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ON THE REPRESENTATION OF NUMBERS BY
POSITIVE DIAGONAL QUADRATIC FORMS WITH FIVE


VARIABLES OF LEVEL 16


D. KHOSROSHVILI


Abstract. A general formula is derived for the number of represen-
tations r(n; f) of a natural number n by diagonal quadratic forms f
with five variables of level 16. For f belonging to one-class series,
r(n; f) coincides with the sum of a singular series, while in the case
of a many-class series an additional term is required, for which the
generalized theta-function introduced by T. V. Vepkhvadze [4] is used.


1. Let f = f(x) = f(x1, x2, . . . , xs) = 1
2X ′AX = 1


2


∑


j,k=1 ajkxjxk
be an integral positive quadratic form. Here and in what follows X is a
column-vector, and X ′ is a row-vector with components x1, x2, . . . , xs. Let
further r(n; f) denote the number of representations of a natural number n
by the form f .


For our discussion we shall need the following results.
As is well known, for each quadratic form f we have the corresponding


series


ϑ(τ, f) = 1 +
∞
∑


n=1


r(n, f)Qn, (1)


θ(τ, f) = 1 +
∞
∑


n=1


ρ(n, f)Qn, (2)


where Q = e2πiτ (Imτ > 0) and ρ(n, f) is a singular series. In the cases
considered here the sum of the singular series can be calculated by means
of the following two lemmas.
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Lemma 1 (see [1]). Let 2 - s, ∆ = 2s∆0, n∆0 = 2α+γv1v2 = r2ω,
2α‖n, 2γ‖∆0, pl‖∆0, pω‖n, v1 =


∏


p|n
p-2∆0


pω = r2
1ω1, v1 =


∏


p|∆0n
p|∆0,p>2


pω+l =


r2
2ω2, (ω, ω1 and ω2 are square-free integers).


Then


ρ(n, f) =
22− s


2 π1− s
2 (s− 1)!


Γ( s
2 )∆


1
2
0 B s−1


2


n
s
2−1r2−s


1 χ(2)Πp|∆0
p>2


χ(p)×


×Πp|2∆0(1− p1−s)−1L
(s− 1


2
, (−1)


s−1
2 ω


)


Π p|r2
r2>2


(


1−
( (−1)


s−1
2 ω


p


)


p
1−s
2


)


×


×
∑


d|r1


ds−2Πp|d


(


1−
( (−1)


s−1
2 ω


p


)


p
1−s
2


)


, (3)


where B s−1
2


are Bernoulli’s numbers, ( ·p ) is Jacobi’s symbol, and the values
of χ(2) are given in [2] (p. 66, formulas (28)–(33)).


For the case s = 5 the values of L(·, ·) are given in


Lemma 2 (see, e. g., [3]).


L(2; 1) =
π2


8
, L(2; 2) =


2
1
2 π2


16
,


L(2; ω) = − π


ω
3
2


∑


1≤h≤ω
2


h
(h


ω


)


, if ω ≡ 1 (mod 4), ω > 1;


L(2; ω) =
π2


2ω
3
2


{


2
∑


1≤h≤ω
4


h
(h


ω


)


+
∑


ω
4 <h≤ω


2


(ω − 2h)
(h


ω


)


}


,


if ω ≡ 3 (mod 4);


L(2; ω) =
π2


4ω
3
2


{


ω
∑


1≤h≤ ω
16


( h
1
2ω


)


+
∑


ω
16 <h≤ 3ω


16


(ω − 16h)
( h


1
2ω


)


−


− 2ω
∑


3ω
16 <h≤ω


4


( h
1
2ω


)


}


, if ω ≡ 2 (mod 8), ω > 2;


L(2; ω) =
π2


4ω
3
2


{


16
∑


1≤h≤ ω
16


( h
1
2ω


)


+ω
∑


ω
16 <h≤ 3ω


16


( h
1
2ω


)


+4ω
∑


3ω
16 <h≤ω


4


( h
1
2ω


)


−


− 16ω
∑


3ω
16 <h≤ω


4


h
( h


1
2ω


)


}


, if ω ≡ 6 (mod 8).
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In [4] Vepkhvadze constructed generalized theta-functions with charac-
teristic and spherical functions


ϑgh(τ ; Pν , f) =
∑


X≡g (mod N)


(−1)
h′A(X−g)


N2 Pν(X)e
πiτX′AX


N2 . (4)


Here g and h are special vectors with respect to the matrix A of form f ,
i.e.,


Ag ≡ 0 (mod N), Ah ≡ 0 (mod N),


where N is a level of the form f , i.e., the smallest integer for which NA−1


is a symmetric integral matrix with even diagonal elements; Pν = Pν(x) =
Pν(x1, . . . , xs) is a spherical function of ν-th order with respect to f .


The properties of functions (4) are investigated in [4], where these func-
tions are used to derive a formula for the number of representations of a
quadratic form with seven variables.


In this paper we use the method of [4] to obtain formulas for the number
of representations of natural numbers by all positive diagonal quadratic
forms with five variables of level 16.


Lemma 3 (see, e.g., [4], Lemma 4). Let k be an arbitrary integral
vector, and l a special vector with respect to the matrix A of the form f .
Then the equalities


ϑg+Nk,h(τ ;Pν , f)=(−1)
h′Ak


N ϑgh(τ ; Pν , f), ϑg,h+2l(τ ;Pν , f)=ϑgh(τ ;Pν , f)


are valid.


For M =
(


α β
γ δ


)


∈ Γ0(N) denote


v(M) =
(


i
1
2 η(γ)(sgn δ−1))s+2ν


(sgn δ)ν(


i(
|δ|−1


2 )2)s+2ν
(2∆(sgn δ)β


|δ|


)(−1
|δ|


)


,(5)


η(γ) = 1 for γ ≥ 0, η(γ) = −1 for γ < 0. By v0(M) we denote v(M) in the
case ν = 0.


Lemma 4 (see, e.g., [4], Theorem 2). Let f = f(x) be an integral
positive quadratic form with an odd number of variables s, ∆ the determi-
nant of the matrix A of the form f , and N the level of the form f . Then
function (1) is an integral modular form of type


(


− s
2 , N, v0(M)


)


.


Lemma 5 (see, e.g., [4], Theorem 2). Let fk = fk(x) (k = 1, . . . , j)
be integral positive quadratic forms with the number of variables s, P (k)


ν =
P (k)


ν (x) (k = 1, 2, . . . , j) the corresponding spherical functions, Ak a matrix
of the form fk(x), ∆k the determinant of the matrix Ak, and Nk the level
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of the form fk. Let further g(k) and h(k) be vectors with even components,
and Bk arbitrary complex numbers. Then the function


Φ(τ) =
j


∑


k=1


Bkϑg(k)h(k)(τ ; P (k)
ν , fk)


is an integral modular form of the type
(


− ( s
2 + ν), N, v(M)


)


, where v(M)
are determined by formula (5), if and only if the conditions


Nk|N, N2
k |fk(g(k)), 4Nk


∣


∣


N
Nk


fk(h(k)) (6)


are fulfilled, and for all α and δ satisfying the condition αδ ≡ 1 (mod N)
we have


j
∑


k=1


Bkϑαg(k),−h(k)(τ ;P (k)
ν , fk)(sgn δ)ν


( (−1)
s−1
2 ∆k


|δ|


)


=


=
( (−1)


s−1
2 +ν∆
|δ|


)
j


∑


k=1


Bkϑg(k)h(k)(τ ; P (k)
ν , fk). (7)


Lemma 6 (see, e.g., [5], Theorem 4). If all the conditions of Lemma
5 are fulfilled and ν > 0, then the function Φ(τ) is a cusp form of the type
(


− ( s
2 + ν), N, v(M)


)


.


Lemma 7 (see, e.g., [4], Theorem 1). Let F be an integral modular
form of the type (−Γ, N, v(M)), where v(M) are determined by formula
(5). Then the function F is identically zero if in its expansion into powers
Q = e2πiτ the coefficients of Qn are zero for all


n ≤ r
12


N
∏


p|N


(


1 +
1
p


)


.


2. Positive diagonal quadratic forms with five variables of level 16 are
written as


fs1,s2 =
s1


∑


j=1


x2
j + 2


s2
∑


j=s1+1


x2
j + 4


5
∑


j=s2+1


x2
j ,


where 1 ≤ s1 ≤ s2 ≤ 4.


Theorem 1. Let f1 = 4x2
1 + 4x2


2 + 2x2
3, P1 = x3, g′ = (4, 4, 8), h′ =


(2, 2, 4). Then the identity


ϑ(τ ; fs1,s2) = θ(τ ; fs1,s2) + Φ(τ ; fs1,s2), (8)
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holds, where


Φ(τ ; f1,2) =
1
16


ϑgh(τ ; P1, f1),


Φ(τ ; f2,3) = Φ(τ ; f3,4) =
1
4
ϑgh(τ ;P1, f1),


Φ(τ ; fs1,s2) = 0 in other cases.


Proof. By Lemma 4 the function ϑ(τ ; fs1,s2) belongs to the space of
integral modular forms of the type


(


− 5
2 , 16, v0(M)


)


, where the system of
multiplicators v0(M) is calculated by formula (5). Therefore by Siegel’s
theorem the function θ(τ ; fs1,s2) also belongs to this space.


It is easy to verify that the function Φ(τ ; fs1,s2) satisfies conditions (6)
of Lemma 5.


If αδ ≡ 1 (mod 16), then αδ ≡ 1 (mod 4), i.e., either α ≡ 1 (mod 4)
and δ ≡ 1 (mod 4) or α ≡ −1 (mod 4) and δ ≡ −1 (mod 4).


In our case condition (7) of Lemma 5 is written as


ϑαg,−h(τ ; P1, f1)(sgn δ)
(−28


|δ|


)


=
(210


|δ|


)


ϑgh(τ ; P1, f1) (9)


and we must check it.
1. Let α ≡ 1 (mod 4) and δ ≡ 1 (mod 4). It is easy to verify that


(sgn δ)
(−28


|δ|


)


=
(210


|δ|


)


and since αg = Nk1 +g with as an integral vector k1, together with Lemma
3 this implies the validity of (9).


2. We now set α ≡ −1 (mod 4) and δ ≡ −1 (mod 4). Since


(sgn δ)
(−28


|δ|


)


= −
(210


|δ|


)


and αg = Nk2 − g, where k2 is an integral vector, and, as is easy to verify,
ϑ−g,h(τ ; P1, f1) = −ϑg,h(τ ;P1, f1), Lemma 3 implies (9). From (9) it follows
that the function ϑgh(τ ;P1, f1) satisfies conditions (7) of Lemma 5 as well.
Hence, by Lemmas 5 and 6, the function ϑgh(τ ; P1, f1) is a cusp form of the
type


(


− 5
2 , 16, v0(M)


)


.
Therefore due to Lemma 7 the function


ψ(τ ; fs1,s2) = ϑ(τ ; fs1,s2)− θ(τ ; fs1,s2)− Φ(τ ; fs1,s2) (10)


will be identically zero if in its expansion into powers of Q = e2πiτ all
coefficients of Qn for n ≤ 5 are zero.







96 D. KHOSROSHVILI


Let n = 2αm (2 - m, α ≥ 0), 210−s1−s2n = r2ω, m = r2
1ω1, ω and ω1 be


square-free integers. Then by formulas (2) and (3) we have


θ(τ ; fs1,s2) = 1 +
∞
∑


n=1


ρ(n; fs1,s2)Q
n,


where


ρ(n; fs1,s2) =
2


3α+s1+s2
2 +2ω


3
2
1


π2


∑


d|r1


d3
∏


p|d


(


1−
(ω
p


)


p−2
)


L(2; ω)χ(2). (11)


The values of L(2, ω) are given by Lemma 2. Introduce the notation
χs1,s2(2) for the values of χ(2) corresponding to the quadratic form fs1,s2 .
Using formulas (28)–(33) from [3], we obtain


χ2,3(2)=









































1, for α = 0 or α = 2;
2−


3α
2 −


1
2


7


(


13·2 3α
2−


1
2 +2−7


(2
m


)


)


, for 2 - α, m ≡ 1 (mod 4);


2−
3α
2 +1


2


7


(


13·2 3α
2 −


3
2 +15


)


, for 2 - α, m ≡ 3 (mod 4);
2−


3α
2 +2


7


(


13 · 2 3α
2 −3 + 15


)


, for 2 | α, α > 2.


(12)


After calculating the values of ρ(n; f2,3) for all n ≤ 5, by (2), (11) and
(12) we have


θ(τ ; f2,3) = 1 + 2Q + 6Q2 + 12Q3 + 16Q4 + 28Q5 + . . . .


Formula (1) implies


ϑ(τ ; f2,3) = 1 + 4Q + 6Q2 + 8Q3 + 16Q4 + 24Q5 + . . . .


By (4) we obtain


1
8
ϑgh(τ ; P1, f1) =


∞
∑


n=1


(
∑


4n=x2
1+x2


2+2x2
3


x1≡1 (mod 4)
x2≡1 (mod 4)


2-x3


(−1)
x1−1


4 + x2−1
4 + x3−1


2 x3Qn
)


=


= 2Q− 4Q3 − 4Q5 + . . . . (13)


Now it is not difficult to verify that all coefficients of Qn in the expansion
into powers of Q of the function ψ(τ ; f2,3) determined by (10) are zero for
all n ≤ 5. Thus identity (8) is proved for the case, where s1 = 2 and s2 = 3.


For other values of s1 and s2, the theorem is proved similarly. We give
here a list of suitable values of χ(2) calculated by means of formulas (28)–
(33) from [2]:
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χ1,1(2) =

























































































0, for α = 1 or α = 0,
m ≡ 3 (mod 4);


2, for α = 0, m ≡ 1 (mod 4);
2−


3α
2 +1


7


(


5·2 3α
2 +2−7


( 2
m


))


, for 2|α, α > 1, m ≡ 1 (mod 4);


2−
3α
2 +2


7
(


5 · 2 3α
2 −1 + 15


)


, for 2|α, α > 1, m ≡ 3 (mod 4);


2−
3α
2 + 7


2


7
(


5 · 2 3α
2 −


5
2 + 15


)


, for 2 - α, α > 1;


χ1,2(2) =













































































1, for α = 0 or α = 1,
m ≡ 3 (mod 4) or α = 2;


2−
3α
2 +1


2


7


(


3·23α
2 +1


2 +2−7
(2
m


))


, for 2 - α, m ≡ 1 (mod 4);


2−
3α
2 + 3


2


7
(


3 · 2 3α
2 −


1
2 + 15


)


, for 2 - α, α>1, m≡3 (mod 4);


2−
3α
2 +3


7
(


3 · 2 3α
2 −2 + 15


)


, for 2 | α, α > 2;


χ1,3(2) =

































































1, for α = 0 or α = 1;
2−


3α
2


7


(


5 · 2 3α
2 +2−7


( 2
m


))


, for 2 | α, α>1, m≡3 (mod 4);


2−
3α
2 +1


7
(


5·2 3α
2 −1+15


)


, for 2 | α, α>1, m≡3 (mod 4);


2−
3α
2 + 5


2


7
(


5 · 2 3α
2 −


5
2 + 15


)


, for 2 - α, α > 1;


χ1,4(2) = χ2,3(2) (see (12));


χ2,2(2) =

































































1, for 2 | α, α ≥ 0, m ≡ 3 (mod 4);
2−


3α
2


7


(


5·2 3α
2 +2−7


(2
m


))


, for 2 | α, α≥0, m≡1 (mod 4);


2−
3α
2 +1


7
(


5 · 2 3α
2 −1 + 15


)


, for 2 | α, α≥0, m≡3 (mod 4);


2−
3α
2 + 5


2


7
(


5 · 2 3α
2 −


5
2 +15


)


, for 2 - α, α > 1;
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χ2,4(2) =



















































































1, for α = 0 or α = 1;
2−


3α
2 −1


7


(


3·23α
2 +2+2−7


(2
m


))


, for 2 | α, α > 1,


m ≡ 1 (mod 4);
2−


3α
2


7
(


3 · 2 3α
2 +1 + 15


)


, for 2 | α, α > 1,


m ≡ 3 (mod 4);
2−


3α
2 + 3


2


7
(


5 · 2 3α
2 −


1
2 + 15


)


, for 2 - α, α > 1;


χ3,3(2) =































































































3
2
, for α = 1 or α = 0, m ≡ 1 (mod 4);


1
2
, for α = 0, m ≡ 3 (mod 4);


2−
3α
2 −1


7
, for 2 | α, α > 1, m ≡ 1 (mod 4);


2−
3α
2


7
, for 2 | α, α > 1, m ≡ 3 (mod 4);


2−
3α
2 + 3


2


7
, for 2 - α, α > 1;


χ3,4(2) =































































































1, for α = 0 or α = 1,
m ≡ 3 (mod 4) or α = 2;


2−
3α
2−


3
2


7


(


27·23α
2−


1
2 +2−7


(2
m


))


, for 2 - α, , m ≡ 1 (mod 4);


2−
3α
2 −


3
2


7
(


27·2 3α
2 −


1
2 +30


)


, for 2 - α, α > 1,


m ≡ 3 (mod 4);


2−
3α
2 +1


7
(


9 · 2 3α
2 −3 + 5


)


, for 2 | α, α > 2;


χ4,4(2) =

































































1, for α = 0;
3 · 2− 3α


2 + 1
2


7
(


2
3α
2 −


1
2 + 5


)


, for 2 - α;


2−
3α
2 −2


7


(


3·2 3α
2 +2+2−7


(2
m


))


, for 2 | α, m ≡ 1 (mod 4);


3 · 2− 3α
2 −1


7
(


2
3α
2 +1 + 5


)


, for 2 | α, m ≡ 3 (mod 4).


Theorem 2. Let n = 2αm (α ≥ 0, 2 - m), m = r2
1ω1, 1 ≤ s1 ≤ s2 ≤ 4,







REPRESENTATION OF NUMBERS BY QUADRATIC FORMS 99


210−s1−s2n = r2ω (ω and ω1 are square-free integers). Then


r(n; fs1,s2) =
2


3α+s1+s2
2 +1ω


3
2
1


π2


∑


d|r1


d3
∏


p|d


(


1−
(ω
p


)


p−2
)


L(2; ω)χ(2) +


+ νs1,s2(n), (14)


where


2ν1,2(n) = ν2,3(n) = ν3,4(n) = 2
∑


4n=x2
1+x2


2+2x2
3


2-x1, 2-x2, 2-x3
x1>0, x2>0, x3>0


( 2
x1x2


)(−1
x3


)


x3,


νs1,s2(n) = 0 in other cases.


Proof. By equating the coefficients of equal powers of Q in both parts of
identity (8) we obtain


r(n; fs1,s2) = ρ(n; fs1,s2) + νs2,s2(n), (15)


where νs1,s2(n) denotes the coefficients of Qn in the expansion of the func-
tion Φ(τ ; fs1,s2) into powers of Q.


When s1 = 2 and s2 = 3, by (13) we have


ν2,3(n) =
∑


4n=x2
1+x2


2+2x2
3


x1≡1 (mod 4)
x2≡1 (mod 4)


2-x3


(−1)
x1−1


4 + x2−1
4 + x3−1


2 x3


i.e.,


ν2,3(n) = 2
∑


4n=x2
1+x2


2+x2
3


2-x1,2-x2,2-x3
x1>0,x2>0,x3>0


( 2
x1x2


)(−1
x3


)


x3. (16)


From formulas (11), (15) and (16) it follows that the theorem is valid
when s1 = 2 and s2 = 3. The validity of equality (14) for other values of s1
and s2 is proved in a similar manner.
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