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MONOTONE SOLUTIONS OF A HIGHER ORDER
NEUTRAL DIFFERENCE EQUATION


SUI SUN CHENG AND GUANG ZHANG


Abstract. A real sequence {xk} is said to be (∗)-monotone with
respect to a sequence {pk} and a positive integer σ if xk > 0 and
(−1)n∆n(xk − pkxk−σ) ≥ 0 for n ≥ 0. This paper is concerned
with the existence of (∗)-monotone solutions of a neutral difference
equation. Existence criteria are derived by means of a comparison
theorem and by establishing explicit existence criteria for positive
and/or bounded solutions of a majorant recurrence relation.


§ 1. Introduction


A sequence {xk} is said to be (∗)-monotone if it satisfies


xk > 0, ∆xk ≥ 0, ∆2xk ≤ 0, ∆3xk ≥ 0, . . . , (−1)n∆n+1xk ≥ 0.


A typical example is the sequence defined by xk = 1 − λk, 0 < λ < 1,
k = 0, 1, 2, . . . . Given a positive integer σ and a sequence {pk}, we can
generalize the concept of a (∗)-monotone sequence {xk} by requiring


xk > 0, xk − pkxk−σ ≥ 0,


∆(xk − pkxk−σ) ≤ 0, . . . , (−1)n∆n (xk − pkxk−σ) ≥ 0.


Such a sequence will again be called (∗)-monotone with respect to the inte-
gers n, σ and the sequence {pk}.


This note is concerned with the (∗)-monotone solutions of a class of
nonlinear recurrence relations of the form


∆n (yk − pkyk−σ) + qkf(yk−τ ) = 0, k = 0, 1, 2, . . . , (1)


where n is a positive odd integer, σ is a positive integer, τ is a non-negative
integer, {pk} and {qk} are non-negative sequences such that {qk} does not
vanish identically for all large k, and f is a real function defined on R such
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that f is positive nondecreasing for x > 0. The forward difference operator
is defined as usual, i.e., ∆xk = xk+1 − xk.


Let µ = max{σ, τ}. Then by a solution of (1) we mean a real sequence
{yk} which is defined for k ≥ −µ and which satisfies equation (1) for
k ≥ 0. By writing equation (1) in the form of a recurrence relationyn+k =
F (yn+k−1, . . . , yk, yk−σ, yk−τ ) it is clear that an existence and uniqueness
theorem for the solutions of (1) satisfying appropriate initial conditions can
easily be formulated and proved by induction. A solution {yk} of (1) is said
to be eventually positive if yk > 0 for all large k, and eventually negative
if yk < 0 for all large k. It is said to be oscillatory if it is neither even-
tually positive nor eventually negative. Finally, it is said to be eventually
(∗)-monotone if it is (∗)-monotone for all large k.


We will be concerned with the existence of eventually (∗)-monotone so-
lutions of (1). Similar problems related to both differential and difference
equations have been considered in [1–4].


§ 2. Comparison Theorem


We first establish a Sturmian type criterion which has not been explored
before. To be more precise, we will assume the existence of an eventually
(∗)-monotone solution of a majorant relation of the form


∆n (xk − Pkxk−σ) + QkF (xk−τ ) ≤ 0, k = 0, 1, 2, . . . , (2)


and then show that (1) also has an eventually (∗)-monotone solution. The
correct assumptions will be stated later, for now, we will assume in the
sequel that the sequences {Pk} and {Qk}, and the function F satisfy the
same assumptions that have respectively been imposed on {pk}, {qk} and
f.


Let {xk} be an eventually (∗)-monotone solution of (2) such that xk > 0
for k ≥ N − µ and the sequence {zk} defined by


zk = xk − Pkxk−σ, k ≥ 0, (3)


satisfieszk ≥ 0, ∆zk ≤ 0, . . . , ∆nzk ≤ 0, for k ≥ N − µ. Then in view of
(2),∆nzk ≤ −QkF (xk−τ ), k ≥ N . By summing the above inequality n
times from k to infinity, we obtain respectively


∆n−1zk ≥
∞
∑


j=k


QjF (xj−τ ), ∆n−2zk ≤ −
∞
∑


j=k


∞
∑


k=i


QiF (xi−τ ),


. . .


xk − Pkxk−σ = zk ≥
∞
∑


j=k


(j − k + n− 1)(n−1)


(n− 1)!
QjF (xj−τ ), k ≥ N,
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where the factorial function h(m)(i) is defined by h(i)h(i−1) · · ·h(i−m+1).
As a consequence, by assuming Pk ≥ pk and Qk ≥ qk for k ≥ 0, F (x) ≥ f(x)
for x > 0, as well as f is positive nondecreasing on (0,∞), we see that


xk ≥ pkxk−σ +
∞
∑


j=k


(j − k + n− 1)(n−1)


(n− 1)!
qjf(xj−τ ), k ≥ N. (4)


Let Ω be the set of all real sequences w = {wk}∞n=N−µ. Define an operator
T : Ω → Ω by(Tw)k = 1, N − µ ≤ k ≤ N − 1, and


(Tw)k =
1
xk


{


pkwk−σxk−σ+
∞
∑


j=k


(j−k+n−1)(n−1)


(n− 1)!
qjf(wj−τxj−τ )


}


, k≥N.


Consider the following successive approximations: w(0) ≡ 1, w(j+1) = Tw(j)


for j = 0, 1, 2, . . . . By means of (4) and induction, it is easily seen that0 ≤
w(j+1)


k ≤ w(j)
k ≤ 1, k ≥ N , j ≥ 0. Thus, as m → ∞, w(m) converges


(pointwise) to some non-negative sequence w∗ which satisfies w∗k = 1 for
N −µ ≤ k ≤ N − 1, and furthermore, by means of the Lebesgue dominated
convergence theorem, we may take limits on both sides of w(j+1) = Tw(j)


to obtain


w∗kxk − pkw∗k−τxk−τ =
∞
∑


j=k


(j − k + n− 1)(n−1)


(n− 1)!
qjf(w∗k−τxk−τ ), ; k ≥ N.


Taking differences on both sides of the above equality, we see that {yk}
defined byyk = w∗kxk, k ≥ N − µ, is an eventually non-negative solution
of the recurrence relation (1). It will be a (∗)-monotone solution if we
can show that {yn} is eventually positive. Indeed, note that yk > 0 for
N−µ ≤ k ≤ N−1. Suppose to the contrary that yk > 0 for N−µ ≤ k < k∗


and yk∗ = 0, then


0 = yk∗ = pk∗yk∗−τ +
∞
∑


j=k∗


(j − k + n− 1)(n−1)


(n− 1)!
qjf(yj−τ ).


Since yk∗−σ > 0, (j−k∗+n− 1)(n−1) > 0 for j ≥ k∗, we must have pk∗ = 0
and qjf(yj−τ ) = 0 for j ≥ k∗. In other words, if τ = 0, we may prevent this
from happening by imposing the condition pk > 0 for all k ≥ 0, or, if τ > 0,
by imposing the condition pk > 0, or, the vector (qk, qk+1, . . . , qk+τ−1) 6= 0
for all k ≥ 0.


We summarize these results.


Theorem 1. Suppose that either (H1) τ = 0 and pk > 0 for k ≥ 0,
or (H2) τ > 0, and, pk > 0 or the vector (qk, . . . , qk+τ−1) 6= 0 for k ≥ 0.
Suppose that {Pk} and {Qk} are two sequences such that Pk ≥ pk ≥ 0 and
Qk ≥ qk ≥ 0 for k ≥ 0. Suppose further that F and f are real functions







52 SUI SUN CHENG AND GUANG ZHANG


such that F (x) ≥ f(x) for x > 0. If (2) has a (∗)-monotone solution with
respect to σ, n and {Pk}, then (1) will have a (∗)-monotone solution with
respect to σ, n and {pk}.


§ 3. Existence Theorems


Given a real sequence {uk} with sign conditions on its difference se-
quences {∆ruk} and {∆tuk}, the in-between difference sequences {∆suk}
will also satisfy certain sign conditions. Similar results are well known in the
theory of ordinary differential equations (see, for example, Kiguradze and
Chanturia [7]). We will make use of these criteria to derive the existence of
(∗)-monotone solutions.


Lemma 1 (Zhou and Yan [5]). Let {uk} be a real bounded sequence
of fixed sign. Suppose uk∆tuk ≤ 0 for some odd integer t > 1 and all large
k. Then (−1)suk∆suk ≥ 0 for s = 1, 2, . . . , t and all large k.


Lemma 2 (Zafer and Dahiya [6]). Let m be a positive integer. Let
{yk}∞k=0 be a real sequence such that the sequences {yk}, . . . , {∆m−1yk} are
of constant sign. Suppose further that yk∆myk ≥ 0 for k ≥ 0. Then either


(i) yk∆jyk ≥ 0 for each j ∈ {1, 2, . . . ,m− 1} and all large k, or
(ii) there is an integer t ∈ {1, 2, . . . , m − 2} such that (−1)m−t = 1


and for each j ∈ {1, . . . , t}, yk∆jyk > 0 for all large k, and for each j ∈
{t + 1, . . . , m− 2}, (−1)j−tyk∆jyk > 0 for all large k.


Lemma 3. Suppose there is an integer N such thatPN+jσ ≤ 1, j =
0, 1, 2, . . . . Then for any eventually positive solution {xk} of (2), the se-
quence {zk} defined by (3) is also eventually positive.


Proof. Suppose xk−τ > 0 for all large k. Then in view of (2) we see that
∆nzk ≤ −QkF (xk−τ ) ≤ 0 for all large k. Since {Qk} is not identically zero
for all large k, thus for each j ∈ {0, 1, . . . , n − 1}, {∆jzk} is of constant
sign for all large k. In particular, {zk} is eventually positive or eventually
negative. Suppose to the contrary that {zk} is eventually negative, then in
view of Lemma 2 and the fact that n is an odd integer, we see that ∆zk < 0
for all large k. Thus there is a positive number α such that zk ≤ −α for all
large k. Therefore xk ≤ −α + Pkxk−σ for k greater than or equal to some
integer, which, without loss of generality, may be taken to be N+σ N∗. Then
we have xN+σ ≤ −α +PN+σxN ≤ −α +xN , xN+2σ ≤ −α + PN+2σxN+σ ≤
−2α+xN , . . . ,xN+jσ ≤ −jσ+xN . But for sufficiently large j, the right-hand
side is negative, while the right-hand side remains positive. A contradiction
is obtained.


We remark that the proof of the above lemma is similar to that of Lemma
3.4 in [8] but is included here for the sake of completeness.
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Theorem 2. Suppose {Pk} is bounded and there is an integer N such
that PN+jσ ≤ 1 for j ≥ 0. Then any eventually positive and bounded solution
{xk} of (2) is eventually (∗)-monotone.


Proof. In view of Lemma 3, the sequence {zk} defined by zk = xk−Pkxk−σ
is eventually positive. Since {xk} and {Pk} is bounded, we see further
that {zk} is bounded. But then by means of Lemma 1, (−1)j∆jzk ≥ 0 for
j = 1, 2, . . . , n and all large k.


We also have a result which removes the boundedness condition in The-
orem 2.


Theorem 3. Suppose there is an integer N such that PN+jσ ≤ 1 for
j ≥ 0. Suppose further that lim infx→∞ F (x) ≥ d > 0 and that


∞
∑


i=0


Qi = ∞. (5)


Then an eventually positive solution {xk} of (2) is also a (∗)-monotone
solution.


Proof. Let {xk} be an eventually positive solution of (2). Then the sequence
{zk} defined by (3) will satisfy ∆nzk ≤ −QkF (xk−τ ) ≤ 0 for all large k.
Furthermore, since {Q} does not vanish identically for all large k, thus either


lim
k→∞


∆n−1zk = −∞, (6)


or


lim
k→∞


∆n−1zk = c. (7)


If (6) holds, then it is easy to see that lim
k→∞


zk = −∞. This implies that


xk ≤ −α+Pkxk−σ for some positive number and all large k. As we have seen
in the proof of Lemma 3, this is impossible. Therefore (7) must hold. We
assert further that c = 0. Otherwise, it is easy to see that limk→∞ zk = −∞
(which is impossible) or limk→∞ zk = +∞. If zk → +∞, then in view of
(3) it is clear that lim


k→∞
xk = +∞. By summing both sides of (2) from 0 to


∞ we obtain c +
∞
∑


i=0
QiF (xi−σ) = ∆n−1z0, so that d


∞
∑


i=0
Qi < ∞, which is


contrary to (5). We have thus shown that ∆n−1zk > 0 for all large k and
strictly decreases to zero as k → ∞. By repeating the above arguments it
is not difficult to see that (−1)j∆jzk > 0, j = 1, 2, . . . , n − 1, for all large
k, and also, lim


k→∞
∆jzk = 0, j = 1, 2, . . . , n− 1.
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In view of Theorems 2 and 3, we need to find some explicit existence
criteria for eventually positive and/or bounded solutions of recurrence re-
lations of form (2) so that our comparison Theorem 1 can be used to pro-
duce existence criteria for (∗)-monotone solutions of (1). For the linear
equation∆n (xk − Pxk−σ) + Qkxk−τ = 0, k = 0, 1, 2, . . . , such existence
criteria can be found in [8].
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