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BOUNDS FOR THE CHARACTERISTIC FUNCTIONS OF
THE SYSTEM OF MONOMIALS IN RANDOM

VARIABLES AND OF ITS TRIGONOMETRIC ANALOGUE

T. SHERVASHIDZE

Abstract. Using a multidimensional analogue of Vinogradov’s in-
equality for a trigonometric integral, the upper bounds are constructed
for the moduli of the characteristic functions both of the system of
monomials in components of a random vector with an absolutely con-
tinuous distribution in Rs and of the system

(cos j1πξ1 · · · cos jsπξs, 0 ≤ j1, . . . , js ≤ k, j1 + · · ·+ js ≥ 1),

where (ξ1, . . . , ξs) is uniformly distributed in [0, 1]s.

Introduction. This note continues the series of studies [1–3] carried out
on the initiative of Yu. V. Prokhorov and dealing with estimates of the
characteristic functions (c.f.) of degenerate multidimensional distributions
of the form

∣

∣

∣

∣

∫

Rs
exp{i(t, ϕ(x))}p(x) dx

∣

∣

∣

∣

≤ C|t|−α for |t| > t0, (1)

where ϕ : Rs → Rk, s < k, t ∈ Rk; p(x) is the distribution density; C,
α, and t0 are positive constants. In what follows we shall use the notation
I(t; ϕ(x), p(x)) for the integral from (1) and omit the condition |t| > t0.

When s = 1, Sadikova has shown in [1] that for ϕ(x) = ϕ0(x) =
(x, x2, . . . , xk) one can take α = (1+1/k)−(k−1)/k! if the integrals of |p′(x)|
and |x|k−1p(x) are finite. Her method is based on van der Corput’s lemma
whose generalization allowed Yurinskii to assert that “for decreasing of the
c.f. like a negative power of the argument modulus it is, roughly speaking,
sufficient that the surface carrying the distribution have no tangencies of an
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infinitely high order with (k−1)-dimensional hyperplanes, and that the sur-
face density of the distribution be bounded, satisfy the Lipschitz condition
in L1-norm, and have several moments” (see [2]).

The author’s paper [3] deals with the case s = 1, where ϕ(x) = ϕ1(x) =
(cosπx, . . . , cos kπx), p(x) = 11[0,1](x), where 11A(x) is the indicator of the
set A. Using Vinogradov’s famous inequality for a trigonometric integral
[4], it is shown in [3] that in that case α = 1/2k (for k = 1 it can be
deduced from [2] as well). An order with respect to |t| turned out to be
exact (because of the exactness of Vinogradov’s inequality), i.e., in some
directions of Rk the c.f. behaves like |t|−1/2k for |t| → ∞. Concomitantly,
we obtained bounds with α = 1/k for the case ϕ(x) = ϕ0(x) assuming that
∫

R1 max(1, |x|)|p′(x)|dx < ∞ for the density p(x); for analogous estimates
see [5].

ϕ0(x) arises in problems connected with behavior of the joint distribution
of sample moments. For ϕ1(x) the inequality from [3] turns out important
in proving the fact that the deviation of the distribution function of ω2-test
statistic from the limiting one has order n−1 (see [6], cf. [7]).

1. Multidimensional Analogue of Vinogradov’s Inequality. The
Results. Let x=(x1, . . . , xs) ∈ Rs and the the multiindex j=(j1, . . . , js) 6=
0 = (0, . . . , 0) ∈ Rs vary in Jk,s = {0, 1, . . . , k}s \ {0}. Consider the system
of monomials in s real variables ϕ(s)

0 (x) =
(

xj1
1 · · ·xjs

s , j ∈ Jk,s
)

and also the
corresponding system of cosines products

ϕ(s)
1 (x) =

(

cos j1πx1 · · · cos jsπxs, j ∈ Jk,s
)

.

Denote τ = τ(t) = max
{

|tj| : j ∈ Jk,s
}

, t = (tj, j ∈ Jk,s) ∈ R(k+1)s−1.
For ϕ(s

j (x), j = 0, 1, inequalities of form (1), which can be used to study
distributions of a system of mixed sample moments and other multivariate
statistics, can be derived by the following multidimensional analogue of
Vinogradov’s inequality [8, p. 39] written for our convenience in the form

∣

∣I(t;ϕ(s)
0 (x), 11[0,1]s(x)

∣

∣ ≤ 32s(2π)1/kτ−1/k lns−1(2 + τ/2π); (2)

note that by [8, p. 41] we have for γ > 1 that
∣

∣

∣

∣

∫

[0,1]s
exp{iγxk

1 · · ·xk
s}dx

∣

∣

∣

∣

≥ [2πks(s− 1)!]−1(2π)1/kγ−1/k lns−1 γ
2π

.

By virtue of the fact that the inequality τ(˜t) ≥
∏s

j=1

[

min(1, |yj |)
]k

τ
holds for y = (y1, . . . , ys) ∈ Rs and for ˜t = (yj1

1 · · · yjs
s tj, j ∈ Jk,s) and the

function on the right-hand side of (2) decreases with respect to τ , we have

|Iy(t)| ≤
s

∏

j=1

| sgn yj |max(1, |yj |)32s(2π)1/kτ−1/k lns−1(2 + τ/2π) (3)
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for

Iy(t) =
∫ y1

0
· · ·

∫ ys

0
exp{i(t, ϕ(s)

0 (x))}dx.

Let D = [a1, b1]×· · ·× [as, bs] with positive hj = bj−aj , j = 1, . . . , s; de-
note D(j1, . . . , jr) = [aj1 , bj1 ]×· · ·× [ajr , bjr ] and Dc(j1 . . . jr) =

∏

{[aj , bj ] :
j = 1, . . . , s, j 6= j1, . . . , jr} for 1 ≤ j1 < · · · < jr ≤ s, 1 < r < s. The nota-
tion x(j1, . . . , js) and xc(j1 . . . jr) for x ∈ Rs is evident. Denote further by
V , Vc(j1 . . . jr) the sets of vertices of the parallelepipeds D, Dc(j1 . . . jr), re-

spectively, and Π(y) =
r
∏

j=1
max(1, |yj |) for y = (y1, . . . , yr) ∈ Rr, 1 ≤ r ≤ s.

Proposition 1. If a random vector ξ has the density

uD (x) = (h1 · · ·hs)−111D (x),

then for the c.f. of ϕ(s)
0 (ξ) the inequality

∣

∣I(t; ϕ(s)
0 (x), uD (x))

∣

∣ ≤ Π(h−1
1 , . . . , h−1

s )32s(2π)1/kτ−1/k lns−1(2 + τ/2π)

holds.
To proceed to the general case with density p(x) concentrated on D one

should use
Proposition 2. If for x ∈ D a function p(x) ≥ 0 is continuous in D and

has, in D, continuous partial derivatives pi = pxi , pij = pxixj , . . . , p1···s =
px1...xs , then the estimate

∣

∣I(t; ϕ(s)
0 (x), 11D(x)p(x))

∣

∣ ≤ C32s(2π)1/kτ−1/k lns−1(2 + τ/2π)

holds, where C = C0 + · · ·+ Cs with

Cr =
∑

1≤j1<···<jr≤s

∑

xc(j1...jr)∈Vc(j1...jr)

Π(xc(j1 . . . jr))×

×
∫

D(j1...jr)
Π(x(j1 . . . jr))pj1...jr (x) dx(j1 . . . jr), 1 ≤ r < s,

C0 =
∑

x∈V

Π(x)p(x), Cs =
∫

D
Π(x)p1...s(x) dx.

If the above functions are unbounded or discontinuous in D or D is
unbounded, then the estimate will demand obvious changes (conditions of
the existence of some limits and integrals).

Since |t| ≤ [(k + 1)s − 1]1/2τ for t ∈ R(k+1)s−1, Propositions 1–2 can be
expressed in terms of |t|.

Let now Tr(x) =
r
∑

j=0
arjxj , x ∈ R1, be a Chebyshev polynomial of

the first kind and Ak be the matrix with rows (ar0, . . . , arr, 0, . . . , 0), r =
0, . . . , k.
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For a matrix B = (bpq)p,q=0,...,k denote ρ(B) = max{
∑

q
|bpq| : p =

0, . . . , k} and ρk = ρ((A−1
k )′) (′ means transposition). Let λk = λmin(AkA′k)

be the least eigenvalue of the matrix AkA′k.

Proposition 3. The following inequalities hold:

(a) |I(t;ϕ(s)
1 (x), 11[0,1]s(x))| ≤ 2

9ks+1
k(s+1) π−

2ks−1
k(s+1) s

1
s+1×

×ρ
s

k(s+1)

k τ−
1

k(s+1) ln
s−1
s+1 (2 + τ/2πρs

k);

(b) |I(t; ϕ(s)
1 (x), 11[0,1]s(x))| ≤ 2

9ks+1
k(s+1) π−

2ks−1
k(s+1) s

1
s+1 [(k + 1)s − 1]

1
2k(s+1)×

×λ
− 1

2k(s+1)

k |t|−
1

k(s+1) ln
s−1
s+1

(

2 + |t|λs/2
k

2π[(k+1)s−1]1/2

)

.

2. Proofs. Proposition 1 is evident.
Proof of Proposition 2. If the functions u : Rs → C and v : Rs → C
are continuous in D along with the partial derivatives uxi , vxi , uxixj ,
vxixj , . . . , ux1...xs , vx1...xs , then

∫

D
uvx1...xsdx = ∆b

a(uv)−
∑

1≤i≤s

∆bc(i)
ac(i)

∫

D(i)
vuxidx(i) +

+
∑

1≤i<j≤s

∆bc(ij)
ac(ij)

∫

D(ij)
vuxixj dx(ij)− · · ·+ (−1)s

∫

D
vux1...xsdx.

Substituting here u = p(x) and v = Ix(t), passing to moduli, and applying
(3), we complete the proof.
Proof of Proposition 3. By the change of variables xj = arccos πyj , j =
1, . . . , s, we obtain

I(t;ϕ(s)
1 (x), 11(0,1)s(x)) = I(t; ϕ̃(s)

0 (y), q(y)), (4)

where

q(y) = π−s
s

∏

j=1

(1− y2
j )−1/211(−1,1)s(y),

ϕ̃(s)
0 (y) = (Tj1(y1) · · ·Tjs(ys), j ∈ Jk,s).

Apply Proposition 2 for a cube [−(1 − ε), 1 − ε]s with 0 < ε < 1. Since

(1− (1− ε)2)1/2 < ε−1/2 and
1−ε
∫

0
x(1− x2)−3/2dx < ε−1/2, we have

Cr < (2/π)s
(

s
r

)

ε−s/2, 0 ≤ r ≤ s, i.e., C < (4/π)sε−s/2.
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The remaining part of |I(t; ϕ(s)
0 (y), q(y)| is less than 1− (1− z)s < sz with

z = 2
π (π

2 − arcsin(1− ε)) ≤ 4
π

√
ε. Finally, we have

|I(t; ϕ(y)
0 (s), q(y))| ≤

( 4
π

)s
32s(2π)1/kτ−1/k lns−1(2 + τ/2π)ε−s/2 +

4s
π
√

ε,

whence, minimizing with respect to ε, we get

|I(t; ϕ(s)
0 (y), q(y))| ≤ 2

9ks+1
k(s+1) π−

2ks−1
k(s+1) s

1
s+1 τ−

1
k(s+1) ln

s−1
s+1 (2 + τ/2π). (5)

Further,

(t, ϕ̃(s)
0 (y)) =

∑

j∈Jk,s

tjTj1(y1) · · ·Tjs(ys) = (t0)′A(s)
k (1, ϕ(s)

0 (y))

with A(s)
k = Ak ⊗ · · · ⊗Ak

︸ ︷︷ ︸

s times

, A(1)
k = Ak, where ⊗ denotes the Kronecker

product, t0 = (0, t) and ϕ(s)
0 (y) and t are understood as row vectors with

lexicographically arranged components.
From (4) we now obtain

I(t; ϕ(s)
1 (x), 11(0,1)s(x)) = I(A(s)′

k t0; (1, ϕ(s)
0 (y)), q(y)). (6)

Since ρ(B1⊗B2) = ρ(B1)ρ(B2) for matrices B1 and B2, according to [9,
Theorem 6.5.1], τ((A(s)

k )′t0) ≥ τ/ρ((A(s)′

k )−1) ≥ τ/ρs
k, which by virtue of

(5) and (6) leads to (a).
To prove (b), note that since A(s)

k (A(s)
k )′ = (AkA′k)(s) (see [10]) and for

two positive definite matrices λmin(B1⊗B2) = λmin(B1)λmin(B2) (see, e.g.,
Supplement to [11]), we obtain |A(s)′

k t0| = ((t0)′A(s)
k (A(s)

k )′(t0))1/2 ≥ λs/2
k |t|

and τ(A(s)′

k t0) ≥ [(k + 1)s − 1]−1/2λs/2
k |t|.

Other applications of (2) to obtain bounds for c.f. can be found in [12].
Inequalities similar to the general ones from [2] can be found in [13].

Based on the theory of singularities and asymptotic expansions of oscil-
lating integrals [14] one can study the exactness properties of bounds (a)
and (b) with respect to |t| and τ for the case s > 1, too.
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