn1

k1
≥

d(∂hn1) (see (5)) and from the homothety that

d(∂hn1
k1i1(σ)) ≤ (Mn1

k1
)−1d(∂hn1) ≤ 1,

which by the inequality Mn
k ≥ 9ωn

k (see (5)) and Lemma 1 implies
∣

∣

∣ ∪
i∈an1

k1i1
(σ)

EMn
k

i

∣

∣

∣ ≤ (ωn
k )−1.

This yields
∣

∣

∣ ∪
i∈a1(σ)

EMn
k

i

∣

∣

∣ ≤ θn
k (ωn

k )−1 ≤ θn
k

(

2θn
k |E\Ωn

k (σ)|−1)−1 ≤

≤ 2−1|E\Ωn
k (σ)| ≤ 2−1

∣

∣

∣E\
( n−1

∪
n1=p

mn1∪
k1=1

Gn1
k1

(σ) ∪
k−1
∪

k2=1
Gn

k2
(σ)

)∣

∣

∣.

On the other hand, it is easily seen that
∣

∣

∣ ∪
i∈a2(σ)

EMn
k

i

∣

∣

∣ ≤
∣

∣

∣

n−1
∪

n1=p

mn1∪
k1=1

Gn1
k1

(σ) ∪
k−1
∪

k2=1
Gn

k2
(σ)

∣

∣

∣.

From the last two relations we obtain
∣

∣

∣ ∪
i∈a3(σ)

EMn
k

i

∣

∣

∣ ≥ 2−1
∣

∣

∣E\
( n−1

∪
n1=p

mn1∪
k1=1

Gn1
k1

(σ) ∪
k−1
∪

k2=1
Gn

k2
(σ)

)∣

∣

∣.
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Now let us derive (27). The last relation and (28) (by virtue of the
homothety property) imply

∣

∣

∣E\
( n−1

∪
n1=p

mn1∪
k1=1

Gn1
k1

(σ) ∪
k
∪

k2=1
Gn

k2
(σ)

)∣

∣

∣ ≤

≤
∣

∣

∣E\
( n−1

∪
n1=p

mn1∪
k1=1

Gn1
k1

(σ) ∪
k−1
∪

k2=1
Gn

k2
(σ)

)∣

∣

∣−
∣

∣

∣ ∪
i∈a3(σ)

EMn
k

i

∣

∣

∣|Gn
k (σ)| ≤

≤
n−1
∏

n1=p

mn1
∏

k1=1

(

1− 2−1|Gn1
k1

(σ)|
)

k
∏

k2=1

(

1− 2−1|Gn
k1

(σ)|
)

.

(b) Let us strengthen now relation (26) and show that
∣

∣

∣ lim
n→∞

mn∪
k=1

∪
i∈An

k

hn
ki(σ)

∣

∣

∣ = 1. (29)

which will immediately follow from (26) if we prove that the equality

p
∪

k=1

(Mn
k )2

∪
i=1

hn
ki(σ) =

p
∪

k=1
∪

i∈An
k

hn
ki(σ) (30)

holds for any pairs of natural numbers n, p (n = 2, 3, . . . , p = 1, 2, . . . , mn).
Checking it inductively, we can see that it is fulfilled for p = 1.

Assume now that p > 1 and

p−1
∪

k=1

(Mn
k )2

∪
i=1

hn
ki(σ) =

p−1
∪

k=1
∪

i∈An
k

hn
ki(σ).

Owing to this equality we can easily obtain (30). For this it is enough to
note that

hn
pi ⊂

p−1
∪

k1=1

(Mn
k )2

∪
i1=1

hn
k1i1(σ)

for i ∈ {1, 2, . . . , (Mn
p )2}\An

p , since hn
pi(σ) ⊂ E

Mn
p

i and B∗n
k1i1(σ) ⊂ hn

k1i1(σ)
(k1 = 1, 2, . . . , p− 1, i1 = 1, 2, . . . , (Mn

k1
)2).

(c) Establish that for every natural number n

gn(x) = λχBn (x), x ∈ R2. (31)

It is enough to show that for fixed n the circles Bn
ki do not intersect. On

the one hand, to this end we can show that the equality

Bn
ki ∩Bn

k1i1 = ∅ (32)

is fulfilled for any pairs k, i and k1, i1 (k = 2, . . . , mn, i ∈ An
k , k1 =

1, 2, . . . , k − 1, i1 ∈ An
k1

).
Indeed, it follows from the inclusion i ∈ An

k that one of the two cases
may take place:
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(1) EMn
k

i ∩B∗n
k1i1 = ∅;

(2) EMn
k

i ∩ ∂B∗n
k1i1 6= ∅.

Obviously, relation (32) is fulfilled in Case (1). Let us consider Case (2).
The condition Mn

k ≥ wn
k = 2r−1

n Mn
k−1 ≥ 2r−1

n Mn
k1

(see (6)) implies

diam(EMn
k

i ) ≤ 2(Mn
k )−1 ≤ rn(Mn

k1
)−1.

On the other hand, dist(∂B∗n
k1i1 , B

n
k1i1) = rn(Mn

k1
)−1.

It follows from the last two estimates that in Case (2) we have EMn
k

i ∩
Bn

k1i1 = ∅. To complete the proof of (31) note that Bn
ki ⊂ EMn

k
i .

(d) Let us give some remarks which will be used in the sequel.

Remark 1. For every point x ∈ supp(fn), n = 2, 3, . . . , the following
inequality |fn(x)| ≥ βn is fulfilled.

To prove this one should use (31) and (3).

Remark 2. Let m, m1 be arbitrary natural numbers and 2 ≤ m < m1.
We define the functions fm,m1 and fm as follows:

fm,m1(x) =
m1
∑

n=m

fn(x), fm(x) =
∞
∑

n=m

fn(x).

Then the inequality
∣

∣fm,m+p(x)
∣

∣ ≥
∣

∣fm,m+p−1(x)
∣

∣ is fulfilled for every
natural p.

This statement easily follows from the previous remark and relation (31)
and (3).

Remark 3. Let m, m1 be arbitrary natural numbers and 2 ≤ m < m1.
Let, moreover, x ∈ Bm1 and x ∈ E\(B∗ ∪Q∗). |fm(x)| ≥ 2−1λm1 .

Indeed, since B∗n ∪
n
∪

e=1

∞
∪

j=1
Q∗n

ej ⊃ supp(fn), from relations (10) and (14)

we can conclude that if n ≥ p(x), then

x ∈ E\
(

B∗n ∪
n
∪

e=1

∞
∪

j=1
Q∗n

ej

)

⊂ E\ supp(fn),

where p(x) = max{p1(x); p2(x)}. On the other hand, the inclusion x ∈ Bm1

implies that p(x) ≥ m1. Hence fm(x) = fm,p(x)(x) and by Remark 2 we
obtain

∣

∣fm(x)
∣

∣ =
∣

∣fm,p(x)(x)
∣

∣ ≥
∣

∣fm,p(x)−1(x)
∣

∣ ≥ · · · ≥
∣

∣fm,m1(x)
∣

∣.

Using now the inclusion x ∈ Bm1 , relations (31) and (1), we have

∣

∣fm(x)
∣

∣ ≥
∣

∣fm,m1(x)
∣

∣ ≥
∣

∣fm1(x)
∣

∣−
∣

∣

∣

m1−1
∑

n=m

fn(x)
∣

∣

∣ ≥
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≥ |gm1(x))| − ψm1(x)−
m1−1
∑

n=2

(

ψn(x) + |gn(x)|
)

≥

≥ λm1 −m1βm1 −
m1−1
∑

n=2

(nβn + λn) ≥ 2−1λm1 .

(e) We can now prove that for every direction σ the relation DB2σ (|f |)(x)
= +∞ is fulfilled a.e. on E.

Let us fix the direction σ and the number ε, 0 < ε < 1. The natural
number mε can be defined from the condition | supp(fmε)| < ε. Suppose

h(σ) = lim
n→∞

sup
mn∪
k=1

∪
i∈An

k

hn
ki(σ), T = E\(B∗ ∪Q∗).

Let x ∈ h(σ). Then there exists a sequence (np, kp, ip) (kp = 1, 2, . . . , mp,
ip ∈ Anp

kp
), such that x ∈ hnp

kpip
(σ), p = 1, 2, . . . . From this inclusion and

the construction of sets hnp
kpip

(σ) it follows that there exists a rectangle Rσ
p

from B2σ(x) such that Rσ
p ⊃ Bnp

kpip
, Rσ

p ⊂ E
M

np
kp

ip
and

|Rσ
p |−1λnp

∫

Rσ
p

χ
B

np
kpip

(y)dy ≥ 2−1. (33)

We have (|T | = 1)

|Rσ
p |−1

∫

Rσ
p

|fmε(y)|dy ≥ |Rσ
p |−1

∫

|fmε(y)dy|χ
B

np
kpip

(y)χT (y)dy.

Assume that np > mε. Then by Remark 3 we obtain

|fmε(y)| > 2−1λnp , y ∈ Bnp
kpip

∩ T, p = 1, 2, . . . ,

which by virtue of (33) yields

|Rσ
p |−1

∫

Rσ
p

|fmε(y)|dy > 2−1|Rσ
p |−1λnp

∫

Rσ
p

χ
B

np
kpip

(y)dy ≥ 2−2.

Consequently, diam(Rσ
p ) ≤ 2(Mnp

kp
)−1 ↘ 0.

DB2σ (|fmε |)(x) ≥ lim
p→∞

|Rσ
p |−1

∫

Rσ
p

|fmε(y)dy ≥ 2−2.

Suppose zε = {x ∈ E : fmε(x) = 0}. From the previous relation we
obtain

DB2σ (|fmε |)(x) ≥ 2−2 > |fmε |)(x)|, x ∈ h(σ) ∩ zε.
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Clearly, zε ⊃ E\ supp(fmε) and hence |zε| > 1 − ε. Thus (|h(σ) ∩ zε| =
|zε|),

∣

∣

∣

{

x ∈ E : DB2σ (|fmε |)(x) > |fmε(x)|
}

∣

∣

∣ > 1− ε.

Using once again the Besicovitch theorem, we can conclude that
∣

∣

∣

{

x ∈ E : DB2σ (|fmε |)(x) = +∞
}

∣

∣

∣ > 1− ε.

Further we have

DB2σ (|f |)(x) >= DB2σ (|fmε |)(x)−
mε
∑

n=2

‖fn‖L∞ .

Since ‖fn‖L∞ < ∞ (n = 2, 3, . . . ), the last two relations imply
∣

∣

{

x ∈ E : DB2σ (|f |)(x) = +∞
}∣

∣ > 1− ε.

Because of the fact that ε is arbitrary, we get
∣

∣

{

x ∈ E : DB2σ (|f |)(x) = +∞
}∣

∣ = 1.

References

1. M. de Guzmán. Differentiation of integrals in Rn. Springer-Verlag,
Berlin–Heidelberg–New York, 1975.

2. G. Lepsveridze, On a strong differentiability of integrals along different
directions. Georgian Math. J. 2(1995), No. 6, 617–635.

3. J. Marstrand, A counter-example in the theory of strong differentia-
tion. Bull. London Math. Soc. 9(1977), 209–211.
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