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BOUNDARY PROPERTIES OF FIRST-ORDER PARTIAL
DERIVATIVES OF THE POISSON INTEGRAL FOR THE

HALF-SPACE R+
k+1 (k > 1)

S. TOPURIA

Abstract. Boundary properties of first-order partial derivatives of
the Poisson integral are studied in the half-space R+

k+1 (k > 1).

The boundary properties of the Poisson integral for a circle were thor-
oughly studied by Fatou [1]. In particular, he showed that the following
theorems are valid:

Theorem A. If there exists a finite f ′(x0), then

lim
reix ∧→eix0

∂u(f ; r, x)
∂x

= f ′(x0),

where u(f ; r, x) is the Poisson integral for a circle, and the symbol reix ∧→
eix0 means that the point reix tends to eix0 along the paths which are non-
tangential to the circumference (see [2], p. 100, and [3], p. 156).

Theorem B. If there exists a finite or infinite D1f(x0) which is a first
symmetric derivative of f at the point x0 (see [2], p. 99− 100), i.e.,

D1f(x0) = lim
h→0

f(x0 + h)− f(x0 − h)
2h

,

then

lim
r→1−

∂u(f ; r, x0)
∂x

= D1f(x0).
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In [4] a continuous 2π-periodic function f(x) is constructed such that
D1f(x0) = 0, but

lim
reix ∧→eix0

∂u(f ; r, x)
∂x

does not exist. Thus it is shown that Theorem B cannot be strengthened
in the sense of the existence of an angular limit.

An analogue of Theorem A for a half-plane R2
+ is proved in [5, Theorem

4], while an analogue of Theorem B given in [6, Theorem 1] shows that this
theorem cannot be strengthened in the sense of the existence of an angular
limit.

The question as to the validity of Fatou’s theorem for a bicylinder was
considered in [7], where it is proved that in the neighborhood of some point
the density of the Poisson integral can have no smoothness that would en-
sure the existence of a boundary value of partial derivatives of the Poisson
integral at the considered point. Furthermore, in this paper sufficient con-
ditions are found for the convergence of first- and second- order partial
derivatives of the Poisson integral for a bicylinder, and it is shown that the
results obtained cannot be strengthened (in the definite sense).

The boundary properties of the integralDku(f ; r, ϑ1, ϑ2, . . . , ϑk−2, ϕ) were
studied in [8] (see also [9], p. 118), where u(f ; r, ϑ1, ϑ2, . . . , ϑk−2ϕ) is the
Poisson integral for the unit sphere in Rk (k > 2), and Dk is the Laplace
operator on the sphere, i.e., the angular part of the Laplace operator written
in terms of spherical coordinates (see [9], p. 14). The boundary properties
of first- and second- order partial derivatives of the Poisson integral for the
unit sphere in R3 are given a detailed consideration in [10, 11, 12], but for
the half-space R3

+ in [13], [14], [15]. In [14] it is shown that there exists
a continuous function of two variables f(x, y) ∈ L(R2) which, at the point
(x0, y0), has the partial derivatives f ′x(x0, y0) and f ′y(x0, y0), but the inte-
grals ∂u(f ;x,y,z)

∂x and ∂u(f ;x,y,z)
∂y (u(f ; x, y, z) is the Poisson integral for R3

+)
of this function have no values at the point (x0, y0) even along the normal.

Hence the question arises how to generalize the notion of derivatives of a
function of many variables so that a Fatou type theorem would hold for the
integral u(f ; x, xk+1) (u(f ;x, xk+1) is the Poisson integral for Rk+1

+ (k > 1)).
In this paper, the notion of a generalized partial derivative is introduced

for a function of many variables and Fatou type theorems are proved on
boundary properties of first-order partial derivatives of the Poisson integral
for a half-space. These results complement and generalize the author’s
studies in [13], [14], [15]. In particular, in this paper it is shown that the
boundary properties of derivatives of the Poisson integral for a half-space
essentially depend on the sense in which the integral density is differentiable.
Examples are constructed testifying to the fact that the results obtained are
unimprovable (in the definite sense).
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1. Notation, Definitions, and Auxiliary Propositions

The following notation is used in this paper:
Rk is a k-dimensional Euclidean space (R = R1);
x = (x1, x2, . . . , xk), t = (t1, t2, . . . , tk), x0 = (x0

1, x
0
2, . . . , x

0
k) are the

points (vectors) of the space Rk;

(x, t) =
k
∑

i=1
xiti is the scalar product;

|x| =
√

(x, x); x + t = (x1 + t1, x2 + t2, . . . , xk + tk);
ei (i = 1, 2, . . . , k) is the coordinate vector.
Let (see [16], p. 174) M = {1, 2, . . . , k} (k ∈ N , k ≥ 2), B be an

arbitrary subset from M and B′ = M \B. For any x ∈ Rk and an arbitrary
set B ⊂ M , the symbol xB denotes a point from Rk whose coordinates with
indices from the set B coincide with the corresponding coordinates of the
point x, while coordinates with indices from the set B′ are zeros (xM = x,
B \ i = B \ {i}); if B = {i1, i2, . . . , is}, 1 ≤ s ≤ k (il < ir for l < r), then
xB = (xi1 , xi2 , . . . , xis) ∈ Rs; m(B) is the number of elements of the set B;

˜L(Rk) is the set of functions f(x) = f(x1, x2, . . . , xk) such that

f(x)

(1 + |x|2) k+1
2

∈ L(Rk);

Rk+1
+ = {(x, xk+1) ∈ Rk+1; xk+1 > 0};

u(f ; x, xk+1) is the Poisson integral of the function f(x) for the half-space
Rk+1

+ , i.e.,

u(f ; x, xk+1) =
xk+1Γ(k+1

2 )

π
k+1
2

∫

Rk

f(t) dt

(|t− x|2 + x2
k+1)

k+1
2

.

In investigating the boundary properties of the partial derivatives
∂

∂ϑuf (r, ϑ, ϕ) and ∂
∂ϕuf (r, ϑ, ϕ) of the spherical Poisson integral uf (r, ϑ, ϕ)

for the summable function f(ϑ, ϕ) on the rectangle [0, π]×[0, 2π], Dzagnidze
introduced the notion of a dihedral-angular limit [10] which is applicable to
Rk+1

+ in the manner as follows: if the point N ∈ Rk+1
+ converges to the

point P(x0, 0) under the condition xk+1(
∑

i∈B
(xi − x0

i )
2)−1/2 ≥ C > 0,1then

we shall write N(x, xk+1)
∧→

xB
P(x0, 0). When B = M , we have an angular

convergence and thus we write N(x, xk+1)
∧→ P(x0, 0). Finally, the notation

N(x, xk+1) → P(x0, 0) means that the point N(x, xk+1) remaining in Rk+1
+

converges to P(x0, 0) without any restrictions.

1Here and further C denotes absolute positive constants which, generally speaking,
may be different in different relations.
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It is known that ∂
∂ϑuf (r, ϑ, ϕ) and ∂

∂ϕuf (r, ϑ, ϕ) have dihedral-angular
limits if partial derivatives of the function f(ϑ, ϕ) exist in a strong sense
[10], [12]. This notion admits various generalizations when the function
depends on three and more variables and we shall also discuss them below.

Let u ∈ R. We shall consider the following derivatives of the function
f(x):

1. Denote the limit

lim
(u,xB )→(0,x0

B
)

f(xB + x0
B′ + uei)− f(xB + x0

B′)
u

by:
(a) f ′xi

(x0) for B 6= ∅;
(b) Dxi(xB)f(x0) for i ∈ B′;
(c) Dxi(xB)f(x0) for i ∈ B.
2. Denote the limit

lim
(u,xB )→(0,x0

B)

f(xB + x0
B′ + uei)− f(xB + x0

B′ − uei)
2u

by:
(a) D∗xi

(x0) for B 6= ∅;
(b) D∗xi(xB)f(x0) for i ∈ B′;
(c) Dxi(xB)f(x0) for i ∈ B.
The following propositions are valid:
(1) If B2 ⊂ B1, the existence of Dxi(xB1 )f(x0) implies the existence of

Dxi(xB2 )f(x0) and Dxi(xB1 )f(x0) = f ′xi
(x0). The converse does not hold.

(2) The existence of Dxi(xB1 )f(x0) implies the existence of Dxi(xB2 )f(x0)
and their equality.

(3) The existence of Dxi(xB)f(x0) implies the existence of Dxi(xB1 )f(x0)
and Dxi(xB)f(x0) = Dxi(xB\i)f(x0) = f ′xi

(x0).
(4) If f ′xi

(x) is a continuous function at x0, then for any B ⊂ M all
derivatives Dxi(xB)f(x0) exist and

Dxi(xB)f(x0) = f ′xi
(x0).

Indeed, by virtue of the Lagrange theorem

f(xB + x0
B′ + uei)− f(xB + x0

B′)
u

=
f ′xi

[xB + x0
B′ + θ(x)uei]u
u

=

= f ′xi
[xB + x0

B′ + θ(x)uei], 0 < θ < 1.

Hence we conclude that statement (4) is valid.
(5) There exists a function f(x) for which Dxi(x)f(x0) exist, but on an

everywhere dense set in the neighborhood of the point x0 there are no f ′xi
(x).
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(6) If the function f(x) has finite derivatives

Dx1(x2,...,xk)f(x0), Dx2(x3,...,xk)f(x0), . . . ,Dxk−1(xk)f(x0)

at the point x0, then its continuity at x0 with respect to the argument xk

is a necessary and sufficient condition for f(x) to be continuous at x0 (see
[12], p.15).

(7) The existence of the derivatives Dx1(x2,...,xk)f(x0), Dx2(x3,...,xk)f(x0),
. . . , Dx1(x2,...,xk)f(x0) and f ′xk

(x0) implies the existence of the differential
df(x0) (see [12], p. 16).

In what follows it will be assumed that f ∈ ˜L(Rk).

Lemma. The equalities

I1 =
∫

Rk

(ti − xi)f(t− tiei + xiei)dt

(|t− x|2 + x2
k+1)

k+3
2

= 0,

I2 =
(k + 1)xk+1Γ(k+1

2 )

π
k+1
2

∫

Rk

(ti − xi)2dt

(|t− x|2 + x2
k+1)

k+3
2

= 1

hold for any (x, xk+1).

Proof. We have

I1 =
∫

Rk−1

f(x + t− tiei) dS(tM\i)

∞
∫

−∞

ti dti
(|t|2 + x2

k+1)
k+3
2

= 0.

Further, if we use the spherical coordinates, ρ, θ1, . . . , θk−2, ϕ, we shall have

I2 =
(k + 1)xk+1Γ(k+1

2 )

π
k+1
2

∫

Rk

ti dti
(|t|2 + x2

k+1)
k+3
2

=

=
(k+1)xk+1Γ(k+1

2 )

π
k+1
2

∫

Rk

ρ2 sin2 ϑ1 sin2 ϑ2· · ·sin2 ϑi−1 cos2 ϑi

(ρ2 + x2
k+1)

k+3
2

×

×ρk−1 sink−2 ϑ1 · · · sink−i ϑi−1 · · · sin ϑk−2dρdϑ1 · · · dϑk−2dϕ =

=
2(k+1)Γ(k+1

2 )

π
k−1
2

∞
∫

0

ρk+1dρ

(1 + ρ2)
k+3
2

k−2
︷ ︸︸ ︷

π
∫

0

· · ·
π

∫

0

sink ϑ1 sink−1 ϑ2· · ·sink−i+2 ϑi−1×

× cos2 ϑi sink−i−1 ϑi · · · sin ϑk−2dϑ1dϑ2 · · · dϑk−2 =

=
2(k + 1)Γ(k+1

2 )

π
k−1
2

·
kΓ(k

2 )
√

π

2(k + 1)Γ(k+1
2 )

· π
k−2
2

kΓ(k
2 )

= 1.
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2. Boundary Properties of the Integral ∂u(f ;x,xk+1)
∂xi

The following theorem is valid.

Theorem 1.
(a) If a finite derivative Dxi(x)f(x0) exists at the point x0, then

lim
(x,xk+1)→(x0,0)

∂u(f ; x, xk+1)
∂xi

=
∂f(x0)

∂xi
. (1)

(b) There is a continuous function f ∈ L(Rk) such that for any B ⊂ M ,
m(B) < k, at the point x0 = (0, 0, . . . , 0) = 0 all derivatives Dxi(xB)f(0) =
0, i = 1, k, but the limits

lim
xk+1→0+

∂u(f ; 0, xk+1)
∂xi

, i = 1, k,

do not exist.

Proof.

(a) Let x0 = 0, Ck = (k+1)Γ( k+1
2 )

π
k+1
2

. It is easy to check that

∂u(f ;x, xk+1)
∂xi

= Ckxk+1

∫

Rk

(ti − xi)f(t) dt

(|t− x|2 + x2
k+1)

k+3
2

.

By virtue of the lemma we have

∂u(f ; x, xk+1)
∂xi

−Dxi(x)f(0) =

= Ckxk+1

∫

Rk

t2i
(|t|2 + x2

k+1)
k+3
2

[f(x + t)− f(x + t− tiei)
ti

−Dxi(x)f(0)
]

dt =

= I1 + I2,

where

I1 = Ckxk+1

∫

Vδ

, I2 = Ckxk+1

∫

CVδ

,

Vδ is the ball with center at 0 and radius δ. Let ε > 0. Choose δ > 0 such
that

∣

∣

∣

f(x + t)− f(x + t− tiei)
ti

−Dxi(x)f(0)
∣

∣

∣ < ε

for |x| < δ, |t| < 2dl.
Hence

|I1| < Ckxk+1ε
∫

Vδ

t2i dt

(|t|2 + x2
k+1)

k+3
2

<
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< Ckxk+1ε
∫

Rk

t2i dt

(|t|2 + x2
k+1)

k+3
2

= ε. (2)

It is likewise easy to show that

lim
(x,xk+1)→(x0,0)

I2 = 0. (3)

Equalities (2) and (3) imply the validity of (1).
(b) Let D = (0 ≤ t1 < ∞; 0 ≤ t2 < ∞; . . . , 0 ≤ tk < ∞). Define the

function f as follows:

f(t) =

{

k+1
√

t1t2 · · · tk if (t1, t2, . . . , tk) ∈ D,
0 if (t1, t2, . . . , tk) ∈ CD.

Clearly, f(t) is continuous in Rk and Dxi(xB)f(0) = 0, i = 1, k, for any
B when m(B) < k.

If in the integral

∂u(f ;x, xk+1)
∂xi

= Ckxk+1

∫

Rk

(ti − xi)f(t) dt

(|t− x|2 + x2
k+1)

k+3
2

we use spherical coordinates, then for the considered function we shall have

∂u(f ; 0, xk+1)
∂xi

= Ckxk+1

∫

Rk

tif(t) dt

(|t|2 + x2
k+1)

k+3
2

=

= Cxk+1

∞
∫

0

ρ k−1
√

ρk

(ρ2 + x2
k+1)

k+3
2

ρk−1dρ =

= Cxk+1

∞
∫

0

ρk+ k
k+1 dρ

(ρ2 + x2
k+1)

k+3
2

> Cxk+1

xk+1
∫

0

ρk+ k
k+1 dρ

(ρ2 + x2
k+1)

k+3
2

ρk−1dρ >

> Cxk+1

xk+1
∫

0

ρk+ k
k+1 dρ

xk+3
k+1

=
C

k+1
√

xk+1
.

Hence

lim
xk+1→0+

∂u(f ; 0, xk+1)
∂x

= +∞.

Corollary 1. If finite derivatives Dxi(x)f(x0), i = 1, k, exist at the point
x0, then

lim
(x,xk+1)→(x0,0)

dxu(f ;x, xk+1) = df(x0).



592 S. TOPURIA

Corollary 2. If f has a continuous partial derivative at the point x0,
then

lim
(x,xk+1)→(x0,0)

∂u(f ; x, xk+1)
∂xi

= f ′xi
(x0).

Corollary 3.
(a) If f is a continuously differentiable function at the point x0, then

lim
(x,xk+1)→(x0,0)

dxu(f ; x, xk+1) = df(x0).

(b) There exists a differentiable function f(t1, t2) at the point (0, 0) such
that df(0, 0) = 0 but the limits

lim
(x1,x2,x3)→(0,0,0)

∂u(f ; x1, x2, x3)
∂x1

, lim
(x1,x2,x3)→(0,0,0)

∂u(f ;x1, x2, x3)
∂x2

do not exist.

Proof of assertion (b) of Corollary 3. We set D = [0, 1; 0, 1]. Let

f(t1, t2) =

{

5
√

t31t
3
2 for (t1, t2) ∈ D,

0 for (t1, t2) ∈ [−∞, 0; 0,∞[∪]−∞,∞;−∞, 0[,

and continue f onto the set ]0,∞; 0,∞[\D so that f ∈ L(R2). It is easy to
check that f(t1, t2) is differentiable at the point (0, 0) and

f ′t1(0, 0) = f ′t2(0, 0) = 0.

Let (x1, x2, x3) → (0, 0, 0) for x1 = 0, x3 = x2
2, x2 > 0. Then for the

considered function

∂u(f ; 0, x2, x3)
∂x1

=
3x3

2π

∞
∫

0

∞
∫

0

t1f(t1, t2) dt1dt2
[t21 + (t2 − x2)2 + x4

2]5/2 =

=
3x2

2

2π

∞
∫

0

∞
∫

−x2

t1f(t1, t2 + x2) dt1dt2
(t21 + t22 + x4

2)5/2 =

=
3x2

2

2π

∞
∫

0

∞
∫

−x2

t1 5
√

t31(t2 + x2)3 dt1dt2
(t21 + t22 + x4

2)5/2 >

>
3x2

2

2π

2x2
2

∫

x2
2

2x2
2

∫

x2
2

t1 5
√

t31
5
√

x3
2 dt1dt2

(t21 + t22 + x4
2)5/2 >
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>
3x2

2x
3/5
2

2π

2x2
2

∫

x2
2

2x2
2

∫

x2
2

x2
2 · x

6/5
2 dt1dt2

(4x)24 + 4x4
2 + x4

2)5/2 =

=
1

162π 5
√

x2
→∞ for x2 → 0 + .

Theorem 2. If a finite derivative Dxi(xM\i)f(x0) exists at the point x0,
then

lim
(x,xk+1)

∧→
xi

(x0,0)

∂u(f ;x, xk+1)
∂xi

=
∂f(x0)

∂xi
.

Proof. Let x0 = 0. By virtue of the lemma we have the equality

∂u(f ;x, xk+1)
∂xi

−Dxi(xM\i)f(0) =

= Ckxk+1

∫

Rk

ti(ti − xi)

(|t− x|2 + x2
k+1)

k+3
2

[f(t)− f(t− tiei)
ti

−Dxi(xM\i)f(0)
]

dt =

= I1 + I2,

where I1 = Ckxk+1
∫

Vδ

, I2 = Ckxk+1
∫

CVδ

.

Let ε > 0 and choose δ > 0 such that
∣

∣

∣

f(t)− f(t− tiei)
ti

−Dxi(xM\i)f(0)
∣

∣

∣ < ε for |r| < δ.

Now,

|I1| < Ckxk+1ε
∫

Rk

|ti(ti − xi)| dt

(|t− x|2 + x2
k+1)

k+3
2

<

< Ckxk+1ε
∫

Rk

t2i dt

(|t|2 + x2
k+1)

k+3
2

+

+ Ckxk+1ε|xi|
∫

Rk

|ti| dt

(|t|2 + x2
k+1)

k+3
2

=

= ε + Cxk+1ε|xi|
∞
∫

0

ρk dρ

(ρ2 + x2
k+1)

k+3
2

=

= ε +
Cxk+2

k+1|xi|ε
xk+3

k+1

∞
∫

0

ρk dρ

(1 + ρ2)
k+3
2

=
(

1 +
C|xi|
xk+1

)

ε.
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Hence we obtain

lim
(x,xk+1)

∧→
xi

(x0,0)
I1 = 0.

In a similar manner we prove that

lim
(x,xk+1)

∧→
xi

(x0,0)
I2 = 0.

Theorem 3. If at the point x0 there exist finite derivatives
Dxi(xM\i)f(x0) and Dxj(xB)f(x0), i 6= j, B = M \ {i, j}, then

lim
(x,xk+1)

∧→
xi

(x0,0)

∂u(f ;x, xk+1)
∂xi

=
∂f(x0)

∂xi
,

lim
(x,xk+1)

∧→
xi

(x0,0)

∂u(f ; x, xk+1)
∂xj

=
∂f(x0)

∂xj
.

Proof. Let x0 = 0. By virtue of the lemma we have

∂u(f ;x, xk+1)
∂xj

= Ckxk+1

∫

Rk

(tj − xj)f(t) dt

(|t− x|2 + x2
k+1)

k+3
2

=

=Ckxk+1

∫

Rk

(tj−xj){[f(t)− f(t− tiei)]+[f(t−tiei)−f(t−tiei−tjej)]}dt

(|t− x|2 + x2
k+1)

k+3
2

=

= Ckxk+1

∫

Rk

(tj − xi)[f(t)− f(t− tiei)]

(|t− x|2 + x2
k+1)

k+3
2

dt +

+Ckxk+1

∫

Rk

(tj − xi)[f(t− tiei)− f(t− tiei − tjej)]

(|t− x|2 + x2
k+1)

k+3
2

dt = I1 + I2,

where

I1 = Ckxk+1

∫

Rk

ti(tj − xj)

(|t− x|2 + x2
k+1)

k+3
2

· f(t)− f(t− tiei)
ti

dt =

=Ckxk+1

∫

Rk

ti(tj−xj)

(|t−x|2+x2
k+1)

k+3
2

[f(t)−f(t−tiei)
ti

−Dxi(xM\i)f(0)
]

dt+

+ Ckxk+1Dxi(xM\i)f(0)
∫

Rk

ti(tj − xj) dt

(|t− x|2 + x2
k+1)

k+3
2

= I ′1 + I ′′1 .
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It is easy to see that I ′′1 and

|I ′1|<Ckxk+1

∫

Rk

|ti(tj − xj)|
(|t− x|2 + x2

k+1)
k+3
2

∣

∣

∣

f(t)− f(t− tiei)
ti

−Dxi(xM\i)f(0)
∣

∣

∣dt.

Hence we obtain

lim
(x,xk+1)

∧→
xi

0
I ′1 = lim

(x,xk+1)
∧→
xi

0
I1 = 0.

Now we shall show that

lim
(x,xk+1)

∧→
xj

0
I2 = Dxj(xM\{i,j})f(0).

Indeed,

I2 = Ckxk+1

∫

Rk

|tj(tj − xj)|
(|t− x|2 + x2

k+1)
k+3
2

×

×
[f(t− tiei)−f(t− tiei − tjej)

tj
−Dxj(xM\{i,j})f(0)

]

dt+Dxj(xM\{i,j})f(0).

This readily implies

lim
(x,xk+1)

∧→
xj

0
I2 = Dxj(xM\{i,j})f(0) =

∂f(0)
∂xj

.

Finally, we obtain

lim
(x,xk+1)

∧→
xixj

0

∂u(f ; x, xk+1)
∂xj

=
∂f(0)
∂xj

.

By a similar reasoning we prove

Theorem 4. If at the point x0 there exist finite derivatives
Dx1(x2,x3,...,xk)f(x0), Dx2(x3,...,xk)f(x0), . . . , Dxk−1(xk)f(x0), f ′xk

(x0), then

lim
(x,xk+1)

∧→
x1

(x0,0)

∂u(f ;x, xk+1)
∂x1

=
∂f(x0)

∂x1
,

lim
(x,xk+1)

∧→
x1x2

(x0,0)

∂u(f ; x, xk+1)
∂x2

=
∂f(x0)

∂x2
,

.............................................................
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lim
(x,xk+1)

∧→(x0,0)

∂u(f ; x, xk+1)
∂xk

=
∂f(x0)

∂xk
.

Corollary. If at the point x0 there exist finite derivatives Dx1(xM\1)f(x0),
Dx2(xM\{1,2})f(x0), . . . , Dxk−1(xk)f(x0), f ′xk

(x0), then

lim
(x,xk+1)

∧→(x0,0)
dxu(f ;x, xk+1) = df(x0).

Theorem 5.
(a) If at the point x0 there exists a finite derivative

D∗xi(xM\i)
f(x0), then

lim
(x−xiei+x0

i ei,xk+1)→(x0,0)

∂u(f ;x− xiei + x0
i ei, xk+1)

∂xi
= D∗xi

f(x0).

(b) There exists a continuous function f(x) such that D∗xi(xM\i)
f(x0) = 0,

but the limit

lim
(x,xk+1)

∧→(x0,0)

∂u(f ; x, xk+1)
∂xi

does not exist.

Proof. (a) Let x0 = 0. The validity of (a) follows from the equality

∂u(f ; x− xiei + x0
i ei, xk+1)

∂xi
−D∗xi(xM\i)f(x0) =

= Ckxk+1

∫

Rk

t2i
(|t|2 + x2

k+1)
k+3
2

[f(t + x− xiei)− f(t + x− xiei − 2tiei)
2ti

−

−Dxi(xM\i)f(x0)
]

dt.

(b) We set D1 = [0, 1; 0, 1], D2 = p− 1, 0; 0, 1]. Let

f(t1, t2) =











√

t1
√

t2 for (t1, t2) ∈ D1,
√

−t1
√

t2 for (t1, t2) ∈ D2,
0 for t2 ≤ 0

and continue f(t1, t2) onto the set R2
+ \ (D1 ∪ D2) so that f ∈ L(R2). It

is easy to check that D∗t1(t2)f(0) = 0. Let x0
1 = x0

2 = 0 and (x1, x2, x3) →
(0, 0, 0) so that x2 = 0 and x3 = x1. Then for the constructed function we
have

∂u(f ; x1, x2, x3)
∂x1

=
3x3

2π

∫

R2

(t1 − x1)f(t1, t2) dt1 dt2
[(t1 − x1)2 + (t2 − x2)2 + x2

3]5/2 =
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= Cx3

{
0

∫

−1

1
∫

0

(t1 − x1)
√

−t1
√

t2 dt1 dt2
[(t1 − x1)2 + t22 + x2

3]5/2 +

+

1
∫

0

1
∫

0

(t1 − x1)
√

t1
√

t2 dt1 dt2
[(t1 − x1)2 + t22 + x2

3]5/2

}

+ o(1) =

= Cx1

[
1+x1
∫

x1

1
∫

0

t1
√

(t1 − x1)
√

t2
(t21 + t22 + x2

1)5/2 dt1dt2 +

+

1−x1
∫

−x1

1
∫

0

t1
√

(t1 + x1)
√

t2
(t21 + t22 + x2

1)5/2 dt1dt2

]

+ o(1) =

= Cx1

{
x1
∫

−x1

1
∫

0

t1
√

(t1 + x1)
√

t2
(t21 + t22 + x2

1)5/2 dt1dt2 +

+

1−x1
∫

x1

1
∫

0

t1[
√

(t1 + x1)
√

t2 −
√

(t1 − x1)
√

t2]
(t21 + t22 + x2

1)5/2 dt1dt2

}

=

= Cx1(I1 + I2) + o(1),

where

I1 =

x1
∫

0

1
∫

0

t1[
√

(t1 + x1)
√

t2 −
√

(x1 − t1)
√

t2]
(t21 + t22 + x2

1)5/2 dt1dt2 > 0,

I2 =

1−x1
∫

x1

1
∫

0

t1 4
√

t2(
√

t1 + x1 −
√

t1 − x1)
(t21 + t22 + x2

1)5/2 dt1dt2 >

>

2x1
∫

x1

2x1
∫

x1

t1 4
√

t2(
√

t1 + x2 −
√

t1 − x1)
(t21 + t22 + x2

1)5/2 dt1dt2 >

>

2x1
∫

x1

2x1
∫

x1

x1 4
√

x1(
√

2x1 −
√

x1)
(9x2

1)5/2 dt1dt2 =

√
2− 1
128

· 1
4
√

x5
1

.

Thus, by the chosen path, we obtain

∂u(f ;x1, 0, x1)
∂x1

>
C

4
√

x1
,
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which yields ∂u(f ;x1,0,x1)
∂x1

→ +∞ when (x1, x2, x3) → (0, 0, 0) by the chosen
path.

By a similar reasoning we prove

Theorem 6.
(a) If at the point x0 there exists a finite derivative

D∗xi(x)f(x0), i = 1, k, then

lim
(x,xk+1)→(x0,0)

∂u(f ;x, xk+1)
∂xi

= D∗xi
f(x0).

(b) There exists a continuous function f(x) such that for any B ⊂ M ,
m(B) < k, all derivatives D∗xi(xB)f(0) = 0, i = 1, k, but the limits

lim
xk+1→0+

∂u(f ; 0, xk+1)
∂xi

do not exist.

Statement (a) of Theorem 1 is a corollary of statement (a) of Theorem
6.

The validity of (b) follows from statement (b) of Theorem 1.

Theorem 7.
(a) If f has a total differential df(x0) at the point x0, then

lim
(x,xk+1)

∧→(x0,0)
dxu(f ; x, xk+1) = df(x0). (4)

(b) there exists a continuous function f which has partial derivatives of
any order, but the limits

lim
xk+1→0+

∂u(f ;x0, xk+1)
∂xi

do not exist.

Proof.
(a) By virtue of the lemma we have (x0 = 0)

∂u(f ;x, xk+1)
∂xi

− ∂f(0)
∂xi

=

= Ckxk+1

∫

Rk

(ti − xi)
k
∑

ν=1
|tν |

(|t− x|2 + x2
k+1)

k+3
2

·
f(t)− f(0)−

k
∑

ν=1

∂f(0)
∂xi

ti

k
∑

ν=1
|tν |

dt.
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This equality implies

lim
(x,xk+1)

∧→0

∂u(f ; x, xk+1)
∂xi

=
∂f(0)
∂xi

, i = 1, k.

Thus equality (4) is valid.
(b) Consider the function

f(t1, t2) =















4

√

(2t1 − t2)(t2 − 1
2 t1) for (t1, t2) ∈ D = {(t1, t2) :

0 ≤ t1 < ∞; 1
2 t1 ≤ t2 ≤ 2t1},

0 for (t1, t2) ∈ CD.

This function is continuous in R2, has partial derivatives of any order at the
point (0, 0) which are equal to zero, but

∂u(f ; 0, 0, x3)
∂x1

=
3x3

2π

∞
∫

0

dt1

2t1
∫

1
2 t1

t1 4

√

(2t1 − t2)(t2 − 1
2 t1)

(t21 + t22 + x2
3)5/2 dt2 >

> Cx3

2x3
∫

x3

t1 dt1

3
2 t1
∫

t1

4

√

(2t1 − t2)(t2 − 1
2 t1)

(t21 + t22 + x2
3)5/2 dt2 >

> Cx3

2x3
∫

x3

t1 dt1

3
2 t1
∫

t1

4

√

(2t1 − 3
2 t1)(t1 − 1

2 t1)

( 13
4 t21 + x2

3)5/2
dt2 >

> Cx3

2x3
∫

x3

t1 dt1

3
2 t1
∫

t1

4
√

t21 dt2
x5

3
=

C
x4

3

2x3
∫

x3

t5/2
1 dt1 =

=
C
√

x3
→ +∞ for x3 → 0 + .
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30(1906), 335–400.

2. A. Zygmund, Trigonometric series, I. Cambridge University Press,
1959.

3. N. K. Bari, Trigonometric series. (Russian) Fizmatgiz, 1961.
4. S. B. Topuria, Boundary properties of the differentiated Poisson in-

tegral in a circle. (Russian) Trudy Gruz. Politekhn. Inst. 3(176)(1975),
13–20.



600 S. TOPURIA

5. A. G. Jvarsheishvili, On analytic functions in a half-plane. (Russian)
Trudy Tbiliss. Mat. Inst. Razmadze 31(1966), 91–109.

6. S. B. Topuria, Boundary properties of the differentiated Poisson inte-
gral in a half-plane. (Russian) Soobshch. Akad. Nauk Gruz. SSR 78(1975),
No. 2, 281–284.

7. S. B. Topuria, Summation of the differentiated Fourier series by the
Abel method. (Russian) Dokl. Akad. Nauk SSSR 209(1973), No. 3, 569–
572.

8. S. B. Topuria, Summation of the differentiated Fourier–Laplace series
by the Abel method. (Russian) Trudy Gruz. Polytekhn. Inst. 7(147)
(1971), 17–24.

9. S. B. Topuria, Fourier–Laplace series on the sphere. (Russian) Tbilisi
University Press, Tbilisi, 1987.

10. O. P. Dzagnidze, Boundary properties of derivatives of the Poisson
integral for a ball and representation of a function of two variables. (Rus-
sian) Trudy Tbiliss. Mat. Inst. Razmadze 98(1990), 52–98.

11. O. P. Dzagnidze, Boundary properties of second-order derivatives of
the spherical Poisson integral. Proc. A. Razmadze Math. Inst. 102(1993),
9–27.

12. O. P. Dzagnidze, On the differentiability of functions of two vari-
ables and of indefinite double integrals. Proc. A. Razmadze Math. Inst.
106(1993), 7–48.

13. S. B. Topuria, Solution of the Dirichlet problem for a half-space.
(Russian) Dokl. AN SSSR 195(1970), No. 3, 567–569.

14. S. B. Topuria, Boundary properties of the differentiated Poisson
integral and solution of the Dirichlet problem in a half-space. (Russian)
Trudy Gruz. Polytekhn. Inst. 6(197)(1977), 11–30.

15. S. B. Topuria, Boundary properties of derivatives of the Poisson
integral in a half-space and representation of a function of two variables.
(Russian) Dokl. Akad. Nauk 353(1997), No. 3.

16. L. V. Zhizhiashvili, Some problems of the theory of trigonomet-
ric Fourier series and their conjugates. (Russian) Tbilisi University Press,
Tbilisi, 1993.

(Received 3.11.1995; revised 15.02.1996)

Author’s address:
Department of Mathematics (No. 63)
Georgian Technical University
77, M. Kostava St., Tbilisi 380093
Georgia


