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ON THE BOUNDARY VALUE PROBLEM IN A
DIHEDRAL ANGLE FOR NORMALLY HYPERBOLIC


SYSTEMS OF FIRST ORDER


O. JOKHADZE


Abstract. Some structural properties as well as a general three-
dimensional boundary value problem for normally hyperbolic systems
of partial differential equations of first order are studied. A condition
is given which enables one to reduce the system under consideration
to a first-order system with the spliced principal part. It is shown
that the initial problem is correct in a certain class of functions if
some conditions are fulfilled.


§ 1. Some Structural Properties of Normally Hyperbolic
Systems of First Order


In the Euclidean space Rn+1, n ≥ 2, of independent variables (x, t),
x = (x1, . . . , xn), we consider the system of partial differential equations of
first order


A0ut +
n


∑


i=1


Aiuxi + Bu = F, (1.1)


where Ai, i = 0, 1, . . . , n, B are the given real m × m matrix-functions,
m ≥ 2, F is the given and u is the unknown m-dimensional real vector-
function. It is assumed that det A0 6= 0.


Denote by p(x, t;λ, ξ) the characteristic determinant of system (1.1), i.e.,
p(x, t;λ, ξ) ≡ det Q(x, t;λ, ξ), where


Q(x, t; λ, ξ) ≡ A0λ +
n


∑


i=1


Aiξi, λ ∈ R, ξ = (ξ1, . . . , ξn) ∈ Rn.
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Since det A0 6= 0, we have the representation


p(x, t; λ, ξ) = det A0


l
∏


i=1


(


λ− λi(x, t; ξ)
)ki ,


l
∑


i=1


ki = m,


l = l(x, t; ξ), ki = ki(x, t; ξ), i = 1, . . . , l.


System (1.1) is said to be hyperbolic at the point (x, t) if all roots
λ1(x, t; ξ), . . . , λl(x, t; ξ) of the polynomial p(x, t;λ, ξ) are real numbers.


One can easily verify that


ki(x, t; ξ) ≥ m− rank Q
(


x, t;λi(x, t; ξ), ξ
)


, i = 1, . . . , l.


The hyperbolic system (1.1) is said be normally hyperbolic at the point
(x, t), if the equalities


ki(x, t; ξ) = m− rank Q
(


x, t; λi(x, t; ξ), ξ
)


, i = 1, . . . , l,


are fulfilled (see, e.g., [1], [2]).
Note that strictly hyperbolic systems, i.e., when l = m, ki = 1, i =


1, . . . , m, form a subclass of normally hyperbolic systems.
Since det A0 6= 0, it can be assumed without loss of generality that A0 =


E, where E is the m×m unit matrix. For simplicity, we shall always assume
that (i) n = 2, x1 = x, x2 = y; (ii) the matrices A1 and A2 are constant;
(iii) system (1.1) is normally hyperbolic.


In our assumptions, in the space of independent variables x, y and t,
system (1.1) is rewritten as


ut + A1ux + A2uy + Bu = F. (1.2)


It is easy to show that since system (1.2) is normally hyperbolic, each
of the matrices Ai, i = 1, 2, has only real characteristic roots so that the
corresponding eigenvectors of the operator Ai, 1 ≤ i ≤ 2, form a complete
system, i.e., a basis in the space Rm. Therefore the matrices Ai, i = 1, 2,
are diagonalizable, i.e., there exist real nondegenerate matrices Ci, i = 1, 2,
such that the matrices C−1


i AiCi, i = 1, 2, are diagonal.
The normally hyperbolic system (1.2) will be said to be diagonalizable if


there exists a real nondegenerate matrix C such that the matrices C−1AiC,
i = 1, 2, are diagonal. We have


Lemma 1.1. The normally hyperbolic system (1.2) is diagonalizable if
and only if the matrices A1 and A2 are commutative, i.e., A1A2 = A2A1.


Proof. The necessity readily follows from the fact that the diagonal matrices
C−1A1C and C−1A2C are commutative, C−1A1CC−1A2C =
C−1A2CC−1A1C, i.e., C−1A1A2C = C−1A2A1C. This immediately im-
plies A1A2 = A2A1.
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To prove sufficiency note that since system (1.2) is normally hyperbolic,
we have dimRλi = ki, where Rλi ≡ Ker (A1 − λiE), 1 ≤ i ≤ l. Clearly,
Â1(Rλi) ⊂ Rλi , 1 ≤ i ≤ l, where Â1 stands for the linear transform corre-
sponding to the matrix A1.


Let {νij}ki
j=1 be an arbitrary basis of the space Rλi , 1 ≤ i ≤ l. By the


definition of the space Rλi , the vectors νi1, . . . , νiki are the eigenvectors for
the transform Â1 and correspond to the eigenvalue λi, 1 ≤ i ≤ l. Therefore,
the matrix of the transform Â1 in the basis {νij}ki


j=1 of the space Rλi will
be diagonal of order (ki × ki) and written as diag [λi, . . . , λi


︸ ︷︷ ︸


ki−times


], 1 ≤ i ≤ l.


Hence, recalling that the decomposition of the space Rm as the direct sum
of subspaces Rλi , i = 1, . . . , l, i.e., Rm = Rλ1 ⊕ · · · ⊕ Rλl is unique, we can
write the matrix D1 of the transform Â1 in the basis {νij ; i = 1, . . . , l; j =
1, . . . , ki} as D1 = diag [λ1, . . . , λ1


︸ ︷︷ ︸


k1−times


, . . . , λl, . . . , λl
︸ ︷︷ ︸


kl−times


].


Let ˜A2i be the matrix corresponding to the linear transform Â2 of the
subspace Rλi , 1 ≤ i ≤ l in the basis {νij}ki


j=1. Since the matrices A1 and A2


are commutative, the subspace Rλi is invariant with respect to the linear
transform Â2, i.e., Â2(Rλi) ⊂ Rλi , 1 ≤ i ≤ l (see, e.g., [3]). Therefore,
in the basis {νij ; i = 1, . . . , l; j = 1, . . . , ki} of the space Rm, the matrix
˜A2 corresponding to Â2 will be block-diagonal and have, on its principal
diagonal, matrices ˜A2i, i = 1, . . . , l. It is well known that matrices giving
the same linear transform in different bases are similar. At the same time,
similar matrices have the same characteristic equation. Therefore we have


det(A2 − λE) = det(˜A2 − λE) = det(˜A21 − λEk1)× · · · × det(˜A2l − λEkl).


Since system (1.2) is normally hyperbolic, the matrix A2 has only real
characteristic roots. Thus for the linear transform Â2 : Rλi → Rλi there
exists a basis {µij}ki


j=1 which consists of the real vectors of the subspace Rλi ,
and where the matrix A∗2i of the above-mentioned transform is of Jordan
form, 1 ≤ i ≤ l. Therefore, in the basis {µij ; i = 1, . . . , l; j = 1, . . . , ki}
of the space Rm, the matrix A∗2 of the transform Â2 will also be of Jordan
form. But, since system (1.2) is normally hyperbolic, in the space Rm there
exists a basis {σi}m


i=1 in which the matrix of the transform Â2 is diagonal.
Further, as is well known, a Jordan matrix similar to the diagonal one is
diagonal too. Therefore in the basis {µij ; i = 1, . . . , l; j = 1, . . . , ki} of
the space Rm the matrix A∗2 is diagonal, but the matrix of the transform
Â1 is diagonal in any basis of the transform Rλi , in particular, in the basis
{µij}ki


j=1, 1 ≤ i ≤ l. Therefore the matrices of the transforms Â1 and Â2


will be diagonal in the basis {µij ; i = 1, . . . , l; j = 1, . . . , ki} of the space
Rm.
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§ 2. Statement of the Problem and Some Notations


In the discussion below the matrices A1 and A2 will always be assumed
to be commutative, i.e., the equality


A1A2 = A2A1 (2.1)


is valid.
After introducing a new unknown function v by the formula u = Cv with


the nondegenerate matrix C whose existence was proved by condition (2.1)
in §1, system (1.2) takes the form


vt + D1vx + D2vy + B0v = F0, (2.2)


where by virtue of Lemma 1.1 the matrices Di = C−1AiC, i = 1, 2, are
diagonal, i.e., D1 = diag[ν1, . . . , νm], D2 = diag[µ1, . . . , µm], B0 = C−1BC,
F0 = C−1F .


It is obvious that the directions defined by the vectors li = (νi, µi, 1),
i = 1, . . . , m, are bicharacteristic.


Let Âj be the linear transform corresponding to he matrix Aj , 1 ≤ j ≤
2. Denote by Λi an m-dimensional vector which is the eigenvalue of the
transform Â1, corresponding to the eigenvalue νi, 1 ≤ i ≤ m. By virtue of
(2.1) the vector Λi is also the eigenvector of the transform Â2 corresponding
to the eigenvalue µi, 1 ≤ i ≤ m. By Lemma 1.1, the vectors Λi, i = 1, . . . ,m,
can be chosen such that the (m × m) matrix C = [Λ1, . . . , Λm], whose
columns consist of these vectors, will reduce the matrices A1 and A2 to the
diagonal form, namely, to Di = C−1AiC, i = 1, 2.


Obviously, the vectors li = (νi, µi, 1) and lj = (νj , µj , 1) define the same
bicharacteristic direction if the equalities νi = νj , µi = µj , 1 ≤ i 6= j ≤ m,
are fulfilled. In this context, we divide the set of vectors {l1, . . . , lm} into
nonintersecting classes {l11, . . . , l1s1}, . . . , {lm01, . . . , lm0sm0


} whose repre-
sentatives with respective “multiplicities” s1, . . . , sm0 , will be denoted by
˜l1, . . . ,˜lm0 , m0 ≤ m. Now the matrix C = [Λ1, . . . , Λm] can be represented
as


C = [Λ11, . . . , Λ1s1 ; . . . ; Λm01, . . . , Λm0sm0
],


or as C = (˜C1, ˜C2), where


˜C1 = [Λ11, . . . , Λ1s1 ; . . . ; Λq1, . . . , Λqsq ],


˜C2 = [Λq+11, . . . , Λq+1sq+1 ; . . . ; Λm01, . . . , Λm0sm0
]


and q will be defined below.
Denote by D∗ the dihedral angle


D∗ ≡ {(x, y, t) ∈ R3, t− y > 0, t + y > 0}.
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For bicharacteristic directions of system (1.2) we make the following as-
sumption: bicharacteristics passing through any point of the edge Γ∗ ≡
{(x, y, t) ∈ R3 : y = t = 0, x ∈ R} of the angle D∗ have no common points
with the set D∗\Γ∗. This is equivalent to the fulfillment of the inequalities


|µi| > 1, i = 1, . . . , m. (2.3)


Let P0 = P0(x0, y0, t0) be an arbitrary fixed point of the set D∗\Γ∗,
and let S1 ⊃ Γ∗ and S2 ⊃ Γ∗ be the two-dimensional edges of D∗, i.e.,
∂D∗ = S1 ∪ S2, S1 ≡ {(x, y, t) ∈ R3 : x ∈ R, y = t, t ∈ R+}, S2 ≡
{(x, y, t) ∈ R3 : x ∈ R, y = −t, t ∈ R+}, R+ ≡ (0,∞). From the point P0


we draw the bicharacteristic beam ˜Li(P0) of system (2.2) which corresponds
to the vector ˜li, is directed towards the decreasing values of the t-coordinate
of a moving point ˜Li(P0), and intersects one of the edges S1 or S2 at a
point ˜P i


0, 1 ≤ i ≤ m0. It can be assumed without loss of generality that
bicharacteristic beams defined by the vectors ˜l1, . . . ,˜lq and passing through
the point P0 intersect the edge S1, while those defined by ˜lq+1, . . . ,˜lm0


intersect the edge S2.
Below, it will be assumed for simplicity that q = 2 and m0 = 3, ˜li =


(ν̃i, µ̃i, 1), i = 1, 2, 3, and also rank (˜l1,˜l2,˜l3) = 3.
Through the point P0 draw a plane P


l̃i ,̃lj
, parallel to the vectors ˜li and


˜lj , 1 ≤ i < j ≤ 3. We introduce the following notation:
P


l̃2 ,̃l3
and P


l̃1 ,̃l3
are respectively the intersection points of the planes Q1


and Q2 with the edge Γ∗;
D is a the domain forming a pentahedron with the vertices at the points


P0, ˜P 2
0 , ˜P 1


0 , Q2, ˜P 3
0 , Q1;


∆1 and ∆2 are respectively a triangle and rectangle with the vertices at
the points Q2, ˜P 3


0 , Q1 and Q1, ˜P 2
0 , ˜P 1


0 , Q2, respectively.
For system (1.2) we consider the boundary value problem formulated as


follows: Find, in the domain D, a regular solution u(x, y, t) of system (1.2)
satisfying the boundary conditions


Biu
∣


∣


∆i
= fi, (2.4)


where Bi are the given (mi ×m) matrix-functions and fi are the given mi-
dimensional vector-functions, i = 1, 2,m1 = s1 + · · ·+ sq,m2 = sq+1 + · · ·+
sm0 . It is obvious that m1 + m2 = m though we do not exclude the cases
with m1 = 0 or m2 = 0, which correspond to the Cauchy problem. Below
it will always be assumed that 0 < mi < m, i = 1, 2.


A function u(x, y, t) which, together with its partial derivatives ux, uy, ut,
is continuous in D and satisfies system (1.2) is called a regular solution of
system (1.2).
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Some analogs of the Goursat problem for hyperbolic systems of first or-
der with two independent variables have been studied in [4]–[8]. A lot of
papers are devoted to general boundary value problems of the Darboux type
for normally hyperbolic systems of second order on a plane (see, e.g., [1],
[2]). Some multidimensional problems of the Goursat and Darboux type
are considered in several papers (see, e.g., [9]–[11]) both for a hyperbolic
equation and for a system of equations in a dihedral angle. For hyperbolic
equations of third order, a boundary value problem in a dihedral angle is
investigated in [12].


Denote by ∆∗
i the orthogonal projection of the polygons ∆∗


i , i = 1, 2,
onto the plane x, t. The restrictions of Bi and fi on the sets ∆∗


i , i = 1, 2,
will be denoted as before.


In the domains D and ∆∗
i , we introduce the following functional spaces


0
Cα(D) ≡


{


w ∈ C(D) : w|Γ = 0, sup
(x,y,t)∈D\Γ∗


ρ−α||w(x, y, t)||Rm < ∞
}


,


0
Cα(∆∗


i ) ≡
{


ψ ∈ C(∆∗
i ) : ψ|Γ1 = 0, sup


(x,t)∈∆∗i \Γ
∗
1


t−α||ψ(x, t)||Rm < ∞
}


,


where Γ ≡ D∩Γ∗,Γ1 ≡ ∆∗
i ∩Γ∗1, i = 1, 2, Γ∗1 ≡ {(x, t) ∈ R2 : x ∈ R, t = 0}, ρ


is the distance from the point (x, y, t) ∈ D\Γ∗ to the edge Γ∗ of the domain
D∗, the real parameter α = const ≥ 0. For a = (a1, . . . , am) ∈ Rm, m ≥ 2,
denote ‖a‖Rm = |a1|+ · · ·+ |am|.


Obviously, the spaces
0
Cα(D) and


0
Cα(∆∗


i ), i = 1, 2, are Banach ones with
the norms


‖w‖ 0
Cα(D)


= sup
(x,y,t)∈D\Γ∗


ρ−α||w(x, y, t)||Rm ,


‖ψ‖ 0
Cα(∆∗i )


= sup
(x,t)∈∆∗i \Γ


∗
1


t−α||ψ(x, t)||Rm .


Remark 2.1. Since the estimate 1 ≤ ρ/t ≤
√


2, (x, y, t) ∈ D∗, is uniform,


the value ρ in the definition of the space
0
Cα(D) below will be replaced by


the variable t.


It is easy to verify that the fact that w ∈
0
C(D) and ψ ∈


0
C(∆∗


i ) belong to


the spaces
0
Cα(D) and


0
Cα(∆∗


i ), respectively, is equivalent to the fulfillment
of the inequalities


||w(x, y, t)||Rm ≤ ctα, (x, y, t) ∈ D,


||ψ(x, t)||Rm ≤ ctα, (x, t) ∈ ∆∗
i , i = 1, 2.


(2.5)
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We shall investigate the boundary value problem (1.2), (2.4) in the Ba-
nach space


0
C1,1,1


α (D) ≡
{


u :
∂|i|u


∂xi1∂yi2∂ti3
∈


0
Cα(D), |i| ≤ 1, |i| =


3
∑


j=1


ij
}


,


with respect to the norm


‖u‖ 0
C1,1,1


α (D)
=


∑


|i|≤1


∥


∥


∥


∂|i|u
∂xi1∂yi2∂ti3


∥


∥


∥ 0
Cα(D)


assuming that the matrix-functions B ∈ C(D), Bi ∈ C(∆∗
i ) and the vector-


functions F ∈
0
Cα(D), fi ∈


0
Cα(∆∗


i ), i = 1, 2.


§ 3. Equivalent Reduction of Problem (1.2), (2.4) to a System
of Integro-Differential Equations


From an arbitrary point P (x, y, t) ∈ D\Γ we draw the bicharacteristic
beam ˜Li(P ) of system (2.2) which corresponds to the vector ˜li and is directed
towards the decreasing values of the t-coordinate of a moving point of ˜Li(P ),
1 ≤ i ≤ 3. The points of intersection of beams ˜Li(P ), i = 1, 2, 3, with the
faces S1 and S2 are ˜P i ∈ S1, i = 1, 2, and ˜P 3 ∈ S2. Denote by


(


ω1
i (x, y, t),


ω2
i (x, y, t)


)


the coordinates of orthogonal projection of the point ˜P i onto
the plane (x, t), 1 ≤ i ≤ 3. A simple calculation yields


ω1
i (x, y, t) = x + ν̃i(1− µ̃i)−1(y − t),


ω2
i (x, y, t) = t + (1− µ̃i)−1(y − t),


i = 1, 2,


ω1
3(x, y, t) = x− ν̃3(1 + µ̃3)−1(y + t), ω2


3(x, y, t) = t− (1 + µ̃3)−1(y + t).


Let ξ = xi(x, y, t; τ), η = yi(x, y, t; τ), ζ = τ be the parametrization of a
segment ˜Li(P ) ∩D, where ω2


i (x, y, t) ≤ τ ≤ t, 1 ≤ i ≤ 3.
After integrating the (qi + j)-th equation of system (2.2), where q1 = 0,


qi = s1 + · · · + si−1, i ≥ 2, j = 1, . . . , si, along the i-th bicharacteristic
˜Li(P ) drawn from an arbitrary point P (x, y, t) ∈ D\Γ and lying between
the point P (x, y, t) and the point of intersection of ˜Li(P ) with the face S1


or S2 (depending on the index i of ˜Li(P )), we obtain


vqi+j(x, y, t) = vqi+j
(


ω1
i (x, y, t), ω2


i (x, y, t)
)


+


+


t
∫


ω2
i (x,y,t)


(
m


∑


p′=1


bijp′vp′


)


(


xi(x, y, t; τ), yi(x, y, t; τ), τ
)


dτ +


+Fij(x, y, t), 1 ≤ i ≤ 3, 1 ≤ j ≤ si, (3.1)
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where vqi+j are the components of the vector v, bijp′ and Fij are the well-
defined functions depending only on the coefficients and the right-hand side
of system (2.2).


We set


ϕ1
qi+j(x, t)≡vqi+j


∣


∣


∆1
≡vqi+j(x, t, t), (x, t)∈∆∗


1, i = 1, 2; j = 1, . . . , si,


ϕ2
qi+j(x, t)≡vqi+j


∣


∣


∆2
≡vqi+j(x,−t, t), (x, t)∈∆∗


2, i = 3; j = 1, . . . , si.
(3.2)


It is obvious that the number of components of the vectors


ϕ1(x, t) ≡
(


ϕ1
qi+j(x, t)


)


, (x, t) ∈ ∆∗
1, i = 1, 2; j = 1, . . . , si,


ϕ2(x, t) ≡
(


ϕ2
qi+j(x, t)


)


, (x, t) ∈ ∆∗
2, i = 3; j = 1, . . . , si,


is equal to the numbers m1 and m2, respectively.
By substituting the expressions of v from equality (3.1) into the boundary


conditions (2.4) and taking into account (3.2) we have


Q1
0(x, t)ϕ1(x, t)+Q1


3(x, t)ϕ2(σ3(x, t)
)


+(T1v)(x, t)=f1(x, t), (x, t) ∈ ∆∗
1,


Q2
0(x, t)ϕ2(x, t) +


2
∑


i=1


Q2
i (x, t)ϕ1(σi(x, t)


)


+ (T2v)(x, t) = (3.3)


= f2(x, t), (x, t) ∈ ∆∗
2,


where


(


T1v
)


(x, t) ≡
t


∫


ω2
3(x,t,t)


(


˜A3v
)(


x3(x, t, t; τ), y3(x, t, t; τ), τ
)


dτ,


(


T2v
)


(x, t) ≡
2


∑


i=1


t
∫


ω2
i (x,−t,t)


(


˜Aiv
)(


xi(x,−t, t; τ), yi(x,−t, t; τ), τ
)


dτ,


(3.4)


and Q1
3, ˜A3, Q2


i , ˜Ai, f i, i = 1, 2, are respectively the well-defined matrices
and vectors.


It is obvious that Qi
0 from (3.3) are matrices of order (mi ×mi) which


can be represented as the product


Qi
0 = Bi ×˜Ci, i = 1, 2, (3.5)


and the functions σi are defined by the equalities


σi : (x, t) →
(


ω1
i (x,−t, t), ω2


i (x,−t, t)
)


, i = 1, 2,


σi : (x, t) →
(


ω1
i (x, t, t), ω2


i (x, t, t)
)


, i = 3.
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Assuming that


detQi
0


∣


∣


∆∗i
6= 0, i = 1, 2, (3.6)


where the matrices Qi
0 are given by (3.5), we rewrite system (3.3) as


ϕ1(x, t)−
2


∑


i=1


G1
i (x, t)ϕ1(J1


i (x, t)
)


+
(


T3v
)


(x, t)=f3(x, t), (x, t)∈∆∗
1,


ϕ2(x, t)−
2


∑


i=1


G2
i (x, t)ϕ2(J2


i (x, t)
)


+
(


T4v
)


(x, t)=f4(x, t), (x, t)∈∆∗
2,


(3.7)


where Gp
i are the known matrix-functions of order (mp×mp), p = 1, 2, f i+2


are the known vector-functions,


J1
i (x, t) ≡ σi


(


σ3(x, t)
)


, (x, t) ∈ ∆∗
1,


J2
i (x, t) ≡ σ3


(


σi(x, t)
)


, (x, t) ∈ ∆∗
2, i = 1, 2.


It is easy to verify that by virtue of equalities (3.4) the linear integral
operators T3 and T4 can be represented as


(


T3v
)


(x, t) =
2


∑


i=1


ω2
3(x,t,t)
∫


ω̃2
i (x,t)


(


˜Biv
)(


xi
(


ω1
3(x, t, t),−ω2


3(x, t, t), ω2
3(x, t, t); τ


)


,


yi
(


ω1
3(x, t, t),−ω2


3(x, t, t), ω2
3(x, t, t); τ


)


, τ
)


dτ +


+


t
∫


ω2
3(x,t,t)


(


˜B3v
)(


x3(x, t, t; τ), y3(x, t, t; τ), τ
)


dτ,


(


T4v
)


(x, t)=
2


∑


i=1


ω2
i (x,−t,t)
∫


ω̃2
3(x,t)


(


Eiv
)(


x3
(


ω1
i (x,−t, t), ω2


i (x,−t, t), ω2
i (x,−t, t); τ


)


,


y3
(


ω1
i (x,−t, t), ω2


i (x,−t, t), ω2
i (x,−t, t); τ


)


, τ
)


dτ +


+
2


∑


i=1


t
∫


ω2
i (x,−t,t)


(


Hiv
)(


xi(x,−t, t; τ), yi(x,−t, t; τ), τ
)


dτ,


where ω̃2
i (x, t) ≡ ω2


i


(


ω1
3(x, t, t), −ω2


3(x, t, t), ω2
3(x, t, t)


)


, ω̃2
3(x, t) ≡


ω2
3


(


ω1
i (x,−t, t), ω2


i (x,−t, t), ω2
i (x,−t, t)


)


, and Ei, Hi, i = 1, 2, ˜Bj , j =
1, 2, 3, are the well-defined matrices.
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For the functions Jk
i : ∆∗


k → ∆∗
k we have the formulas


Jk
i : (x, t) → (x + δk


i t, τit), (x, t) ∈ ∆∗
k,


where δk
i , τi, i, k = 1, 2, are the well-defined constants written in terms of


ν̃i, µ̃i, i = 1, 2, 3.


Remark 3.1. Note that by virtue of condition (2.3) it is easy to establish
that 0 < τi < 1, i = 1, 2.


Remark 3.2. It is obvious that when conditions (3.6) are fulfilled, prob-


lem (1.2), (2.4) in the class
0
C1,1,1


α (D) is equivalently reduced to system


(3.7) for the unknown vector-function ϕi of the class
0
Cα(∆∗


i ), i = 1, 2.


Furthermore, if u ∈
0
C1,1,1


α (D), then ϕi ∈
0
Cα(∆∗


i ), i = 1, 2. Vice versa, if


ϕi ∈
0
Cα(∆∗


i ), i = 1, 2, then with regard to inequality (2.5) equalities (3.1),


(3.2) and u = Cv readily imply that u ∈
0
C1,1,1


α (D).


§ 4. Investigation of the System of Integro-Functional
Equations (3.1), (3.7) and the Proof of the Main Result


Let us consider the system of functional equations


(Kpϕp)(x, t)≡ϕp(x, t)−
2


∑


i=1


Gp
i (x, t)ϕp(Jp


i (x, t)
)


=gp(x, t), (x, t)∈∆∗
p, (4.1)


and introduce the notation


hp(ρ) ≡
2


∑


i=1


ηipτ
ρ
i , ηp ≡ max


1≤i≤2
sup


(x,t)∈∆∗p


‖Gp
i (x, t)‖,


ηip ≡ sup
x∈[Q1,Q2]


‖Gp
i (x, 0)‖, i, p = 1, 2, ρ ∈ R.


(4.2)


Here and in what follows by ‖.‖ we understand the norm of a matrix
operator acting from one Euclidean space into another.


If all values ηip = 0, then it is assumed that ρp = −∞, i = 1, 2, 1 ≤ p ≤ 2.
Let now for some value of the index i the value ηip, 1 ≤ p ≤ 2, be different
from zero. In that case, by Remark 3.1, the function hp : R → R+ is
continuous and strictly decreasing on R; also, limρ→−∞ hp(ρ) = +∞ and
limρ→+∞ hp(ρ) = 0, 1 ≤ p ≤ 2. Therefore there exists a unique real number
ρp such that hp(ρp) = 1, 1 ≤ p ≤ 2. It is assumed that ρ0 ≡ max (ρ1, ρ2).
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Lemma 4.1. If α > ρ0, then equation (4.1) is uniquely solvable in the


space
0
Cα(∆∗


p) and for the solution ϕp = K−1
p gp the estimate


‖ϕp(x, t)‖Rmp = ‖(K−1
p gp)(x, t)‖Rmp ≤


≤ C2+ptα‖gp‖ 0
Cα(∆∗p∩{t1≤t})


, (x, t) ∈ ∆∗
p, (4.3)


holds, where C2+p is a positive constant not depending on the function gp,
1 ≤ p ≤ 2.


Proof. We shall consider the case p = 1, since the case p = 2 is considered
analogously. The condition α > ρ0 and the definition of the function h1


from (4.2) imply


h1(α) =
2


∑


i=1


ηi1τα
i < 1. (4.4)


By inequality (4.4) and the continuity of the functions G1
i , i = 1, 2, there


exist positive numbers ε1 (ε1 < t0) and δ1 such that the inequalities


‖G1
i (x, t)‖ ≤ ηi1 + δ1, i = 1, 2, (4.5)


2
∑


i=1


(ηi1 + δ1)τα
i ≡ γ1 < 1 (4.6)


hold for (x, t) ∈ ∆∗
1 ∩ {0 ≤ t ≤ ε1}.


By Remark 3.1 there is a natural number r0 such that for r ≥ r0


τirτir−1 · · · τi1t ≤ ε1, 0 ≤ t ≤ t0, (4.7)


where 1 ≤ is ≤ 2, s = 1, . . . , r.
We introduce the operators Λ1 and K−1


1 acting by the formulas


(Λ1ϕ1)(x, t) =
2


∑


i=1


G1
i (x, t)ϕ1


(


J1
i (x, t)


)


, (x, t) ∈ ∆∗
1, K−1


1 = I +
∞
∑


r=1


Λr
1,


where I is the identical operator. Obviously, the operator K−1
1 is the for-


mally inverse operator to the operator K1 defined by equality (4.1). Hence


it is sufficient for us to show that K−1
1 is continuous in the space


0
Cα(∆∗


1).
As is easily seen, the expression Λr


1g1 is the sum consisting of terms of
the form


Ii1···ir (x, t) = G1
i1(x, t)G1


i2(J
1
i1(x, t))G1


i3(J
1
i2(J


1
i1(x, t))) · · ·


· · ·G1
ir


(J1
ir−1


(J1
ir−2


(· · · (J1
i1(x, t)) · · · )))g1(J1


ir
(J1


ir−1
(· · · (J1


i1(x, t)) · · · ))),


where 1 ≤ is ≤ 2, s = 1, . . . , r.
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Hence, using (4.2), (4.5), (3.7) and Remark 3.1, we obtain: for r > r0,


g1 ∈
0
Cα(∆∗


1)


‖Ii1···ir (x, t)‖Rm1 ≤
≤ ‖G1


i1(x, t)‖ · · · ‖G1
ir0


(J1
ir0−1


(J1
ir0−2


(· · · (J1
i1(x, t)) · · · )))‖ ×


×‖G1
ir0+1


(J1
ir0


(J1
ir0−1


(· · · (J1
i1(x, t)) · · · )))‖ · · ·


· · · ‖G1
ir


(J1
ir−1


(J1
ir−2


(· · · (J1
i1(x, t)) · · · )))‖ ×


×‖g1(J1
ir


(J1
ir−1


(· · · (J1
i1(x, t)) · · · )))‖Rm1 ≤


≤ ηr0
1 (ηir0+11 + δ1) · · · (ηir1 + δ1)(τirτir−1 · · · τi1t)


α‖g1‖ 0
Cα(∆∗1∩{t1≤t})


≤


≤ ηr0
1


(
r


∏


s=r0+1


(ηis1 + δ1)
)(


r
∏


s=r0+1


τα
is


)


tα‖g1‖ 0
Cα(∆∗1∩{t1≤t})


=


= ηr0
1


(
r


∏


s=r0+1


(ηis1 + δ1)τα
is


)


tα‖g1‖ 0
Cα(∆∗1∩{t1≤t})


, (4.8)


and for 1 ≤ r ≤ r0


‖Ii1···ir (x, t)‖Rm1 ≤ ηr
1(τirτir−1 · · · τi1t)


α‖g1‖ 0
Cα(∆∗1∩{t1≤t})


≤


≤ ηr
1t


α‖g1‖ 0
Cα(∆∗1∩{t1≤t})


. (4.9)


By (4.8), (4.9), and (4.6) we have: for r > r0


‖(Λr
1g1)(x, t)‖Rm1 =


∥


∥


∥


∑


i1,...,ir


Ii1···ir (x, t)
∥


∥


∥


Rm1
≤


≤
(


∑


i1,...,ir0


1
)r0


ηr0
1


[
2


∑


i=1


(ηi1 + δ1)τα
i


]r−r0


tα‖g1‖ 0
Cα(∆∗1∩{t1≤t})


≤


≤ C5γr
1tα‖g1‖ 0


Cα(∆∗1∩{t1≤t})
, (4.10)


and for 1 ≤ r ≤ r0


‖(Λr
1g1)(x, t)‖Rm1 ≤ C6tα‖g1‖ 0


Cα(∆∗1∩{t1≤t})
, (4.11)


where C5 ≡ ηr0
1 γ−r0


1


(


∑


i1,...,ir0
1
)r0


, C6 ≡ ηr
1


(


∑


i1,...,ir
1
)


.


Inequalities (4.10) and (4.11) finally imply


‖ϕ1(x, t)‖Rm1 = ‖(K−1
1 g1)(x, t)‖Rm1 ≤


≤ ‖g1(x, t)‖Rm1 +
r0


∑


r=1


‖(Λr
1g1)(x, t)‖Rm1 +


∞
∑


r=r0+1


‖(Λr
1g1)(x, t)‖Rm1 ≤
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≤
(


1 + C6r0 + C5γr0+1
1 (1− γ1)−1)tα‖g1‖ 0


Cα(∆∗1∩{t1≤t})
=


= C3tα‖g1‖ 0
Cα(∆∗1∩{t1≤t})


,


where C3 ≡ 1 + C6r0 + C5γr0+1
1 (1 − γ1)−1. Hence we conclude that the


operator K−1
1 is continuous in the space


0
Cα(∆∗


1) and therefore Lemma 4.1
is true.


On the basis of this lemma we have


Theorem 4.1. Let conditions (3.6) be fulfilled. If α > ρ0, then problem


(1.2), (2.4) is uniquely solvable in the space
0
C1,1,1


α (D).


Proof. First we solve the system of equations (3.1), (3.7) with respect to


the unknown functions v ∈
0
C1,1,1


α (D) and ϕp ∈
0
Cα(∆∗


p), p = 1, 2, using the
method of successive approximations.


Let


v0(x, y, t) ≡ 0, (x, y, t) ∈ D; ϕp
0(x, t) ≡ 0, (x, t) ∈ ∆∗


p, p = 1, 2;


vqi+j,k(x, y, t) = ϕqi+j,k
(


ω1
i (x, y, t), ω2


i (x, y, t)
)


+


+


t
∫


ω2
i (x,y,t)


(
m


∑


p′=1


bijp′vp′,k−1


)


(


xi(x, y, t; τ), yi(x, y, t; τ), τ
)


dτ +


+ ˜Fij(x, y, t), 1 ≤ i ≤ 3, 1 ≤ j ≤ si,


(4.12)


where


ϕqi+j,k(ω1
i (x, y, t), ω2


i (x, y, t)
)


=


=


{


ϕ1
qi+j,k


(


ω1
i (x, y, t), ω2


i (x, y, t)
)


, 1 ≤ i ≤ 2, 1 ≤ j ≤ si,
ϕ2


qi+j,k


(


ω1
i (x, y, t), ω2


i (x, y, t)
)


, i = 3, 1 ≤ j ≤ si,
(x, y, t) ∈ D.


The values ϕp
k(x, t) are defined by the equations


(Kpϕ
p
k)(x, t) + (T2+pvk−1)(x, t) = f2+p(x, t), (4.13)


(x, t) ∈ ∆∗
p, p = 1, 2, k ≥ 1,


where the operators Kp, p = 1, 2, act by (4.1).
For convenience, system (4.12) is rewritten as


vk(x, y, t) = ϕk(x, y, t) +
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+
3


∑


i=1


t
∫


ω2
i (x,y,t)


(


Ωivk−1


)(


xi(x, y, t; τ), yi(x, y, t; τ), τ
)


dτ +


+ ˜F (x, y, t), (x, y, t) ∈ D, (4.14)


where the (qi + j)-th component of the vector ϕk(x, y, t) is equal to
ϕqi+j,k


(


ω1
i (x, y, t), ω2


i (x, y, t)
)


, 1 ≤ i ≤ 3, 1 ≤ j ≤ si, k ≥ 1; Ωi, i = 1, 2, 3,
and ˜F are respectively the well-defined matrices and vector-functions.


We shall now show that the following estimates are true:


‖vk+1(x, y, t)− vk(x, y, t)‖Rm ≤ M∗Mk
∗


k!
tk+α, (x, y, t) ∈ D, (4.15)


‖ϕp
k+1(x, t)− ϕp


k(x, t)‖Rmp ≤ M∗Mk
∗


k!
tk+α, (x, t) ∈ ∆∗


p, (4.16)


where M∗ and M∗ are well-defined sufficiently large numbers not depending
on k, k ≥ 1, p = 1, 2.


Indeed, by the assumptions for fp and F we have f2+p ∈
0
C α(∆∗


p), ˜F ∈
0
C α(D), p = 1, 2. Hence, on account of inequalities (2.5) from §2, we
conclude that the estimates


‖ ˜F (x, y, t)‖Rm ≤ Θ1tα, (x, y, t) ∈ D, (4.17)


‖f2+p(x, t)‖Rmp ≤ Θ1+ptα, (x, t) ∈ ∆∗
p, (4.18)


p = 1, 2, Θi = const ≥ 0, i = 1, 2, 3,


are fulfilled.
By v0 ≡ 0, ϕp


0 ≡ 0, p = 1, 2 and the conditions of Theorem 4.1 estimate
(4.3) is true so that (4.13), (4.18) imply


‖ϕp
1(x, t)− ϕp


0(x, t)‖Rmp = ‖ϕp
1(x, t)‖Rmp ≤ C5Θ4tα, p = 1, 2,


C7 = max (C3, C4), Θ4 = max (Θ2,Θ3)
(4.19)


which in turn gives rise to


‖ϕ1(x, y, t)− ϕ0(x, y, t)‖Rm = ‖ϕ1(x, y, t)‖Rm =


=
∑


1≤i≤3


∑


1≤j≤si


∣


∣ϕqi+j,1
(


ω1
i (x, y, t), ω2


i (x, y, t)
)∣


∣ ≤


≤
∑


1≤i≤3


∑


1≤j≤si


C7Θ4
(


ω2
i (x, y, t)


)α ≤ mC7Θ4tα, (4.20)


since
∑


1≤i≤3


∑


1≤j≤si


1 = m and, as shown in §3, 0 ≤ ω2
i (x, y, t) ≤ t, i = 1, 2, 3.
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By virtue of (4.17) and (4.20), from (4.14) we have


‖v1(x, y, t)− v0(x, y, t‖Rm = ‖v1(x, y, t)‖Rm ≤ ‖ϕ1(x, y, t)‖Rm +


+‖ ˜F (x, y, t)‖Rm ≤ mC7Θ4tα + Θ1tα = (mC7Θ4 + Θ1)tα. (4.21)


Now, assuming that estimates (4.15), (4.16) are fulfilled for k, k > 0, we
shall show that they hold for k + 1 when M∗ and M∗ are sufficiently large.


Using (4.13), for p = 1 we have


{K1(ϕ1
k+2 − ϕ1


k+1)}(x, t) = −{T3(vk+1 − vk)}(x, t), (x, t) ∈ ∆∗
1. (4.22)


It is obvious that for the right-hand side of equation (4.22) we have the
estimate


∥


∥{T3(vk+1 − vk)}(x, t)
∥


∥


Rm1
≤


≤
2


∑


i=1


ω2
3(x,t,t)
∫


ω̃2
i (x,t)


‖˜Bi‖‖vk+1 − vk‖Rm


(


xi
(


ω1
3(x, t, t),−ω2


3(x, t, t),


ω2
3(x, t, t); τ


)


, yi
(


ω1
3(x, t, t),−ω2


3(x, t, t), ω2
3(x, t, t); τ


)


, τ
)


dτ +


+


t
∫


ω2
3(x,t,t)


‖˜B3‖‖vk+1 − vk‖Rm


(


x3(x, t, t; τ), y3(x, t, t; τ), τ
)


dτ. (4.23)


Denote by ξ1 the largest of the numbers max
x,t,τ


‖˜Bi(x, t, τ)‖, i = 1, 2, 3. Since


0 ≤ ω̃2
i (x, t) ≤ ω2


3(x, t, t) ≤ t, by (4.15) we find from (4.23) that
∥


∥{T3(vk+1 − vk)}(x, t)
∥


∥


Rm1
≤


≤ ξ1M∗Mk
∗


k!


(
2


∑


i=1


ω2
3(x,t,t)
∫


ω̃2
i (x,t)


τk+αdτ +


t
∫


ω2
3(x,t,t)


τk+αdτ
)


≤


≤ ξ1M∗Mk
∗


k!


(
2


∑


i=1


1 + 1
)


t
∫


0


τk+αdτ ≤


≤ 3ξ1M∗Mk
∗


k!
1


k + α + 1
tk+α+1 ≤ 3ξ1M∗ Mk


∗
(k + 1)!


tk+1+α. (4.24)


Now (4.22), (4.24), and (4.3) (for p = 1) imply


∥


∥ϕ1
k+2(x, t)− ϕ1


k+1(x, t)
∥


∥


Rm1
≤ 3C3ξ1M∗ Mk


∗
(k + 1)!


tk+1+α. (4.25)
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Similarly, (4.13) (for p = 2), (4.15), and (4.3) (for p = 2) give


∥


∥ϕ2
k+2(x, t)− ϕ2


k+1(x, t)
∥


∥


Rm2
≤ 4C4ξ2M∗ Mk


∗
(k + 1)!


tk+1+α, (4.26)


where ξ2 denotes the largest of the numbers max
x,t,τ


‖Ei(x, t, τ)‖,
max
x,t,τ


‖Hi(x, t, τ)‖, i = 1, 2.


Using the same arguments as in deriving estimate (4.20), from (4.25) and
(4.26) we obtain


‖ϕk+2(x, y, t)− ϕk+1(x, y, t)‖Rm ≤ ξ4M∗ Mk
∗


(k + 1)!
tk+1+α, (4.27)


where ξ4 ≡ 4mC7ξ3, ξ3 ≡ max (ξ1, ξ2).
We denote by η the largest of the numbers max


D
‖Ωi‖, where the matrices


Ωi, i = 1, 2, 3, are defined by (4.14). By (4.27) and (4.15), from system
(4.14) we have


‖vk+2(x, y, t)− vk+1(x, y, t)‖Rm ≤ ‖ϕk+2(x, y, t)− ϕk+1(x, y, t)‖Rm +


+
3


∑


i=1


t
∫


ω2
i (x,y,t)


‖Ωi‖‖vk+1 − vk‖Rm


(


xi(x, y, t; τ), yi(x, y, t; τ), τ
)


dτ ≤


≤ ξ4M∗ Mk
∗


(k + 1)!
tk+1+α + 3η


t
∫


0


M∗Mk
∗


k!
τk+αdτ ≤


≤ (ξ4 + 3η)M∗ Mk
∗


(k + 1)!
tk+1+α, (x, y, t) ∈ D, (4.28)


since 0 ≤ ω2
i (x, y, t) ≤ t, i = 1, 2, 3.


If we set


M∗ = mC7Θ4 + Θ1, M∗ = max
(


3C3ξ1, 4C4ξ2, ξ4 + 3η
)


,


then by (4.19), (4.21), (4.25), (4.26), (4.28) immediately imply that esti-
mates (4.15), (4.16) hold for any integer k ≥ 0.


It follows from (4.15), (4.16) that the series


v(x, y, t) = lim
k→∞


vk(x, y, t) =
∞
∑


k=1


(


vk(x, y, t)− vk−1(x, y, t)
)


, (x, y, t) ∈ D,


ϕp(x, t) = lim
k→∞


ϕp
k(x, t) =


∞
∑


k=1


(


ϕp
k(x, t)− ϕp


k−1(x, t)
)


, (x, t) ∈ ∆∗
p, p = 1, 2,
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converge in the spaces
0
C 1,1,1


α (D),
0
C α(∆∗


p), p = 1, 2, and by (4.13), (4.14)
the limit functions v, ϕp, p = 1, 2, satisfy system (3.1), (3.7). Finally, since
problem (1.2), (2.4) is equivalent to system (3.1), (3.7) and the equality
u = Cv holds, we conclude that the obtained function u(x, y, t) is really a


solution of problem (1.2), (2.4) in the class
0
C 1,1,1


α (D), α > ρ0.
Now we shall show that under the conditions of Theorem 4.1 prob-


lem (1.2), (2.4) has no other solutions in the class
0
C 1,1,1


α (D). Indeed,


if u ∈
0
C 1,1,1


α (D) is the solution of the homogeneous problem corresponding
to (1.2), (2.4), then the corresponding functions v, ϕp, p = 1, 2, satisfy the
homogeneous system of equations


vqi+j(x, y, t) = ϕqi+j
(


ω1
i (x, y, t), ω2


i (x, y, t)
)


+


+


t
∫


ω2
i (x,y,t)


(
m


∑


p′=1


bijp′vp′


)


(


xi(x, y, t; τ), yi(x, y, t; τ), τ
)


dτ, (x, y, t) ∈ D,


1 ≤ i ≤ 3, 1 ≤ j ≤ si,
(


Kpϕp)(x, t) +
(


T2+pv
)


(x, t) = 0, (x, t) ∈ ∆∗
p, p = 1, 2.


(4.29)


We apply the method of successive approximations to system (4.29), as-
suming that v, ϕ1, ϕ2, are zero approximations. Since these values satisfy
system (4.29), each next approximation will coincide with it so that we shall
have vk(x, y, t) ≡ v(x, y, t), (x, y, t) ∈ D, ϕp


k(x, t) ≡ ϕp(x, t), (x, t) ∈ ∆∗
p for


k ≥ 1 and p = 1, 2. Recalling that these values satisfy estimates of form
(4.17), (4.18) and arguing as in the case of deriving estimates (4.15), (4.16),
we obtain


‖v(x, y, t)‖Rm = ‖vk+1(x, y, t)‖Rm ≤ ˜M∗
˜Mk
∗


k!
tk+α, (x, y, t) ∈ D,


‖ϕp(x, t)‖Rmp =‖ϕp
k+1(x, t)‖Rmp ≤˜M∗


˜Mk
∗


k!
tk+α, (x, t)∈∆∗


p, k ≥ 1, p=1, 2,


whence, as k →∞, we find in the limit that


v(x, y, t) ≡ 0, (x, y, t) ∈ D, ϕp(x, t) ≡ 0, (x, t) ∈ ∆∗
p, p = 1, 2.


Next, using inequality (4.15) and recalling that the value M∗ is defined
by Θi, i = 1, 2, 3, which are given by the right-hand sides F and fi, i = 1, 2,
of problem (1.2), (2.4), we can readily show that for a regular solution of
the considered problem the estimate


‖u‖ 0
C1,1,1


α (D)
≤ c


(
2


∑


i=1


‖fi‖ 0
Cα(∆i)


+ ‖F‖ 0
Cα(D)


)


(4.30)
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holds, where the positive constant c does not depend on fi, i = 1, 2, and
F . Estimate (4.30) implies that a regular solution of problem (1.2), (2.4) is


stable in the space
0
C1,1,1


α (D), α > ρ0.
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