ON FACTORIZATION AND PARTIAL INDICES OF UNITARY MATRIX-FUNCTIONS OF ONE CLASS

G. JANASHIA AND E. LAGVILAVA

ABSTRACT. An effective factorization and partial indices are found for a class of unitary matrix functions.

Let R denote a normed ring of functions defined on the unit circle of a complex plane, say, a ring H^{α} of Hölder functions with a usual norm, $0 < \alpha < 1$, which can be decomposed into the direct sum of its subrings $R = R^+ + R_0^-$, where the elements R^+ are the boundary values of analytic functions defined within the unit circle, and the elements R_0^- are the boundary values of analytic functions defined outside the unit circle and vanishing at infinity. Also, let $R^- = R_0^- + \mathbb{C}$, where \mathbb{C} denotes the ring of complex numbers. $M_q(R)$ will denote the ring of square $q \times q$ matrix-functions with entries from R. It is well known that the invertible matrix-function $G(t) \in M_q(R)$ is factored as $G(t) = G^+(t)D(t)G^-(t)$, where $G^{\pm}(t) \in M_q(R^{\pm})$, $(G^{\pm}(t))^{-1} \in M_q(R^{\pm})$, and $D(t) = ||d_{ij}(t)||$ is a diagonal matrix with entries $d_{ii}(t) = t^{n_i}$. According to Muskhelishvili, integers n_1, n_2, \ldots, n_q , are called partial indices G(t) which can be used to determine the number of linearly independent solutions of the corresponding homogeneous singular integral equation [1].

By a polar decomposition of an arbitrary invertible matrix-function G(t) = S(t)U(t) into a positive definite factor S(t) and a unitary factor U(t) and by using the factorization type for positive definite matrix-functions $(S(t))^2 = S^+(t)(S^+(t))^* = SU_1U_1^*S$ [2], [3] we see, in particular, that partial indices for positive matrices are equal to zero. Thus, taking into account the equality $G(t) = SU_1U_1^{-1}U = S^+U_2$, where $(S^+)^{\pm 1} \in M_q(R^+)$ and U_2 is a unitary matrix, we can say (at least formally) that the general problem of finding partial indices for unitary matrix-functions.

439

1072-947X/97/0900-0439\$12.50/0 \odot 1997 Plenum Publishing Corporation

¹⁹⁹¹ Mathematics Subject Classification. 47A68, 35Q15.

 $Key\ words\ and\ phrases.$ Factorization of matrix function, partial indexes.

Since partial indices are unstable in general [4], it is interesting to select classes of unitary matrix-functions with zero partial indices. In this connection we note the following

Proposition. Partial indices of a unitary matrix-function $U(t) \in M_q(R)$ with det U(t) = 1 are equal to zero if and only if there exists a positive definite matrix-function S(t) such that $S(t)U(t) \in M_q(R^+)$.

The sufficiency immediately follows from

$$U(t) = S^{-1}(t)S(t)U(t) = Y^{+}(t)^{*}Y^{+}(t)(S(t)U(t) \text{ and } U = (U^{*})^{-1}.$$

The necessity follows from the fact that if

$$U(t) = U^{+}(t)U^{-}(t) = (U^{+}(t)^{*})^{-1}(U^{-}(t)^{*})^{-1} = U_{1}^{-}U_{1}^{+} = S_{1}O_{1}S_{2}O_{2},$$

where $U_1^- = S_1 O_1$ and $U_1^+ = S_2 O_2$ is a polar decomposition, then $S_1^{-2} U \in M_q(R_+)$.

The above proposition remains valid if there exists a factor S(t) on the right side or if R^+ is replaced by R^- .

Using this proposition one can establish the following

Theorem. Partial indices of a unitary matrix-function $U(t) = ||u_{ij}(t)||$ with det U = 1 of the form

$$u_{ij}(t) = \alpha_{ij}^+(t), \quad u_{qj}(t) = \overline{\alpha_{qj}^+(t)} \quad for \quad 1 \le i \le q-1, \quad 1 \le j \le q, \quad (1)$$

where $\alpha_{ij}^+(t)$ are polynomials, are equal to zero if and only if the condition

$$\sum_{j=0}^{q} |\alpha_{qj}^{+}(0)|^{2} \neq 0$$
(2)

is fulfilled.

To prove the sufficiency of condition (2), for given U(t) one should define a positive definite matrix-function $S(t) = ||s_{ij}(t)||$ and $X^{-}(t) = ||x_{ij}^{-}(t)|| \in M_q(R^-)$ by the equation

$$S(t)U(t) = X^{-}(t).$$
 (3)

Condition (1) implies that $s_{ij}(t) = \text{const}$, $1 \le i \le q - 1$, $1 \le j \le q - 1$, $\overline{s}_{qi}(t) \in \mathbb{R}^+$, $1 \le i \le q - 1$ are polynomials. We set $s_{ij} = \delta_{ij}$, $1 \le i \le q - 1$, $1 \le j \le q - 1$, where δ_{ij} is Kronecker's symbol and denote $\varphi_i^+ = \overline{s}_{qi}(t) = s_{iq}(t)$, $1 \le i \le q - 1$, and $\varphi_q = s_{qq}(t)$. Equation (3) can now be rewritten as

$$\alpha_{jk}^{+} + \varphi_{j}^{+} \overline{\alpha}_{qk}^{+} = x_{jk}^{-}, \quad 1 \le j \le q - 1, \quad 1 \le k \le q,$$
 (4)

ON FACTORIZATION AND PARTIAL INDICES

$$\sum_{j=1}^{q-1} \alpha_{jk}^+ \overline{\varphi}_j^+ + \varphi_q \overline{\alpha}_{qk}^+ = x_{qk}^-, \quad 1 \le k \le q.$$
(5)

Condition (2) implies $\alpha_{qj}^+(0) \neq 0$ for some j = p. Let F_p^+ be some part of the series $(\alpha_{qp}^+)^{-1}$ such that $F_p^+ \alpha_{qp}^+ = 1 + a_N t^N + a_{N+1} t^{N+1} + \cdots$ with sufficiently large N. When k = p, by (4) we obtain

$$\varphi_j^+ = \mathbb{P}(\overline{F}_p^+ \alpha_{jp}^+), \quad 1 \le j \le q-1, \tag{6}$$

where \mathbb{P} is the projecting operator from R into R^+ , $\mathbb{P}(R_0) = 0$. Setting

$$\varphi_q = 1 + \sum_{j=1}^{q-1} |\varphi_j^+|^2, \tag{7}$$

we see that S(t) is a positive definite matrix-function. It remains for us to check whether (4) is fulfilled for $k \neq p$ and (5). After substituting α_{jp}^+ from (4) into $\sum_{j=1}^{q-1} \overline{\alpha}_{jk}^+ \alpha_{jp}^+ + \alpha_{qk}^+ \overline{\alpha}_{qp}^+ = \delta_{kp}, 1 \leq k \leq q$, we obtain $(\sum_{j=1}^{q-1} \overline{\alpha}_{jk}^+ \varphi_j^+ + \alpha_{qk}^+) \overline{\alpha}_{qp}^+ \in R^- = \delta_{kp}, 1 \leq k \leq q$. The multiplication by \overline{F}_p^+ gives $\sum_{j=1}^{q-1} \overline{\alpha}_{jk}^+ \varphi_j^+ + \alpha_{qk}^+ = y_{qk}^- \in R^-, 1 \leq k \leq q$. Diagonalizing these linear equations with respect to φ_j^+ without taking k = i into account we find that (4) is fulfilled for k = i. Finally, $\sum_{j=1}^{q-1} \alpha_{jk}^+ \overline{\varphi}_j^+ + \varphi_q \overline{\alpha}_{qk}^+ = \sum_{j=1}^{q-1} (\overline{\alpha}_{jk}^+ + \varphi_j^+ \overline{\alpha}_{qk}^+) \overline{\varphi}_j^+ + \overline{\alpha}_{qk}^+ \in R^-$. Thus (5) is also fulfilled, which completes the proof.

The necessity follows from the fact that if $\sum_{j=1}^{q} |\alpha_{qj}^{+}(0)|^2 = 0$ and $U = U^+U^-$ with invertible U^{\pm} , then $U^+ = U(U^-)^{-1}$ and the elements of the last row of U^+ belong both to R^+ and R_0^- and therefore are equal to zero, which contradicts the invertibility of U^+ .

Since the found positive matrix-function S(t) is effectively factored, the factorization of U(t) can be obtained effectively too.

Corollary 1. When condition (2) is fulfilled, the factorization of a unitary matrix-function of form (1) can be found as follows:

$$U(t) = (Y^{-}(t))^{*}Y^{-}(t)S(t)U(t),$$

where $Y^{-}(t) = ||y_{ij}^{-}(t)||$, $y_{ij}^{-}(t) = \delta_{ij}$ for $1 \le i \le q - 1$, $1 \le i \le q$, $y_{qj}^{-}(t) = -\overline{\varphi}_{j}^{+}$ with φ_{j}^{+} defined by (6), $1 \le j \le q - 1$, $y_{qq}(t) = 1$, and $(S(t))^{-1} = (Y^{-}(t))^{*}Y^{-}(t)$.

The proof is obvious, since $S(t)U(t) \in M_q(R^-), Y^-(t)^* \in M_q(R^*)$, and $(Y^-(t)^*)^{-1} \in M_q(R^*)$.

More can be said for the case with q = 2. For a unitary matrix-function U(t) of form (1) all functions $\alpha_{ij}^*(t)$, $1 \le j \le q$, may vanish simultaneously

441

only for t = 0. Let $\alpha_{ij}^+(t) = t^{n_{ij}}a_{ij}^+(t)$ with polynomials $a_{ij}^+(t)$, $a_{ij}^+(0) \neq 0$ (for $\alpha_{ij}^+(t) = 0$, $n_{ij} = +\infty$) and let

$$n_1 = \min_{1 \le j \le 2} n_{1j}, \quad n_2 = -\min_{1 \le j \le 2} n_{2j} = -n_1.$$
(8)

Then U(t) can be represented as $U(t) = D(t)U_1(t)$, where $U_1(t)$ is a unitary matrix of form (1) for which condition (2) holds, while D(t) is a diagonal matrix with $d_{ii}(t) = t^{n_i}$, i = 1, 2. Let $U_1(t) = (Y_1^-(t))^*Y_1^-(t)X_1^-(t)$ be the factorization of $U_1(t)$ with lower triangular $Y_1^-(t)$. Now we can formulate

Corollary 2. Partial indices of a second-order unitary matrix-function of form (1) are equal to n_1 , $-n_1$, where n_1 is defined by (8).

A factorization of U(t) can be found as follows:

$$U(t) = \left(D(t)y_1^{-}(t)^*D(t)^{-1}\right)D(t)Y_1^{-}(t)X_1^{-}(t)$$

The proof easily follows from the observation that $D(t)Y_1^-(t)^*D(t)^{-1} \in M_2(\mathbb{R}^+)$ together with its inverse.

References

1. N. I. Muskhelishvili, Singular integral equations. (Translated from the Russian) *P. Noordhoff, Groningen*, 1953.

2. N. Wiener and P. Masani, The prediction theory of multivariate stochastic processes. II Acta Math. **99**(1958), 93–137.

3. I. Cokhberg and M. G. Krein, Systems of integral equations on a halfline with kernels depending on difference arguments. (Russian) *Uspekhi Mat. Nauk* **13**(1958), No. 2, 3–72.

4. B. V. Bojarski, On stability of the Hilbert problem for homotopic vectors. (Russian) *Bull. Acad. Sci. Georgian SSR (Soobshch. Akad. Nauk Gruz. SSR)* **21**(1958), No. 4, 391–398.

(Received 14.09.1995)

Authors' address:

A. Razmadze Mathematical InstituteGeorgian Academy of Sciences1, M. Aleksidze St., Tbilisi 380093Georgia