
GEORGIAN MATHEMATICAL JOURNAL: Vol. 4, No. 6, 1997, 533-556

INTERNAL CATEGORIES IN A LEFT EXACT
COSIMPLICIAL CATEGORY

D. PATARAIA

Abstract. The notion of an internal category in a left exact cosim-
plicial category is introduced. For any topos over sets a certain left
exact cosimplicial category is constructed functorially and the cat-
egory of internal categories in it is investigated. The notion of a
fundamental group is defined for toposes admitting the notion of “a
discrete category.”

Introduction

Our primary interest in this paper is to introduce the notion of an in-
ternal category in a left exact cosimplicial category, generalizing ordinary
internal categories. We call a cosimplicial category left exact when all of its
components are categories with finite limits and all coface and codegeneracy
functors preserve them.

In Section 1 the definitions are given of an internal category in a category
(which is wellknown) as well as in a left exact cosimplicial category.

In Section 2 for any topos over Sets a certain left exact cosimplicial
category is constructed functorially and the category of internal categories
in it is investigated. Two examples of these constructions are considered.
These examples correspond to the case where the topos is the category of
sheaves over a locally compact topological space, and where it is a topos of
presheaves.

In Section 3 we consider toposes which admit the notion of “a discrete
internal category.” For such toposes we determine the notion of fundamental
group by means of the “discrete” category corresponding to the terminal
object. When the topos is the category of sheaves over a locally compact
and locally simply connected space, then its fundamental group is the same
as the fundamental group of the underlying space.
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Sets denotes the category of sets.
Cat denotes the 2-category of categories, functors, and natural transfor-

mations.
The 2-category of toposes, geometric morphisms, and natural transfor-

mations will be denoted by Top. Let Top be the full sub-2-category of Top,
consisting of all toposes over Sets, i.e., objects of Top are such toposes,
from whic there exists a geometric morphism in Sets (note that if such a
morphism exists, it is unique up to a natural isomorphism). The product
in the category Top will be denoted by ×

Set
.

Internal categories and internal functors in the category of topological
spaces will be called continuous categories and continuous functors, respec-
tively.

I denotes the topological space of real numbers between 0 and 1, I =
[0; 1].

Internal categories in Cat will be called double categories [1].
For any category C with finite limits and any finite diagram f in it, we

will denote by prx, or simply by pr, the natural projection from the limit of
the diagram f (i.e., from lim←−(f)) to the term x (provided that this causes
no ambiguity). For example, if f is of the shape x −→ y ←− z, then prx is
the projection: prx : lim←−(x −→ y ←− z) −→ x. For any product x× y× z×· · ·
in C we denote by pri the projection of this product to the i + 1-th term.

Let Cat(C) be the category of internal categories in C (we mean C with
finite limits). Consider the forgetful functor from Cat(C) to C, which sends
each internal category in C to its object of objects. We denote the right
adjoint functor of this forgetful functor by ad(−). Then for any object
x ∈ C, the object of objects of the internal category ad(x) will be x, the
object of morphisms x × x, and morphisms of source and target will be
respectively the projections pr0, pr1 from x × x to x. (Note that ad(x) is
the antidiscrete internal category over x.)

1. The Notion of an Internal Category in a Left Exact
Cosimplicial Category

First we introduce some useful notions.
The category ∆ has as objects all finite ordinal numbers [n] = 0, 1, . . . , n,

and as arrows f : [n] −→ [m] all (weakly) monotone functions.
In the category ∆ we choose arrows:
δi
n : [n− 1] −→ [n] for 0 ≤ i ≤ n is the injective monotone function whose

image omits i;
σi

n : [n + 1] −→ [n] for 0 ≤ i ≤ n is the surjective monotone function
having the same value on i and i + 1;

ρi,j
n : [1] −→ [n] for 0 ≤ i ≤ j ≤ n is the function: ρi,j

n (0) = i, ρi,j
n (1) = j;

ρi
n : [0] −→ [n] for 0 ≤ i ≤ n is the function for which ρi

n(0) = i.
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Sometimes we will write these arrows omitting the subscript n.
As is wellknown, a cosimplicial (resp., simplicial) object in the category

C is determined as a covariant (resp., contravariant) functor from ∆ to C.
For any cosimplicial object F , we will write as usual Fn (resp., δi

n, σi
n, ρi,j

n ,
ρi

n) instead of F [n] (resp., instead of F (δi
n), F (σi

n), F (ρi,j
n ), F (ρi

n)).
We call a cosimplicial object in the category of categories Cat a cosim-

plicial category.

Definition 1.
(1) A cosimplicial category F is called left exact if for any n≥0, Fn is a

category with finite limits and all functors δi : Fn−1 −→ Fn, σi : Fn+1 −→ Fn

preserve them.
(2) A natural transformation α between two left exact cosimplicial cate-

gories F and F ′ is called left exact if for any n≥0 the functor α : Fn −→ F ′n
preserves all finite limits.

Remark 2. It is easy to check that any simplicial topos determines a left
exact cosimplicial category by taking inverse image functors.

Now we will give the definitions of an internal category in a category and
in a left exact cosimplicial category. The first definition is the wellknown
one, but we need both definitions to compare them.

Definition 3. Let C be a category with finite limits. By an internal
category X in C we mean a sixtuple (X1, X0, ∂1, ∂0, s,m), where X1 and
X0 are the objects of C (called the object of objects and the object of
morphisms, respectively);

∂1 : X1 −→ X0, ∂0 : X1 −→ X0, s : X0 −→ X1,

m : lim←−(X1
∂0−→ X0

∂1←− X1) −→ X1
are morphisms in C (called morphisms of domain, codomain, identity, and
composition, respectively), such that the following diagrams are commuta-
tive:

X0 X0 ,

X1

X1

�
�

�
��>

Z
Z

Z
ZZ}

�
�

�
��=

Z
Z

Z
ZZ~

idX0

s ∂1

s ∂0

(1)
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X1 X1

lim←−(X1
∂1−→ X0

∂0←− X1)

X0

�
��/

S
SSw

PPPPPPPq

�������)

pr1 m

∂1 ∂1

(2)

(here, pr1 is the projection of lim←−(X1 −→ X0 ←− X1) to the left-hand X1).

X1 X1

lim←−(X1
∂1−→ X0

∂0←− X1)

X0

�
��/

S
SSw

PPPPPPPq

�������)

m pr2

∂0 ∂0

(3)

(here pr2 is the projection of lim←−(X1 −→ X0 ←− X1) to the right-hand X1).

lim←−

(

X1 X1 X1↘∂0 ∂1↙ ↘∂0 ∂1↙
X0 X0

)

���
HHH

HHH
���

lim←−

(

X1 X1↘∂0 ∂1↙ ↘pr1

X0 X2

)

lim←−

(

X1 X1pr2↙ ↘∂0 ∂1↙
X2 X0

)

∣

∣

∣

∣

∣

∣

∣

∣

by the diagram (2)

∣

∣

∣

∣

∣

∣

∣

∣

by the diagram (3)

lim←−

(

X1 X1↘∂0 ∂1↙ ↘m
X0 X2

)

lim←−

(

X1 X1m↙ ↘∂0 ∂1↙
X2 X0

)

↓pr ↓pr

lim←−

(

X1 X1↘∂0 ∂1↙
X0

)

lim←−

(

X1 X1↘∂0 ∂1↙
X0

)

XXXXXXXXz

��������9
X1

mm

(4)
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X1 X1 ,-

(

s◦∂1 idX1
∂1

)

idX1

lim←−

(

X1 X1↘∂0 ∂1↙
X0

)

�������* HHHHHHHj

m
(5)

X1 X1 .-

(

idX1 s◦∂0

∂0

)

idX1

lim←−

(

X1 X1↘∂0 ∂1↙
X0

)

m

HHHHHHHHY��������
(6)

Definition 4. Let F be a left exact cosimplicial category.
By an internal category X in F we mean a sixtuple (X1, X0, ∂1, ∂0, s, m)

where
X1 is the object of F0 (called the object of objects),
X0 is the object of F1 (called the object of morphisms),
∂1 : X1 −→ δ1(X0), ∂0 : X1 −→ δ0(X0) are the morphisms in F1 (called

the morphisms of domain and codomain, respectively),
s : X0 −→ σ(X1) is the morphism of F0 (called the identity morphism),
m : lim←−(ρ0,1

2 (X1) −→ ρ1
2(X0) ←− ρ1,2

2 (X1)) −→ ρ0,1
2 (X1) is the morphism in

F2 (called the morphism of composition), such that the following diagrams
are commutative:

X0 X0 ,

X1

X1

�
�

�
��>

Z
Z

Z
ZZ~

idX0

s

s

σ ◦ δ1(X0)

σ ◦ δ0(X0)

PPPPPq

�����1

σ(∂1)

σ(∂0)

(1′)

X2

ρ2
0,1(X1) ρ2

0,2(X1)

ρ2
0,1(δ1(X0)) ρ2

0,2(δ1(X0)) ,
??

ρ2
0,1(∂1) ρ2

0,2(∂1)

������)
PPPPPPq

pr m

ρ2
0(X0)

(2′)
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X2

ρ2
0,2(X1) ρ2

1,2(X1)

ρ2
0,2(δ0(X0)) ρ2

1,2(δ0(X0)) ,
??

ρ2
0,2(∂0) ρ2

1,2(∂0)

������)
PPPPPPq

m pr

ρ2
0(X0)

(3′)

lim←−





ρ0,1
3 (X1) ρ1,2

3 (X1) ρ2,3
3 (X1)

ρ0,1
3

(∂0)↘ ρ1,2
3

(∂1)↙↘ρ1,2
3

(∂0) ↙ρ2,3
3

(∂1)

ρ1
3(X0) ρ2

3(X0)





������

HHHHHH

HHHHHH

������

lim←−





ρ0,1
3 (X1) ρ1,2

3 (X1)=(δ0◦ρ0,1
2 )(X1)

ρ0,1
3

(∂0)↘ ↙ρ1,2
3

(∂1)↖δ0(pr)

ρ1
3(X0)=(δ0◦ρ0

2)(X0) δ0(X2)



 lim←−







(δ3◦ρ1,3
2 )(X1)=ρ1,3

3 (X1) ρ2,3
3 (X1)

δ3(pr)↗↘ρ1,2
3

(∂0) ↙ρ2,3
3

(∂1)

δ0(X2) (δ3◦ρ2
2)(X0)=ρ2

3(X0)







∣

∣

∣

∣

∣

∣

∣

∣

by diagram (2′)

∣

∣

∣

∣

∣

∣

∣

∣

by diagram (3′)

lim←−





ρ0,1
3 (X1) (δ0◦ρ0,1

2 )(X1)

ρ0,1
3

(∂0)↘↙(δ0◦ρ0,2
2

)(∂1)↖δ0(m)

ρ1
3(X0)=(δ0◦ρ0

2)(X0) δ0(X2)



 lim←−





(δ3◦ρ1,3
2 )(X1) ρ2,3

3 (X1)

δ3(m)↗ (δ3◦ρ0,2
2

)(∂0)↘↙ρ2,3
3

(∂1)

δ0(X2) (δ3◦ρ2
2)(X0)=ρ2

3(X0)





↓pr ↓pr (4′)

lim←−





ρ0,1
3 (X1) (δ0◦ρ0,1

2 )(X1)

ρ0,1
3

(∂0)↘↙δ0◦ρ0,2
2

(∂1)

ρ1
3(X0)=(δ0◦ρ0

2)(X0)



 lim←−





(δ3◦ρ1,3
2 )(X1) ρ2,3

3 (X1)

δ3◦ρ0,2
2

(∂0)↘↙ρ2,3
3

(∂1)

(δ3◦ρ2
2)(X0)=ρ2

3(X0)





∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

δ2(X2) δ1(X2)
XXXXXXz

������9 δ2(m)δ1(m)

(δ2 ◦ δ1)(X1) = (δ1 ◦ δ1)(X1) ,
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X1 (σ0 ◦ δ1)(X1),-

σ0(X2)

J
J

J
J

J
JĴ

lim←−







(δ1◦σ)(X1) X1

↘δ1◦σ(∂1) ∂1↙
(δ1◦1)(X0)=δ1(X0)







�
�
�
���

(

δ1(s)◦∂1 idX1
∂1

)

idX1

σ0(X2)
(5′)

X1 .(σ1 ◦ δ1)(X1)

σ1(X2) lim←−







(δ1◦σ)(X1) X1

↘δ1◦σ(∂1) ∂0↙
(δ0◦0)(X0)=δ0(X0)







(

δ0(s)◦∂0 idX1
∂0

)

idX1

σ1(X2)

�
A

A
A

AAK
�

�
�

�
�

��

(6′)

An internal functor between two internal categories X and Y in the left
exact cosimplicial category F consists of two morphisms:

f0 : X0 −→ Y0 in F0 and f1 : X1 −→ Y1 in F1 commuting with ∂1, ∂0, s
and m.

We denote the category of internal categories and functors in F by
Cat(F ).

Any left exact natural transformation α between two left exact cosim-
plicial categories F and F ′ induces the functor Cat(α) from Cat(F ) to
Cat(F ′);

Cat(α) : Cat(F ) −→ Cat(F ′),

X=(X0, X1, ∂1, ∂0, s, m) 7→(α0(X0), α1(X1), α1(∂1), α1(∂0), α0(s), α2(m)).

2. Constructing a Left Exact Cosimplicial Category from
a Topos

Definition 5. Let E be a topos over Sets.
(1) A simplicial topos ˜E : ∆op −→ Top is defined as follows:

˜E0 is the topos E,
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˜E1 is the topos E ×
Sets

E,

˜E2 is the topos E ×
Sets

E ×
Sets

E,
· · · ,
˜En is the topos E ×

Sets
· · · ×

Sets
E

︸ ︷︷ ︸

n+1

,

· · · ,
for each 0 ≤ i ≤ n

∂i = ˜E(δi
n) = (pr0, pr1, . . . , pri−1, pri+1, . . . , prn) :

: E ×
Sets

· · · ×
Sets

E
︸ ︷︷ ︸

n+1

−→ E ×
Sets

· · · ×
Sets

E
︸ ︷︷ ︸

n

(omitting i)

and

si = ˜E(σi
n) = (pr0, pr1, . . . , pri−1, pri, pri, pri+1, . . . , prn) :

: E ×
Sets

· · · ×
Sets

E
︸ ︷︷ ︸

n+1

−→ E ×
Sets

· · · ×
Sets

E
︸ ︷︷ ︸

n+2

.

One can easily see that ∂i and si are the geometric morphisms which
satisfy the usual axioms of simplicial objects [2].

(2) The left exact cosimplicial category ∆(E) is defined as follows:
for n ≥ 0 let ∆(E)n be the same category as ˜En and for each 0 ≤ i ≤ n

let δi
n : ∆(E)n−1 −→ ∆(E)n (resp. σi

n : ∆(E)n+1 −→ ∆(E)n) be the inverse
image of the geometric morphism ∂n

i : ˜En −→ ˜En−1 (resp. sn
i : ˜En −→ ˜En+1).

It readily follows that for any n ≥ 0 the category ∆(E)n has finite limits
(because it is a topos) and any coface and codegeneracy functor preserves
them (because it is the inverse image functor of some geometric morphism).

The category of internal categories in ∆(E) is denoted by Cat∆(E).

Definition 6. For any topos E over Sets let S(E) be the category, whose
objects are all pairs (P, φ), where P is an internal category in Top, φ is an
internal functor φ : P −→ ad(E) such that φ0 : P0 −→ E, and φ1 : P1 −→
E ×

Sets
E are local homeomorphisms of toposes.

A morphism between the pairs (p, φ) and (P ′, φ′) is an internal functor
f : P −→ P ′, such that φ′ ◦ f = φ.

Remark 7.
(1) For any E1,E2 ∈ Top, the geometric morphism f : E1 −→ E2 with

the functor f! a f∗, where f! preserves equalizers, will be called as usual a
local homeomorphism. In that case (see [3]) the category E1 is equivalent
to the comma category E2/f!(1) (here 1 means the terminal object).
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(2) S(−) is a contravariant functor from Top to Cat. Any geometric
morphism f : E −→ E′ induces a functor S(f) : S(E′) −→ S(E) as follows:
for (P ′, φ′) ∈ S(E′), S(f) is a pair (P, φ) such that the squares

P0 −−−−→ P ′0

φ0





y





y
φ′0

E −−−−→
f

E′
,

P1 −−−−→ P ′1

φ′1





y





y
φ′1

E ×
Set

E −−−−→
f×f

E′ ×
Set

E′

are pullbacks. By [3, Corollary 4.35] it is clear that since in the above
commutative diagrams the geometric morphisms φ′0 and φ′1 are the local
homeomorphisms, φ0 and φ1 will be the local homeomorphisms too.

Theorem 8. Let E be a topos over Sets. Then there is an equivalence
of categories

Cat∆(E)
ΦE

�
ΨE

S(E)

and this equivalence is natural in E.

Proof. First let us construct the functor ΦE . Suppose (X0, X1, ∂1, ∂0, s,m)∈
Cat∆(E). Then X0 ∈ E and X1 ∈ E ×

Set
E. Denote the comma categories

E/X0, E ×
Set

E/X1 by E0 and E1, respectively.

For i = 0, 1 the morphisms ∂i : X1 −→ δi(X0) in E ×
Set

E induce by

[3, corollary 4.35] the geometric morphisms ∂̄i : E1 −→ E0 such that the
diagrams

E1
∂̄1−−−−→ E0





y





y

E ∂1−−−−→ E

,

E1
∂̄0−−−−→ E0





y





y

E ∂0−−−−→ E
are commutative.

Similarly, the morphisms s : X0 −→ σ(X1), m : lim←−(ρ0,1
2 (X1)

ρ0,1
2−−→

ρ1
2(X0)

ρ1,2
2←−− ρ1,2

2 (X1)) −→ ρ0,2
2 (X1) induce the geometric morphisms s̄ :

E0 −→ E1 and m̄ : lim←−(E1 −→ E0 ←− E1) −→ E1 for which the diagrams

E0
s̄−−−−→ E1





y





y

E
(1,1)−−−−→ E ×

Set
E

,

lim←−(E1 → E0 ← E1)
m̄−−−−→ E1





y





y

E ×
Set

E ×
Set

E
(pr0,pr1)−−−−−−→ E ×

Set
E

are commutative.
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Using (1′)–(6′) for (X0, X1, ∂1, ∂0, s,m) one can easily prove that the
sixtuple (E0,E1, ∂̄1, ∂̄0, s̄, m̄) satisfies conditions (1)-(6) for an internal cat-
egory. Hence ΦE((X0, X1, ∂1, ∂0, s, m)) is determined as a pair ((E0,E1, ∂̄1,
∂̄0, s̄, m̄), (α0, α1)) where α0 and α1 are natural geometric morphisms from
the comma category into the underlying topos.

Now let us construct the functor ΨE. Let ((E0,E1, ∂̄1, ∂̄0, s̄, m̄), (α0, α1))∈
S(E). Then ((E0,E1, ∂̄1, ∂̄0, s̄, m̄) is an internal category in Top and (α0, α1)
is an internal functor from ((E0,E1, ∂̄1, ∂̄0, s̄, m̄) to ad(E) such that α0 :
E0 −→ E and α1 : E1 −→ E ×

Set
E are local homeomorphisms. Suppose the

local homeomorphisms α0 and α1 are induced by X0 ∈ E and X1 ∈ E ×
Set

E

respectively. By [3, Corollary 4.35] the morphisms ∂̄1, ∂̄0, s̄, m̄ induce
the morphisms ∂1 : X1 −→ δ1(X0),∂0 : X1 −→ δ0(X0), s : X0 −→ σ(X1),

m : lim←−(ρ0,1
2 (X1)

ρ0,1
2 (∂0)−−−−−→ ρ1

2(X0)
ρ1,2
2 (∂0)←−−−−− ρ1,2

2 (X1)) −→ ρ0,2
2 (X1) (here the

functors δ, σ and ρ are from the cosimplicial category ∆(E)).
The fact that the sixtuple (X0, X1, ∂1, ∂0, s, m) satisfies conditions (1′)–

(6′) follows from the fact that (E0,E1, ∂̄1, ∂̄0, s̄, m̄) satisfies conditions (1)–
(6) for an internal category. Therefore ΨE(((E0,E1∂̄1, ∂̄0, s̄, m̄), (α0, α1)))
is determined to be the sixtuple (X0, X1, ∂1, ∂0, s, m).

It is easily seen that the functors ΦE, ΨE are inverse to each other.

For any E ∈ Top we define the forgetful functor TE : S(E) −→ E as fol-
lows: for any ((E0,E1, ∂̄1, ∂̄0, s̄, m̄), (α0, α1)) ∈ S(E) let TE(((E0,E1, ∂̄1, ∂̄0,
s̄, m̄), (α0, α1))) be X ∈ E such that E0=̃E/X.

If a geometric morphism f : E −→ E′ is given, then its inverse image
functor f∗ is interchangeable with the functor T∗, i.e., the diagram

S(E)
S(f)←−−−− S(E′)

TE





y
TE′





y

E
f∗←−−−− E′

is commutative.

Definition 9. Let P = ((E0,E1, ∂1, ∂0, s, m), (α0, α1)) ∈ S(E).
(1) We define the opposite internal category P op of P to be that obtained

by interchanging ∂1 and ∂0, and “twisting” the definition of m, i.e., in the
internal category P op we must replace (E0,E1, ∂1, ∂0, s, m) by its opposite.

(2) We call P an internal groupoid if the underlying internal category
(E0,E1, ∂1, ∂0, s, m) is an internal groupoid in Top.

Remark 10. For any Q = (X0, X1, ∂1, ∂0, s, m) ∈ Cat∆(E), the opposite
category of Q is Qop = (X0, X∗

1 , ∂∗1 , ∂∗0 , s, m∗), where X1 is (pr1, pr0)∗(X1),
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∂∗i = (pr1, pr0)∗(∂i) for i = 0, 1 and m∗ = (pr2, pr1, pr0)∗(m); here

(pr1, pr0) : E ×
Sets

E −→ E ×
Sets

E is the “swapping” geometric morphism.

Note that internal groupoids in ∆(E) form a full subcategory in S(E).
Denote this subcategory by Gpd∆(E) or simply by Gpd(E).

It is easy to see that Gpd(−) is a functor (as S(−)); for any f : E −→ E′

the geometric morphism in Top, S(f) : S(E′) −→ S(E) assigns the internal
groupoid in Gpd(E) to each internal groupoid in Gpd(E′).

We will consider two examples of our constructions.
Example 1. Consider the case with E as a topos of sheaves over a lo-

cally compact Hausdorff topological space A. Denote this topos by shv(A).
In this case, for each n ≥ 0 shv(A) ×

Sets
· · · ×

Sets
shv(A)

︸ ︷︷ ︸

n+1

= shv(An+1) [3],

any geometric morphism from shv(An+1) to shv(Am+1) for n,m ≥ 0
is induced by a continuous map from An+1 to Am+1 [4], and this geo-
metric morphism is a local homeomorphism if and only if the continu-
ous map between the underlying topological spaces is a local homeomor-
phism. Therefore the category S(shv(a)) can be represented as a category
of pairs (C, α), where C = (C0, C1, ∂1, ∂0, s,m) is a continuous category,
α = (α0, α1) : C −→ ad(A) is a continuous functor, such that both maps
α0 : C0 −→ A and α1 : C1 −→ A×A are local homeomorphisms. Let us denote
this new representation of the category S(shv(a)), i.e., the representation
by continuous categories and functors, simply by S(A).

Now we will derive some technical properties of some elements of S(A)
to be used in Section 3.

Proposition 11. Let A be a topological space as above and let (C, α) ∈
S(A). Then the continuous map C1

(∂1,∂0)−−−−→ C0 × C0 satisfies the unique
lifting property of paths [5]. This means that for any two paths (ω, ω′) :
I −→ C1 in C1, for which (∂1, ∂0) ◦ ω = (∂1, ∂0) ◦ ω′ and ω(0) = ω′(0), we
have ω = ω′ (a path is a continuous function I −→ C1).

Proof. Suppose there exist two paths ω, ω′ : I −→ C1 with (∂1, ∂0) ◦ ω =
(∂1, ∂0) ◦ ω′, ω(0) = ω′(0) and ω 6= ω′. The proposition will be proved in
three steps. In the 1st step it will be shown that (∂1, ∂0) : C1 −→ C0 ×C0 is
a local homeomorphism; in the 2nd step a sequence pn will be found, which
has two distinct limits in C1, and in the 3rd step a new sequence p̃n will be
constructed using the sequence pn, which leads to a contradiction.

1st step. Consider the commutative diagram
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C1 C0 × C0

A×A
α0 × α0 .α1

(∂1, ∂0) -
�

��+
Q

QQs

Since in this diagram α1 and α0×α0 are local homeomorphisms, (∂1, ∂0)
is a local homeomorphism too [5].

2nd step. Denote by κi for i = 0, 1 the path ∂i ◦ ω′ = ∂i ◦ ω in C0.
Consider the path κ = (κ1, κ0) in C0 × C0 and the object (P ∂−→ I) =
κ∗((∂1, ∂0) : C1 −→ C0 × C0) ∈ shv(I). Two paths ω and ω′ in C1 induce
two global sections of the local homeomorphism ∂ : P −→ I or, equivalently,
two global elements ω̄, ω̄′ : 1 −→ (∂ : P −→ I) in shv(I). Let ι : U � 1 be an
equalizer of the parallel arrows ω̄ and ω̄′. We can represent the subobject
ι : U � I as an open subset U of I. This is a subspace of those t ∈ I for
which ω(t) = ω′(t). Therefore 0 ∈ U . Consider a maximal open connected
subspace in I which contains 0 ∈ I. Since ω 6= ω′, this component of the
connectivity of U has the shape [0, t0). It is clear that 0 < t0 < 1 and
ω(t0) 6= ω′(t0). Denote ω(t0) by p and ω′(t0) by p′. Choose a sequence tn
in [0, t0) whose limit is t0. Then for n ≥ 0, ω(tn) = ω′(tn); denote this
latter by pn. Thus we have constructed a sequence pn in C1 which has two
distinct limits p and p′.

3rd step. Consider κ1(t0) ∈ C0 (resp., κ0(t0) ∈ C0) and s(κ1(t0)) ∈ C1

(resp., s(κ0(t0)) ∈ C1). Since (∂1, ∂0) is a local homeomorphism, there exists
an open neighborhood W1 (resp., W0) of s(κ1(t0)) (resp., s(κ0(t0))) which
is mapped homeomorphically onto the open neighborhood U1 × U1 (resp.,
U0×U0) of (κ1(t0), κ1(t0)) (resp., of (κ0(t0), κ0(t0))). Denote the inverse of
the homeomorphism (∂1, ∂0)|W1 : W1 −→ U1×U1 (resp., (∂1, ∂0)|W0 : W0 −→
U0 × U0) by f1 (resp., by f0).

Consider an open neighborhood U1 × U0 of (κ1(t0), κ(t0)) in C0 × C0.
Since lim

n→∞
(d1, d0)(pn) = (κ1(t0), κ0(t0)), there exists n0 > 0 such that

n > n0 implies (∂1, ∂0)(pn) ∈ U1 × U0. Denote by q1
n (resp., q0

n) the
point (κ1(t0), ∂1(pn)) ∈ C0 × C0 (resp., (∂0(pn), κ0(t0)) ∈ C0 × C0). Ob-
viously, lim

n→∞
q1
n = (κ1(t0), κ1(t0)) (resp., lim

n→∞
q0
n = (κ0(t0), κ0(t0)) and

lim
n→∞

f1(q1
n) = sκ1(t0) (resp., lim

n→∞
f0(q0

n) = sκ0(t0)).

Now consider the following sequence in C1:

p̃n = f0(qn) ◦ pn ◦ f1(q1
n), n > n0;

here ◦ means the internal composition in the continuous category C.
We have

lim
n→∞

p̃n = lim
n→∞

f0(q0
n) ◦ lim

n→∞
pn ◦ lim

n→∞
f1(q1

n) =

= s(κ0(1)) ◦ lim
n→∞

pn ◦ s(κ1(t0)) = lim
n→∞

pn.
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But p and p′ are limits of pn so that the limits of p̃n will be p and p′.
For each n > n0, p̃n ∈ (∂1, ∂0)−1(κ1(t0), κ0(t0)) and the subspace

(∂1, ∂0)−1(κ1(t0), κ0(t0)) ⊂ C1 is discrete, since (∂1, ∂0) is a local homeomor-
phism. Therefore in the discrete topological space (∂1, ∂0)−1(κ1(t0), κ0(t0)),
there is a sequence p̃n having two distinct limits p and p′, which is a con-
tradiction.

Proposition 12. Let A be a locally path connected topological space, and
(C, α) ∈ S(A). Then the continuous function (∂1, ∂0) : C1 −→ C0 × C0

is a covering map [5]. This means that each p ∈ C0 × C0 has an open
neighborhood U with p ∈ U ⊂ C0 ×C0 for which (∂1, ∂0)−1(U) is a disjoint
union of subspaces Ui ⊂ C1, each of which is mapped homeomorphically
onto U by (∂1, ∂0).

Proof. We will prove this proposition in three steps. In the 1st step, for
each p ∈ C0 we will find an open neighborhood Up of p in C0 and an open
neighborhood Wp of s(p) in C1 for which Wp is mapped homeomorphically
onto Up × Up by (∂1, ∂0). In the 2nd step, for each (p, p′) ∈ C0 × C0

and q ∈ (∂1, ∂0)−1(Up × Up) we will find an open neighborhood Vq of q
in C1, which is mapped homeomorphically onto Up × U ′

p by (∂1, ∂0). And
in the 3rd step we will prove that for each (p, p′) ∈ C0 × C0 and each
q, q′ ∈ (∂1, ∂0)−1(Up × U ′

p) either Vq = Vq′ or Vq ∩ Vq′ = ∅.
1st step. Since (∂1, ∂0) is a local homeomorphism and C0 is locally

path connected as well as A, it is possible to choose, for each p ∈ C0,
an open neighborhood Wp of s(p) ∈ C1 which is mapped homeomorphi-
cally onto Up × Up, where Up is an open connected neighborhood of p in
C0. Let us prove that s(p) ∈ Wp for any p′ ∈ Up. Denote by hp the in-
verse homeomorphism of (∂1, ∂0)|Wp : Wp −→ Up × Up. Consider a path
ω in C0 from p to p′. Then we have two paths s ◦ ω and hp(ω, ω) in C1

with the common origin. By Proposition 11 s ◦ ω = hp(ω, ω). Therefore
s(p′) = sω(1) = hp(ω(1), ω(1)) ∈ Wp.

2nd step. Suppose q ∈ (∂1, ∂0)−1(p, p′). Consider the continuous map

χq : Up × Up′ −→ C1, χq(p̃, p̃′) = hp′(p′, p̃′) ◦ q ◦ (p̃, p);

here as above we mean by ◦ the internal composition in the internal cate-
gory C.

Denote χq(Up × Up′) by Vq. By Proposition 11 it is clear that Vq is an
open neighborhood of q which is mapped homeomorphically onto Up × Up′

by (∂1, ∂0).
3rd step. Vq and Vq′ are connected open neighborhoods; so this step

follows immediately from Proposition 11.
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Corollary 13. Let A be a locally path connected topological space and
(C,α) ∈ S(A). Then the continuous function (∂1, ∂0) : C1 −→ C0 × C0 is a
fibration in the sense of Hurevich.

Proof. This follows from Proposition 12 and [5, Theorem 2.33].

Example 2. Consider the case with E as a topos of presheaves on a
small category C. Denote this topos as SetsC . Then for each n ≥ 0,
SetsC ×

Sets
· · · ×

Sets
SetsC

︸ ︷︷ ︸

n+1

= SetsAn+1
[3], any face and degeneracy geomet-

ric morphism from SetsCn+1
to SetsCm+1

is induced by the corresponding
internal face and degeneracy functors in the natural simplicial internal cat-
egory over SetsC , and any geometric morphism SetsC′ −→ SetsC′′ is a
local homeomorphism if and only if it is induced by a discrete fibration
C ′ −→ C ′′. Therefore the category S(SetsC) can be represented as the cat-
egory of pairs (P, φ), where P is an internal category in Cat and φ is an
internal functor from P to the antidiscrete internal category ad(C) such
that φ0 : P0 −→ ad(C)0 = C and φ1 : P1 −→ ad(C)1 = C × C are discrete
fibrations. Let us denote this new representation of the category S(SetsC),
i.e., the representation by internal categories and functors in SetsC , simply
by S(C).

Internal categories in Cat are called double categories [1]. Any double
category D can be represented as a structure with objects, vertical mor-
phisms, horizontal morphisms, and double morphisms (or cells). The ver-
tical morphisms form a category whose composition is denoted by ∗ and
identities by id. The horizontal structure also forms a category with com-
position denoted by ◦ and identities by 1. In fact, the whole structure can
be described by the pasting of double morphisms. A double morphism has
a horizontal domain and codomain, and a vertical domain and codomain.
It can be pictured as:

A h′−−−−→ B

v′
x





x




v

C h−−−−→ D

.

Definition 14. For any small category C, let S′(C) be the category
whose objects are quadruples (F, p, Z, g), where p : F → C is a discrete
fibration, Z is a small category, and g : F → Z is a functor, such that
g0 : F0 → Z0 is a bijection and g1 : F1 → Z1 assigns an isomorphism in Z
to each α ∈ F1.



INTERNAL CATEGORIES IN A COSIMPLICIAL CATEGORY 547

A morphism between (F, p, Z, g) and (F ′, p′, Z ′, g′) is a pair of functors
(β : F → F ′; γ : Z → Z ′) such that p′ ◦ β = p and the diagram

F
β−−−−→ F ′

g




y





yg′

Z
γ−−−−→ Z ′

is commutative.

Proposition 15. Let C be a small category. Then there is an equiva-
lence of the categories

S(C)
ΨC

�
ΦC

S′(C)

and this equivalence is natural in C.

Proof. First let us construct the functor ΦC .
Suppose (P, φ) ∈ S(C). Represent the double category P as a diagram:

P ′′0 ⇔ P ′′1
� �
P ′0 ⇔ P ′1

,

where P ′′0 ⇒ P ′0 is the category P0 and P ′′1 ⇒ P ′1 is the category P1, P ′0
is the set of objects in P , P ′′0 the set of vertical morphisms, P ′1 the set of
horizontal morphisms, and P ′′1 the set of double morphisms or cells. The
functors

φ0 = (φ′0, φ
′′
0) : (P ′′0 ⇔ P ′0) −→ (C1 ⇔ C0),

φ1 = (φ′1, φ
′′
1) : (P ′′1 ⇔ P ′1) −→ (C1 × C1

∂1×∂1

⇔
∂0×∂0

C0 × C0)

are discrete fibrations.
Construct the functor g = (g0, g1) : (P ′′0 ⇔ P ′0) −→ (P ′0 ⇔ P ′1) as follows:
Let g0 : P ′0 −→ P ′0 be the identity map 1P ′0 .
For a vertical morphism α : x −→ y of P let g1(α) be a horizontal mor-

phism λ such that there is a double morphism

x λ−−−−→ y

idx

x





x





x 1x−−−−→ x

.

Since φ0 and φ1 are discrete fibrations, such λ exists and is unique.
Let us prove that g = (g0, g1) is a functor.
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For each u ∈ P ′0 and x α−→ y
β−→ z α, β ∈ P ′′0 , consider the diagrams

u 1u−−−−→ u

idu

x




idu

x





u 1u−−−−→ u

,

x
g(α)−−−−→ y

g(β)−−−−→ z

idx

x




idy

x




β

x





x
g(α)−−−−→ y

1y−−−−→ y

idx

x




α

x




α

x





x 1x−−−−→ x 1x−−−−→ x

.

Since in these diagrams all small squares determine cells in P , we have
g(idu) = 1u and g(β ◦ α) = g(β) ◦ g(α). So g is a functor.

Now let us prove that for each (α : x −→ y) ∈ P ′′0 g(α) is invertible.
Consider the diagrams

x
g(α)−−−−→ y λ′−−−−→ x

idx

x





x




α

x




idx

x 1x−−−−→ x 1x−−−−→ x

,

x λ′−−−−→ y
g(α)−−−−→ x

α

x





x




idx

x




α

x 1x−−−−→ x 1x−−−−→ x

in which all squares represent cells in P . Since φ1 is a discrete fibration, λ′

is the inverse of g(α)
Determine ΦC(P, φ) to be the quadruple ((P ′′0 ⇒ P ′0), φ0, (P ′1 ⇒ P ′0), g).
Now let construct a functor ΨC : S′(C) −→ S(C).
Suppose (F, p, Z, g) ∈ S′(C). We can identify objects of F with objects

of Z via the bijection p0 : F0 −→ Z0. Determine a double category P as
follows:

Let the set of objects of P be F0
p0∼= Z0, the set of vertical morphisms

F1, the set of horizontal morphisms Z1, and let the set of cells be the set of
squares

u
γ−−−−→ z

x




ε

x




β

x α−−−−→ y

,

where ε, β ∈ F1, α, γ ∈ Z1, and g(β) ◦ α = γ ◦ g(ε).
There is a naturally determined double functor φ : P −→ ad(C) which

assigns p0(x) to each x ∈ F0 ∼= Z0, p1(β) to each (β : x −→ y) ∈ F1,
(p0(x), p0(y)) ∈ C0 × C0 to each (α : x −→ y) ∈ Z1, and (p1(ε), p1(β)) ∈
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C1 × C1 to each cell

u
γ−−−−→ z

x




ε

x




β

x α−−−−→ y

.

We determine ΨC(F, p, Z, g)) to be the pair (P, φ).
One can easily check that the functors ΦC and ΨC are inverse to each

other.
The equivalences ΦC , ΨC are clearly natural in C.

Remark 16. It is not difficult to see that the full subcategory of S′(C),
which under the equivalence (ΦC , ΨC) corresponds to the full subcategory
of internal groupoids in S(C), consists of quadruples (F, p, Z, g) such that
Z is a groupoid.

Remark 17. Define the forgetful functor T ′C : S(C)′ −→ SetsC by

(F, p, Z, g) 7→ (F, p).

Then the diagram

S(C) S′C(C)

SetsC

-�
ΦC

ΨCPPPPPPq
�����) T ′CTC

is commutative.

Corollary 18. The category Cat∆(Sets) is equivalent to the category of
small categories and the category Grp∆(Sets) is equivalent to the category
of small groupoids.

Proof. The corollary follows from Example 2 when A is a one-point space,
and also from Proposition 15 when C is a category with one object and one
morphism.

3. A Fundamental Group

Definition 19. Let E ∈ Top. We will say that E admits the notion of
a discrete category if the forgetful functor TE : S(E) −→ E has a left adjoint
FE : E −→ S(E) such that TE ◦ FE ∼= 1E. We will call this left adjoint
functor FE the discrete category functor for E, and internal categories in
its range discrete internal categories.
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Proposition 20. Let a topos E admit the notion of a discrete category;
then the discrete category functor FE : E −→ S(E) sends each X ∈ E to
an internal groupoid in ∆(E), i.e., any “discrete category” in Cat∆(E)∼=
S(E) is an internal groupoid.

Proof. We will prove this proposition in two steps. In the first step we
will construct for each X ∈ E an internal equivalence ηX from FE(X) to
F op

E (X), which is the identity on objects, and in the second step we will
prove that the internal functor ηX “sends each morphism to its inverse.”

1st step. Since FE is a left adjoint of TE, there exists a function φ which
assigns, to each pair of objects X ∈ E and Λ ∈ S(E), the bijection

φ = φx,Λ : MorS(E)(F (X); Λ) ≈−→MorE(X; T (Λ)) (7)

(we write TE and FE without the subscript E), and which is natural in X
and Λ. Denote by ηX the internal functor (φop

X,F(X))
−1(1X) : F (X) −→ F op

(note that TF (X) = X).
Consider an internal functor ηop

X : F (X)op −→ F (X). Since ηX is the
identity on objects, ηop will also be the identity on objects. So φX,F (X)(η

op
X ◦

ηX) = 1X , and by (7) we have ηop
X ◦ ηX = 1FE(X). Similarly, we prove

ηX ◦ ηop
X = 1FE(X)op .

2nd step. Let X ∈ E. Suppose FE(X) = (X0, X1, ∂1, ∂0, s, m), where
FE(X) is represented as an object of Cat∆(E). Consider the subobject Y
of X1 in E ×

Set
E, which is the “subobject of those morphisms ξ : ∂1(ξ) −→

∂0(ξ) in X1 for which ξop is the left inverse of ξ.” Such a subobject will be
the limit of the diagram

(1E , 1E)∗(X)

lim←−





X1 X∗
1

↘∂0 ∂∗1↙
(1E , 1E)∗(X0)





X1 (pr0, pr0)∗(X1)
�����: XXXXXz
PPPPPPPPPq ���������1

(pr0,pr1,pr0)∗(m)

pr∗0 (s)∂1

( 1 η
∂0

)

Here ∂∗i and X∗
1 are the same as (pr1, pr0)∗(∂i) and (pr1, pr0)∗(X1).

Now let us construct a subcategory λ = (X, Y, ∂̄1, ∂̄0, s̄, m̄) of the in-
ternal category FE(X) = (X,X1, ∂1, ∂0, s, m) with a natural embedding
i = (1X , i1) : λ � FE(X). We must determine the morphisms ∂̄1, ∂̄0, s̄, m̄
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in such a way that they satisfy conditions (1′)–(6′) for an internal category
and the following four conditions for an internal functor:

Y X1

δ1(X)

@
@R

�
��

i1

∂̄1 ∂1 ,

-

(8)

Y X1

δ0(X)

@
@R

�
��

i1

∂̄0 ∂0 ,

-

(9)

X

σ(Y )

σ(X1)

�����:

XXXXXz
σ(i1) ,

s̄

s
? (10)

lim←−

(

ρ0,1
2 (Y ) ρ1,2

2 (Y )
↘ ↙
ρ1
2(X)

)

m̄−−−−→ ρ0,2
2 (Y )





y





yρ0,2
2 (i1)

lim←−

(

ρ0,1
2 (X1) ρ1,2

2 (X1)
↘ ↙
ρ1
2(X)

)

m−−−−→ ρ0,2
2 (X1).

(11)

The commutativity of diagrams (8), (9) determines ∂̄1 and ∂̄0, respec-
tively. By the definition of Y it is clear that the existence of a morphism s̄
(resp., m̄) such that diagram (10) (resp., (11)) is commutative is equivalent
to the commutativity of diagram (12) (resp., (13)):

X1
�����1

XXXXXz

σ(X1)

σ(X1)

PPPPPq

�����:σδ1σ(X1) ,

s

s

σ(α)

σ(β)
(12)
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lim←−

(

ρ0,1
2 (X1) ρ1,2

2 (X1)
↘ ↙
ρ1
2(X)

)

m−→ ρ0,2
2 (X1)

↗ ↘ ρ0,2
2

(α)

lim←−

(

ρ0,1
2 (Y ) ρ1,2

2 (Y )
↘ ↙
ρ1
2(X)

)

ρ0,2
2 δ1σ(X1)

↘ ↗ ρ0,2
2

(β)

lim←−

(

ρ0,1
2 (X1) ρ1,2

2 (X1)
↘ ↙
ρ1
2(X)

)

m−→ ρ0,2
2 (X1) .

(13)

But the commutativity of diagrams (12), (13) as well as that of diagrams
(1′)–(6′) for ∂̄1, ∂̄0, s̄, m̄ easily follow from conditions (1′)–(6′) for an
internal category F (X) = (X, X1, ∂1, ∂0, s, m).

So we have constructed an internal category λ and an internal inclusion
i : λ −→ FE such that i0 : λ0 = X −→ X = FE(X)0 is the identity. But by
the bijection φX,λ from (7) there exists an internal retraction j = φX,λ :
F (X) −→ λ which is also the identity on objects. Consider the composition
i◦j : F (X) −→ F (X) (note that i0 ◦j0 = 1X). Then by (7) we have i◦j = 1.
Therefore i1 ◦ j1 = 1X1 . So j1 is an epimorphism, but it is a monomorphism
too by definition. As is wellknown [3], in any topos a morphism which is
both mono- and epi- is an isomorphism. Therefore i1 is an isomorphism
and hence λ is isomorphic to F (X) via i. So “every morphism in FE(X)
has a left inverse.” Similarly we prove that “every morphism in FE(X) has
the right inverse.” Hence FE(X) is an internal groupoid.

Now we will define the fundamental group of those toposes which admit
the notion of a discrete category. Suppose E is such a topos and θ is a
point in it, i.e., θ is a geometric morphism θ : Sets −→ E. Consider the
internal groupoid FE(1) in ∆(E), where 1 is the terminal object in E.
Then FE(1)0 = 1 and therefore θ∗(FE(1)) is an internal groupoid in Sets
(i.e., a small groupoid) which has only one object. We can consider the small
groupoid θ∗(FE(1)) as a group. Elements of this group are morphisms in
θ(FE(1)) and the product is composition. Denote this group by π(E, θ).
We will call the group π(E, θ) the fundamental group of the topos E at the
point θ.

Let us prove that construction of the fundamental group from a topos
which admit it is functorial. Suppose E1 and E2 are toposes which admit the
notion of a discrete category, θ1 and θ2 are the points in them, respectively,
and f is a geometric morphism f : E1 −→ E2 such that f ◦ θ1 = θ2.

Consider two internal groupoids FE1(1E1) and f∗(FE2(1E2)) in ∆(E1).
Both have the terminal object in E1 as the object of objects. Therefore
by bijection (7) there exists a unique internal functor ˜f from FE1(1E1) to
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f∗(FE2(1E2)). Consider the functor

θ∗1( ˜f) : θ∗1(FE1(1E1)) −→ θ∗1f∗(FbfE2(1E2)) = θ∗2(FE2(1E2)).

This functor determines the group homomorphism

π(E1, θ1) −→ π(E2, θ2)

which we denote by π(f).
One can easily check that π(1E) = 1π(E), and if the geometric morphisms

f and g are composable, then π(f ◦ g) = π(f) ◦ π(g). So fundamental
groups of toposes with points determine a functor from the category of
pointed toposes admitting the notion of a discrete category to the category
of groups.

Now we will consider two examples which continue the examples from
Section 2.

Example 1. E is a topos of sheaves on a topological space.

Proposition 21. Let A be a locally compact, locally path connected, and
locally simply connected topological space. Then the topos of sheaves over A
admits the notion of a discrete category.

Proof. We will prove this proposition in two steps. In the first step we will
construct a functor FA : shv(A) −→ S(A) such that TA ◦ FA = 1shv(A) and
in the second step we will prove that FA is left adjoint to TA.

1st step. Suppose a local homeomorphism p : E −→ A is any object of
shv(A). We must assign to (p : E −→ A) ∈ shv(A) a pair (PA, φA), where
PA is a continuous category and φA : PA −→ ad(A) is a continuous functor
such that φA

1 : PA
1 −→ A×A and φA

0 : PA
0 −→ A are local homeomorphisms.

Let PA without a topology (or with a discrete topology as a small cat-
egory) be the fundamental groupoid π(E) of the space E as in [5]. Any
object of π(E) is a point of E, and an arrow x −→ x′ of π(E) is a homotopy
class of paths from x to x′. (Such a path f is a continuous function I −→ E
with f(0) = x, f(1) = x′, while two paths f, g with the same end points x
and x′ are homotopic, when there is a continuous function F : I × I −→ E
with F (t, 0) = f(t), F (t, 1) = g(t) and F (0, s) = x, F (1, s) = x′ for all s
and t in I.) The composite of paths g : x′ −→ x′′ and f : x −→ x′ is the path
h which is “f followed by g.” Composition applies also to homotopy classes
and makes π(E) a category and a groupoid. (The inverse of any path is the
same path traced in the opposite direction.)

Now determine topologies on PA
1 and PA

0 . Such a construction of the
topological fundamental groupoid is considered in [6]. Since PA

0 as a set is
the same as E, let a topology in PA

0 be the same as in E. (i.e., PA
0 = E as

a topological space).
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For any open subsets U and V in E, and any path ω in E also with
ω(0) ∈ U, ω(1) ∈ V , consider the following subset of PA

1 :

< U,ω, V >= {ω2 ∗ ω ∗ ω1|ω1 is a path in U and ω2 is a path in V }

(here by < κ > is denoted the homotopy class of a path κ and ∗ denotes
the composition in the groupoid PA).

The subsets < U,ω, V > determine an open base in PA
1 . Using this open

base we will generate a topology in PA
1 . Equipped with these topologies,

PA becomes a continuous groupoid. (It is easy to check that the maps

∂1, ∂0 : PA
1 −→ PA

0 = E, s : E −→ PA
1 , and m : lim←−(PA

1
∂0−→ E ∂1←− OA

1 ) −→
PA

1 are continuous.) There is a naturally determined continuous functor:
φA : PA −→ ad(a) φA

1 = (p × p) ◦ (∂1, ∂0) φA
0 = p. It remains to prove that

φA
1 is a local homeomorphism (φA

0 = p is a local homeomorphism because
(p : E −→ A) ∈ shv(A)). For this it is sufficient to prove that (∂1, ∂0) is a
local homeomorphism because p × p is. First we prove that (∂1, ∂0) is an
open map and then prove that (∂1, ∂0) is a local homeomorphism.

Any open W ⊂ PA
1 can be represented as a union W = ∪

i
< Ui, ωi, Vi >,

where Ui and Vi are linear connected open subsets. (Such a representation
is possible because the space E is locally path connected as well as A.) Then
(∂1, ∂0)(W ) = ∪

i
Ui × Vi and therefore is open, i.e., (∂1, ∂0) is an open map.

For any < ω >∈ PA
1 , choose an open neighborhood < U,ω, V > of < ω >,

where U and V are path connected and simply connected open sets. (This
choice is also possible because E is a locally simply connected space as well
as A.) It is easy to check that (∂1, ∂0)|<U,ω,V > :< U,ω, V >−→ U × V is
a bijection and also a continuous open map. Therefore (∂1, ∂0) is a local
homeomorphism.

So we have constructed the object (PA, φA) ∈ S(A). Let FA(p : E −→ A)
be (PA, φA). This construction clearly implies that TA ◦ FA = 1shv(A).

2nd step. Suppose (p : E −→ A) ∈ shv(A) and (Λ, ψ) ∈ S(A). Consider
the function

φ : MorS(A)(FA(p : E −→ A); (Λ, ψ)) −→Morshv(A)((p : E −→ A); Λ0),

(f : FA(p : E −→ A) −→ Λ) 7→ (f0 : E −→ Λ0).

We must prove that φ is a bijection. For this let us construct its inverse
φ−1. Suppose we are given f0 : E −→ Λ0 with ψ0 ◦ f0 = p and an element
< ω > in FA(p : E −→ A)1 (here ω is a path in E). Consider the following
path κ in FA(p : E −→ A)1:

κ : I −→ FA(p : E −→ A)1, t 7→ κ(t) =< I −→ E
s7→ω(st)

> .

The source of this path is the homotopy class s(ω(0)) ∈ FA(p : E −→ A)1,
and the target is the homotopy class of ω. The image of the path κ under
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the map (∂1, ∂0) : FA(p : E −→ A)1 −→ E × E is the pair of paths (ω(0), ω).
The path κ is the lifting of the path (ω(0), ω) with the source s(< ω(0) >) ∈
FA(p : E −→ A)1. Therefore consider the path (f0 ◦ ω(0), f0 ◦ ω) in Λ0 ×Λ0

and the lifting of this path to Λ1 via (∂1, ∂0) with a source s(f0 ◦ω(0)) ∈ Λ1.
(Such a lifting is possible and is unique by Proposition 13.) We determine
φ−1(f0)(< ω >) as the target of the lifted path. It is easy to check that
φ−1(f0) so defined is a morphism in S(A) and φ−1 is the inverse of φ.

Let us determine what π(shv(A), θ) will be for a given point θ in shv(A)
(A is a topological space with properties from Proposition 21). As is well-
known (see [4]), if A is sufficiently separated (for instance, if A is Haus-
dorff), then θ induced by a continuous map ˜θ : {∗} −→ A ({∗} is a one
point space with the unique point ∗. In this case π(shv(A), θ) is a group of
automorphisms of the object ˜θ(∗) ∈ A in the fundamental groupoid π(A),
i.e., π(shv(A), θ) = π(A, ˜θ(∗)) (here π(A, ˜θ(∗)) is the ordinary fundamental
group of the space A at the point ˜θ(∗)).

Example 2. E is a topos of presheaves.

Proposition 22. Let C be a small category; then the topos SetsC admits
the notion of a discrete category.

Proof. It is easily seen from [2] that the left adjoint functor of the forgetful
functor TC : S1(C) −→ SetsC exists and has the shape

FC : SetsC −→ S1(C),

FC : (p : Q −→ C) 7→ (Q, p,Z, g),

where Z is the category of fractions or the universal groupoid of Q and g
is the natural functor from Q to Z. (Note that Q and Z have the same
objects and g is identical on objects.)

The condition TC ◦ FC = 1SetsC is satisfied trivially.

Now let us determine what π(SetsC, θ) will be for a given point θ in
SetsC. Suppose G is the category of fractions of C and i : C −→ G
is a natural embedding. From the construction of the functor FC it fol-
lows that i∗(FG(1) = i∗(G, 1G,G, 1G) = (C, 1C,G, i) = FC(1). Therefore
π(SetsC, θ) = π(SetsG,˜i ◦ θ); here by ˜i is denoted the geometric morphism
from SetsC to SetsG induced by i.

By Diaconescu’s theorem [3] the point θ : Sets −→ SetsC determines
the flat presheaf θ̄ : Cop −→ Sets. From the definition of flat presheaves
it follows that the value of the functor θ̄ is a nonempty set only on the
objects of exactly one connected component of Cop. Denote this connected
component by Cop

0 . Then the group π(SetsC, θ) = π(SetsG,˜i ◦ θ) will
be isomorphic to the group of automorphisms of some object of C0 in the
groupoid G.
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