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ON FACTORIZATION AND PARTIAL INDICES OF
UNITARY MATRIX-FUNCTIONS OF ONE CLASS

G. JANASHIA AND E. LAGVILAVA

Abstract. An effective factorization and partial indices are found
for a class of unitary matrix functions.

Let R denote a normed ring of functions defined on the unit circle of
a complex plane, say, a ring Hα of Hölder functions with a usual norm,
0 < α < 1, which can be decomposed into the direct sum of its subrings
R = R+ + R−0 , where the elements R+ are the boundary values of an-
alytic functions defined within the unit circle, and the elements R−0 are
the boundary values of analytic functions defined outside the unit circle
and vanishing at infinity. Also, let R− = R−0 + C, where C denotes the
ring of complex numbers. Mq(R) will denote the ring of square q × q
matrix-functions with entries from R. It is well known that the invert-
ible matrix-function G(t) ∈ Mq(R) is factored as G(t) = G+(t)D(t)G−(t),
where G±(t) ∈ Mq(R±), (G±(t))−1 ∈ Mq(R±), and D(t) = ‖dij(t)‖ is a
diagonal matrix with entries dii(t) = tni . According to Muskhelishvili, in-
tegers n1, n2, . . . , nq, are called partial indices G(t) which can be used to
determine the number of linearly independent solutions of the corresponding
homogeneous singular integral equation [1].

By a polar decomposition of an arbitrary invertible matrix-function G(t)=
S(t)U(t) into a positive definite factor S(t) and a unitary factor U(t) and by
using the factorization type for positive definite matrix-functions (S(t))2 =
S+(t)(S+(t))∗ = SU1U∗

1 S [2], [3] we see, in particular, that partial indices
for positive matrices are equal to zero. Thus, taking into account the equal-
ity G(t) = SU1U−1

1 U = S+U2, where (S+)±1 ∈ Mq(R+) and U2 is a unitary
matrix, we can say (at least formally) that the general problem of finding
partial indices is reducible to the problem of finding such indices for unitary
matrix-functions.
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Since partial indices are unstable in general [4], it is interesting to se-
lect classes of unitary matrix-functions with zero partial indices. In this
connection we note the following

Proposition. Partial indices of a unitary matrix-function U(t) ∈ Mq(R)
with det U(t) = 1 are equal to zero if and only if there exists a positive
definite matrix-function S(t) such that S(t)U(t) ∈ Mq(R+).

The sufficiency immediately follows from

U(t) = S−1(t)S(t)U(t) = Y +(t)∗Y +(t)(S(t)U(t) and U = (U∗)−1.

The necessity follows from the fact that if

U(t) = U+(t)U−(t) = (U+(t)∗)−1(U−(t)∗)−1 = U−
1 U+

1 = S1O1S2O2,

where U−
1 = S1O1 and U+

1 = S2O2 is a polar decomposition, then S−2
1 U ∈

Mq(R+).
The above proposition remains valid if there exists a factor S(t) on the

right side or if R+ is replaced by R−.
Using this proposition one can establish the following

Theorem. Partial indices of a unitary matrix-function U(t) = ‖uij(t)‖
with detU = 1 of the form

uij(t) = α+
ij(t), uqj(t) = α+

qj(t) for 1 ≤ i ≤ q − 1, 1 ≤ j ≤ q, (1)

where α+
ij(t) are polynomials, are equal to zero if and only if the condition

q
∑

j=0

|α+
qj(0)|2 6= 0 (2)

is fulfilled.

To prove the sufficiency of condition (2), for given U(t) one should define
a positive definite matrix-function S(t) = ‖sij(t)‖ and X−(t) = ‖x−ij(t)‖ ∈
Mq(R−) by the equation

S(t)U(t) = X−(t). (3)

Condition (1) implies that sij(t) = const, 1 ≤ i ≤ q − 1, 1 ≤ j ≤ q − 1,
sqi(t) ∈ R+, 1 ≤ i ≤ q − 1 are polynomials. We set sij = δij , 1 ≤ i ≤ q − 1,
1 ≤ j ≤ q − 1, where δij is Kronecker’s symbol and denote ϕ+

i = sqi(t) =
siq(t), 1 ≤ i ≤ q − 1, and ϕq = sqq(t). Equation (3) can now be rewritten
as

α+
jk + ϕ+

j α+
qk = x−jk, 1 ≤ j ≤ q − 1, 1 ≤ k ≤ q, (4)
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q−1
∑

j=1

α+
jkϕ+

j + ϕqα+
qk = x−qk, 1 ≤ k ≤ q. (5)

Condition (2) implies α+
qj(0) 6= 0 for some j = p. Let F+

p be some part
of the series (α+

qp)
−1 such that F+

p α+
qp = 1 + aN tN + aN+1tN+1 + · · · with

sufficiently large N . When k = p, by (4) we obtain

ϕ+
j = P(F

+
p α+

jp), 1 ≤ j ≤ q − 1, (6)

where P is the projecting operator from R into R+, P(R0) = 0. Setting

ϕq = 1 +
q−1
∑

j=1

|ϕ+
j |

2, (7)

we see that S(t) is a positive definite matrix-function. It remains for us
to check whether (4) is fulfilled for k 6= p and (5). After substituting
α+

jp from (4) into
∑q−1

j=1 α+
jkα+

jp + α+
qkα+

qp = δkp, 1 ≤ k ≤ q, we obtain

(
∑q−1

j=1 α+
jkϕ+

j + α+
qk)α+

qp ∈ R− = δkp, 1 ≤ k ≤ q. The multiplication by F
+
p

gives
∑q−1

j=1 α+
jkϕ+

j + α+
qk = y−qk ∈ R−, 1 ≤ k ≤ q. Diagonalizing these linear

equations with respect to ϕ+
j without taking k = i into account we find

that (4) is fulfilled for k = i. Finally,
∑q−1

j=1 α+
jkϕ+

j + ϕqα+
qk =

∑q−1
j=1(α

+
jk +

ϕ+
j α+

qk)ϕ+
j +α+

qk ∈ R−. Thus (5) is also fulfilled, which completes the proof.
The necessity follows from the fact that if

∑q
j=1 |α

+
qj(0)|2 = 0 and U =

U+U− with invertible U±, then U+ = U(U−)−1 and the elements of the
last row of U+ belong both to R+ and R−0 and therefore are equal to zero,
which contradicts the invertibility of U+.

Since the found positive matrix-function S(t) is effectively factored, the
factorization of U(t) can be obtained effectively too.

Corollary 1. When condition (2) is fulfilled, the factorization of a uni-
tary matrix-function of form (1) can be found as follows:

U(t) = (Y −(t))∗Y −(t)S(t)U(t),

where Y −(t) = ‖y−ij(t)‖, y−ij(t) = δij for 1 ≤ i ≤ q − 1, 1 ≤ i ≤ q, y−qj(t) =
−ϕ+

j with ϕ+
j defined by (6), 1 ≤ j ≤ q − 1, yqq(t) = 1, and (S(t))−1 =

(Y −(t))∗Y −(t).

The proof is obvious, since S(t)U(t) ∈ Mq(R−), Y −(t)∗ ∈ Mq(R∗), and
(Y −(t)∗)−1 ∈ Mq(R∗).

More can be said for the case with q = 2. For a unitary matrix-function
U(t) of form (1) all functions α∗ij(t), 1 ≤ j ≤ q, may vanish simultaneously
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only for t = 0. Let α+
ij(t) = tnij a+

ij(t) with polynomials a+
ij(t), a+

ij(0) 6= 0
(for α+

ij(t) = 0, nij = +∞) and let

n1 = min
1≤j≤2

n1j , n2 = − min
1≤j≤2

n2j = −n1. (8)

Then U(t) can be represented as U(t) = D(t)U1(t), where U1(t) is a
unitary matrix of form (1) for which condition (2) holds, while D(t) is a di-
agonal matrix with dii(t) = tni , i = 1, 2. Let U1(t) = (Y −

1 (t))∗Y −
1 (t)X−

1 (t)
be the factorization of U1(t) with lower triangular Y −

1 (t). Now we can
formulate

Corollary 2. Partial indices of a second-order unitary matrix-function
of form (1) are equal to n1, −n1, where n1 is defined by (8).

A factorization of U(t) can be found as follows:

U(t) =
(

D(t)y−1 (t)∗D(t)−1)D(t)Y −
1 (t)X−

1 (t).

The proof easily follows from the observation that D(t)Y −
1 (t)∗D(t)−1 ∈

M2(R+) together with its inverse.
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