MODULAR PROPERTIES OF THETA-FUNCTIONS AND REPRESENTATION OF NUMBERS BY POSITIVE QUADRATIC FORMS

T. VEPKHVADZE

Abstract

By means of the theory of modular forms the formulas for a number of representations of positive integers by two positive quaternary quadratic forms of steps 36 and 60 and by all positive diagonal quadratic forms with seven variables of step 8 are obtain.

Let $r(n ; f)$ denote a number of representations of a positive integer n by a positive definite quadratic form f with a number of variables s. It is well known that, for the case $s>4, r(n ; f)$ can be represented as

$$
r(n ; f)=\rho(n ; f)+\nu(n ; f),
$$

where $\rho(n ; f)$ is a "singular series" and $\nu(n ; f)$ is a Fourier coefficient of cusp form. This can be expressed in terms of the theory of modular forms by stating that

$$
\vartheta(\tau ; f)=E(\tau ; f)+X(\tau),
$$

where $E(\tau ; f)$ is the Eisenstein series and $X(\tau)$ is a cusp form.
In his work [1] Malyshev formulated the following problem: to define the Eisenstein series and to develop a full theory of singular series for arbitrary $s \geq 2$. For $s \geq 3$, its solution follows from Ramanathan's results [2].

In the present paper we work out a full solution of this problem. Moreover, convenient formulas are obtained for calculating values of the function $\rho(n ; f)$.

Thus, if the genus of the quadratic form f contains one class, then according to Siegel's theorem ([2], [3], [4]), $\vartheta(\tau ; f)=E(\tau ; f)$ and in that case the problem for obtaining "exact" formulas for $r(n ; f)$ is solved completely. If the genus contains more than one class, then it is necessary to find a cusp form $X(\tau)$.

[^0]A large number of papers is devoted to finding such formulas. Cusp forms in these works are constructed in the form of linear combinations of products of simple theta-functions with characteristics or their derivatives (see, e.g., [5]), products of Jacobi theta-functions or their derivatives (see, e.g., [6]), and theta-functions with spherical polynomials (see, e.g., [7]). All these functions are certain particular cases of linear combinations of the so-called generalized theta-functions with characteristics defined below by the formula (1). In the present paper, using modular properties of these functions, we have obtained by the unique method the exact formulas for a number of representations of numbers by positive quadratic forms both with an even (forms of such a kind were considered earlier) and an odd number of variables. Moreover, it is shown that using [8], one can reduce cumbersome calculations for obtaining formulas for a number of representations of numbers by the quadratic forms considered earlier and to obtain new formulas.
\S 1. Let $f=\frac{1}{2} x^{\prime} A x$ be a positive definite qadratic form, let A be an integral matrix with even diagonal elements, and the vector column $x \in \mathbb{Z}^{s}$, $s \in N, s \geq 2$. We call $u \in \mathbb{Z}^{s}$ a special vector with respect to the form f if $A u \equiv 0(\bmod N)$, where N is a step of the form f. Moreover, let $P_{\nu}=P_{\nu}(x)$ be a spherical function of the ν th order (ν is a positive integer) corresponding to the form f (see [9], p. 454). Then the generalized thetafunction with characteristics we define as follows:

$$
\begin{equation*}
\vartheta_{g h}\left(\tau ; p_{\nu}, f\right) \sum_{x \equiv g(\bmod N)}(-1)^{\frac{h^{\prime} A(x-g)}{N^{2}}} p_{\nu}(x) e^{\frac{\pi i \tau x^{\prime} A x}{N^{2}}} ; \tag{1}
\end{equation*}
$$

here and below, g and h are the special vectors with respect to the form f.
In the sequel, use will be made of the following lemmas (see Lemmas 1 and 4 in [8]).

Lemma 1. Let k be an arbitrary integral vector and l be a special vector with respect to the form f. Then the following equalities hold:

$$
\begin{aligned}
\vartheta_{g+N k, h}\left(\tau ; p_{\nu}, f\right) & =(-1)^{\frac{h^{\prime} A k}{N}} \vartheta_{g h}\left(\tau ; p_{\nu}, f\right) \\
\vartheta_{g, h+2 l}\left(\tau ; p_{\nu}, f\right) & =\vartheta_{g h}\left(\tau ; p_{\nu}, f\right)
\end{aligned}
$$

Lemma 2. Let $F(\tau)$ be an entire modular form of the type $(-r, N, v(L))$ and let there exist an integer l for which $(v(L))^{l}=1$. Then the function $F(\tau)$ is identically equal to zero if in its expansion in powers of $Q=e^{2 \pi i \tau}$ the coefficients c_{n} equal 0 for $n \leq(r / 12) N \prod_{p \mid N}\left(1+p^{-1}\right)$.

In the main theorem below we formulate modular properties of linear combinations of functions (1).

Theorem 1. Let $f_{1}=f_{1}(x)=\frac{1}{2} x^{\prime} A_{1} x, \ldots, f_{j}=f_{j}(x)=\frac{1}{2} x^{\prime} A_{j} x$ be positive definite quadratic forms with a number of variables s, let $P_{\nu}^{(k)}=$ $P_{\nu}^{(k)}(x)$ be the coresponding spherical functions of order ν, Δ_{k} be the determinant of the matrix A_{k}, N_{k} the step of the form $f_{k}(k=1, \ldots, j), \Delta$ the determinant of the matrix A of some positive definite quadratic form $\frac{1}{2} x^{\prime} A x$ with a number of variables $s+2 \nu$ and the step N.

Next, let $g^{(k)}$ and $h^{(k)}$ be special vectors with respect to f_{k}; moreover, given $2 \nmid \frac{N}{N_{k}}$, let h_{k} be the vector with even components $(k=1, \ldots, j)$;

$$
\begin{gather*}
L=\left(\begin{array}{ll}
\alpha & \beta \\
\gamma & \delta
\end{array}\right) \in \Gamma_{0}(N) \\
v(L)=\left(i^{\frac{1}{2} \eta(\gamma)(\operatorname{sgn} \delta-1)}\right)^{s+2 \nu}\left(i^{\left(\frac{|\delta|-1}{2}\right)^{2}}\right)^{s+2 \nu}\left(\frac{2(\operatorname{sgn} \delta) \beta \Delta}{|\delta|}\right) \text { for } 2 \nmid s \\
=(\operatorname{sgn} \delta)^{\frac{s}{2}+\nu}\left(\frac{(-1)^{\frac{s}{2}+\nu} \Delta}{|\delta|}\right) \text { for } 2 \mid s \tag{2}\\
\eta(\gamma)=1 \text { for } \gamma \geq 0 \\
=-1 \text { for } \gamma<0
\end{gather*}
$$

$\left(\frac{(-1)^{\frac{s}{2}+\nu} \Delta}{|\Delta|}\right)$ is the Kronecker symbol, $\left(\frac{2(\operatorname{sgn} \delta) \beta \Delta}{|\delta|}\right)$ is the Jacobi symbol.
Then the function

$$
\begin{equation*}
X(\tau)=\sum_{k=1}^{j} B_{k} \vartheta_{g^{(k)} h^{(k)}}\left(\tau ; P_{\nu}^{(k)}, f_{k}\right) \tag{3}
\end{equation*}
$$

for arbitrary complex numbers B_{k} is an entire modular form of the type $\left(-\left(\frac{s}{2}+\nu\right), N, v(L)\right)$ if and only if the conditions

$$
N_{k}\left|N, \quad N_{k}^{2}\right| f_{k}\left(g^{(k)}\right), \quad 4 N_{k} \left\lvert\, \frac{N}{N_{k}} f_{k}\left(h^{(k)}\right)\right.
$$

are fulfilled, and for all α and δ such that $\alpha \delta \equiv 1(\bmod N)$ we have

$$
\begin{gathered}
\sum_{k=1}^{j} B_{k} \vartheta_{\alpha g^{(k)}, h^{(k)}}\left(\tau ; p_{\nu}^{(k)}, f_{k}\right)(\operatorname{sgn} \delta)^{\nu}\left(\frac{(-1)^{\left[\frac{1}{2}\right]} \Delta_{k}}{|\delta|}\right)= \\
=\left(\frac{(-1)^{\left[\frac{s+2 \nu}{2}\right]} \Delta}{|\delta|}\right) \sum_{k=1}^{j} B_{k} \vartheta_{g^{(k)} h^{(k)}}\left(\tau ; p_{\nu}^{(k)}, f_{k}\right)
\end{gathered}
$$

This theorem has been proved in [8] for even h_{k}. It can easily be adjusted to the case $2 \left\lvert\, \frac{N}{N_{k}} h_{k}\right.$. From this theorem we obtain the following two theorems which are analogues of Theorems 4 and 2 from [8].

Theorem 2. If all the conditions of Theorem 1 are fulfilled and either $\nu>0$, or $\nu=0$ and all the $g^{(k)}$ vectors are nonzero, then the function (3) is a cusp form of the type $\left(-\left(\frac{1}{2}+\nu\right), N, v(L)\right)$.

Theorem 3. Let f be an integral positive quadratic form with a number of variables s and let Δ be a determinant of the form f. Then the function $\vartheta(\tau ; f)$ defined by the formula

$$
\begin{equation*}
\vartheta(\tau ; f)=1+\sum_{n=1}^{\infty} r(n ; f) e^{2 \pi i \tau f} \quad(\operatorname{Im} \tau>0) \tag{4}
\end{equation*}
$$

is the entire modular form of the type $\left(-\frac{s}{2}, N, \nu(L)\right)$, where $\nu(L)$ are defined by the formulas (2) for $\nu=0$.

From the results of [2], [3], [4] and [10] we obtain

Theorem 4. Let f be a positive quadratic form with a number of variables s and let Δ be its determinant. Then the function $E(\tau, z ; f)$, determined for $\operatorname{Re} z \geq 2-\frac{s}{2}$ and $\operatorname{Im} \tau>0$ by the formula

$$
E(\tau, z ; f)=1+\frac{e^{\frac{\pi i s}{4}}}{2^{\frac{s}{2}} \Delta^{\frac{s}{2}}} \sum_{q=1}^{\infty} \sum_{\substack{H=-\infty \\(H, q)=1}}^{\infty} \frac{S(f h, q)}{q^{\frac{s}{2}}(q \tau-H)^{\frac{s}{2}}|q \tau-H|^{z}},
$$

where $S(f h, q)$ is the Gaussian sum, can be continued analytically into the neighborhood of the point $z=0$. Further, having defined the Eisenstein series $E(\tau ; f)$ by the formulas

$$
\begin{aligned}
E(\tau ; f) & =\left.\frac{1}{2} E(\tau, z ; f)\right|_{z=0} \text { for } s=2 \\
& =\left.E(\tau, z ; f)\right|_{z=0} \text { for } s>2
\end{aligned}
$$

we have

$$
\begin{align*}
E(\tau ; f) & =1+\frac{1}{2} \sum_{n=1}^{\infty} \rho(n ; f) e^{2 \pi i \tau n} \quad \text { for } \quad s=2 \\
& =1+\sum_{n=1}^{\infty} \rho(n ; f) e^{2 \pi i \tau n} \quad \text { for } \quad s>2 \tag{5}
\end{align*}
$$

here $\rho(n ; f)$ is a singular series which is calculated as follows:
(1) If $2 \mid s, \quad v=\prod_{\substack{p \nmid n \\ p \nmid 2 \Delta}} p^{w}, \Delta=r^{2} \omega$ (ω is a square-free number), then

$$
\begin{aligned}
\rho(n ; f) & =\frac{\pi^{\frac{s}{2}}}{\Gamma\left(\frac{s}{2}\right) \Delta^{1 / 2}} n^{\frac{s}{2}-1} \chi_{2} \prod_{\substack{p \mid \Delta \\
p>2}} \chi_{p} \prod_{\substack{p \mid r \\
p>2}}\left(1-\left(\frac{(-1)^{\frac{s}{2}} \omega}{p}\right) p^{-\frac{s}{2}}\right)^{-1} \times \\
& \times \mathcal{L}^{-1}\left(\frac{s}{2} ;(-1)^{\frac{1}{2}} \omega\right) \sum_{k \mid v}\left(\frac{(-1)^{\frac{s}{2}} \Delta}{k}\right) k^{1-\frac{s}{2}}
\end{aligned}
$$

(2) If $2 \nmid s, \Delta n=2^{\alpha+\gamma} v_{1} v_{2}=r^{2} \omega, 2^{\alpha}\left\|n, 2^{\gamma}\right\| \Delta, p^{l}\left\|\Delta, p^{w}\right\| n(p>2)$, $v_{1}=\prod_{p \mid n} p^{w}=r_{1}^{2} \omega_{1}, v_{2}=\prod_{p \mid \Delta n} p^{w+l}=r_{2}^{2} \omega_{2}\left(\omega, \omega_{1}, \omega_{2}\right.$ are square-

$$
p \nmid 2 \Delta \quad p \mid \Delta, p>2
$$ free numbers), then

$$
\begin{gathered}
\rho(n ; f)=\frac{(s-1)!r_{1}^{2-s} n^{\frac{s}{2}-1}}{\Gamma\left(\frac{s}{2}\right) 2^{s-2} \pi^{\frac{s}{2}-1}\left|B_{s-1}\right| \Delta^{\frac{1}{2}}} \chi_{2} \prod_{\substack{p \mid \Delta \\
p>2}} \chi_{p} \times \\
\times \prod_{p \mid 2 \Delta}\left(1-p^{1-s}\right)^{-1} \mathcal{L}\left(\frac{s-1}{2} ;(-1)^{\frac{s-1}{2}} \omega\right) \prod_{\substack{p \mid r_{2} \\
p>2}}\left(1-\left(\frac{(-1)^{\frac{s-1}{2}} \omega}{p}\right) p^{\frac{1-s}{2}}\right) \times \\
\times \sum_{k \mid r_{1}} k^{s-2} \prod_{p \mid k}\left(1-\left(\frac{(-1)^{\frac{s-1}{2}} \omega}{p}\right) p^{\frac{1-s}{2}}\right)
\end{gathered}
$$

The values of χ_{2} and χ_{p} are given in [11] (formulas (9)-(13), p. 66);

$$
\mathcal{L}\left(k ;(-1)^{k} \omega\right)=\sum_{\substack{l=1 \\ 2 \nmid l}}^{\infty}\left(\frac{(-1)^{k} \omega}{l}\right) \frac{1}{l^{k}}=\prod_{\substack{p \\ p>2}}\left(1-\left(\frac{(-1)^{k} \omega}{p}\right) p^{-k}\right)^{-1}
$$

B_{s-1} are Bernoulli's numbers.
§ 2. In this section we will obtain exact formulas for a number of representations of numbers by quaternary quadratic forms:

$$
x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+15 x_{4}^{2} \quad \text { and } \quad 2 x_{1}^{2}+2 x_{1} x_{2}+5 x_{2}^{2}+2 x_{3}^{2}+2 x_{3} x_{4}+5 x_{3}^{2}
$$

The first form has been considered by Lomadze in [5] who, for the construction of cusp form $X(\tau)$, used products of simple theta-functions with characteristics and of their derivatives (some particular cases of the function (1)) and therefore he had to use modular forms of step 240 instead of 60 .

Theorem 5. Let

$$
\begin{gathered}
f=x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+15 x_{4}^{2}, \quad f_{1}=3 x_{1}^{2}+15 x_{2}^{2} \\
f_{2}=4 x_{1}^{2}+2 x_{1} x_{2}+4 x_{2}^{2}, \quad g^{(1)}=\binom{20}{20}, \quad h^{(1)}=\binom{0}{0}, \\
g^{(2)}=\binom{15}{0}, \quad h^{(2)}=\binom{0}{15}, \quad p_{1}^{(1)}=x_{2}, \quad p_{1}^{(2)}=x_{1}+x_{2} .
\end{gathered}
$$

Then the equality

$$
\begin{equation*}
\vartheta(\tau ; f)=E(\tau ; f)+\frac{4}{15} \vartheta_{g^{(1)} h^{(1)}}\left(\tau ; p^{(1)}, f_{1}\right)+\frac{1}{10} \vartheta_{g^{(2)} h^{(2)}}\left(\tau ; p_{1}^{(2)}, f_{2}\right) \tag{6}
\end{equation*}
$$

holds, where the functions

$$
\vartheta(\tau ; f), \quad \vartheta_{g^{(1)} h^{(1)}}\left(\tau ; p_{1}^{(1)}, f_{1}\right), \quad \vartheta_{g^{(2)} h^{(2)}}\left(\tau ; p_{1}^{(2)}, f_{2}\right)
$$

are defined by formulas (4) and (1), while the function $E(\tau ; f)$ by formula (5).

Proof. By Theorem 3, the function $\vartheta(\tau ; f)$ belongs to the space of entire modular forms of the type $(-2,60, v(L))$, where $v(L)$ is the corresponding multiplier system. Then, according to Siegel's theorem (see [2]), $E(\tau ; f)$ also belongs to this space. Using Lemma 1, we can check that the function

$$
X(\tau)=\frac{4}{15} \vartheta_{g^{(1)} h^{(1)}}\left(\tau ; p_{1}^{(1)}, f_{1}\right)+\frac{1}{10} \vartheta_{g^{(2)} h^{(2)}}\left(\tau ; p_{1}^{(2)}, f_{2}\right)
$$

satisfies all the conditions of Theorem 1.
Indeed, f_{1} is the binary form of step 60 and f_{2} is the binary form of step $30\left(N_{1}=60, N_{2}=30\right), g^{(1)}=\binom{20}{20}$, and $h^{(1)}=\binom{0}{0}$ are special vectors with respect to the form $f_{1}=3 x_{1}^{2}+15 x_{2}^{2}$, and $g^{(2)}=\binom{15}{0}$ and $h^{(2)}=\binom{0}{15}$ are special vectors with respect to the form $f_{2}=4 x_{1}^{2}+2 x_{1} x_{2}+4 x_{2}^{2} .2 \mid h^{(1)}$, $2 \left\lvert\, \frac{N}{N_{2}} h^{(2)}\right.$, since $N_{1}=N=60, N_{2}=30$; but $60|N, 30| N, 60^{2} \mid f_{1}\left(g^{(1)}\right)$, $30^{2}\left|f_{2}\left(g^{(2)}\right), 240\right| f_{1}\left(h^{(n)}\right), 120 \mid 2 f_{2}\left(h^{(2)}\right)$.

If $\alpha \delta \equiv 1(\bmod 60)$, then either

$$
\alpha \equiv \delta \equiv 1 \quad(\bmod 3) \quad \text { or } \quad \alpha \equiv \delta \equiv-1 \quad(\bmod 3)
$$

Because of Lemma 1,

$$
\vartheta_{\alpha g^{(1)}, h^{(1)}}\left(\tau ; p_{1}^{(1)}, f_{1}\right)=\left\{\begin{array}{l}
\vartheta_{g^{(1)} h^{(1)}}\left(\tau ; p_{1}^{(1)}, f_{1}\right) \quad \text { for } \quad \alpha \equiv \delta \equiv 1(\bmod 3) \\
\vartheta_{-g^{(1)} h^{(1)}}\left(\tau ; p_{1}^{(1)}, f_{1}\right) \quad \text { for } \alpha \equiv \delta \equiv-1(\bmod 3)
\end{array}\right.
$$

Due to (1) we have

$$
\begin{aligned}
& \vartheta_{g^{(1)} h^{(1)}}\left(\tau ; p_{1}, f_{1}\right)=\sum_{x \equiv g^{(1)}(\bmod 60)} x_{2} e^{2 \pi i \tau \frac{3 x_{1}^{2}+15 x_{2}^{2}}{60^{2}}} \\
=- & \sum_{x \equiv-g^{(1)}(\bmod 60)} x_{2} e^{2 \pi i \tau \frac{3 x_{1}^{2}+15 x_{2}^{2}}{60^{2}}}=-\vartheta_{-g^{(1)} h^{(1)}\left(\tau ; p_{1}^{(1)}, f_{1}\right) .}
\end{aligned}
$$

Thus

$$
\vartheta_{\alpha g^{(1)}, h^{(1)}}\left(\tau ; p_{1}^{(1)}, f_{1}\right)=\left\{\begin{array}{l}
\vartheta_{g^{(1)} h^{(1)}}\left(\tau ; p_{1}^{(1)}, f_{1}\right) \text { for } \alpha \equiv \delta \equiv 1(\bmod 3) \tag{7}\\
\vartheta_{-g^{(1)} h^{(1)}}\left(\tau ; p_{1}^{(1)}, f_{1}\right) \text { for } \alpha \equiv \delta \equiv-1(\bmod 3)
\end{array}\right.
$$

We have

$$
\begin{equation*}
\operatorname{sgn} \delta\left(\frac{-\Delta_{1}}{|\delta|}\right)=\operatorname{sgn} \delta\left(\frac{-1}{|\delta|}\right)\left(\frac{5}{|\delta|}\right), \quad\left(\frac{(-1)^{2} \Delta}{|\delta|}\right)=\left(\frac{-1}{|\delta|}\right)\left(\frac{|\delta|}{3}\right)\left(\frac{5}{|\delta|}\right) \tag{8}
\end{equation*}
$$

Furthermore, we have

$$
\left(\frac{|\delta|}{3}\right)=\left\{\begin{array}{l}
\operatorname{sgn} \delta \quad \text { for } \delta \equiv 1(\bmod 3) \\
-\operatorname{sgn} \delta \text { for } \delta \equiv-1(\bmod 3)
\end{array}\right.
$$

We can easily verify that formulas (7) and (8) imply

$$
\begin{equation*}
\vartheta_{\alpha g^{(1)} h^{(1)}}\left(\tau ; p_{1}^{(1)}, f_{1}\right) \operatorname{sgn} \delta\left(\frac{-\Delta_{1}}{|\delta|}\right)=\left(\frac{\Delta}{|\delta|}\right) \vartheta_{g^{(1)} h^{(1)}}\left(\tau ; p_{1}^{(1)}, f_{1}^{(1)}\right) \tag{9}
\end{equation*}
$$

Analogously, we get

$$
\begin{equation*}
\vartheta_{\alpha g^{(2)} h^{(2)}}\left(\tau ; p_{1}^{(2)}, f_{2}\right) \operatorname{sgn} \delta\left(\frac{-\Delta_{2}}{|\delta|}\right)=\left(\frac{\Delta}{|\delta|}\right) \vartheta_{\alpha g^{(2)} h^{(2)}}\left(\tau ; p_{1}^{(2)}, f_{2}\right) \tag{10}
\end{equation*}
$$

Consequently, according to (9) and (10), the function

$$
\begin{equation*}
X(\tau)=\frac{4}{15} \vartheta_{g^{(1)} h^{(1)}}\left(\tau ; p_{1}^{(1)}, f_{1}\right)+\frac{1}{10} \vartheta_{g^{(2)} h^{(2)}}\left(\tau ; p_{1}^{(2)}, f_{2}\right) \tag{11}
\end{equation*}
$$

satisfies the conditions of Theorem 1 and, due to Theorem 2, belongs to the space of cusp forms of the type $(-2,60, v(L))$.

Thus, owing to Lemma 2, the function

$$
\Psi(\tau)=\vartheta(\tau ; f)-E(\tau ; f)-X(\tau)
$$

where $X(\tau)$ is defined by (11), will be identically zero if all coefficients for $Q^{n}(n \leq 24)$ are zero in its expansion in powers of $Q=e^{2 \pi i \tau}$.

Next, let $n=2^{\alpha} 3^{\beta_{1}} 5^{\beta_{2}} u,(u, 30)=1$. Then by Theorem 4 ,

$$
\begin{equation*}
E(\tau ; f)=1+\sum_{n=1}^{\infty} \rho(n ; f) Q^{n} \quad\left(Q=e^{2 \pi i \tau}\right) \tag{12}
\end{equation*}
$$

where

$$
\begin{align*}
\rho(n ; f) & =\frac{1}{12}\left(2^{\alpha+1}+(-1)^{\beta_{1}}\left(\frac{-1}{u}\right)\right)\left(3^{\beta_{1}+1}-(-1)^{\alpha+\beta_{2}}\left(\frac{u}{3}\right)\right) \times \\
& \times\left(5^{\beta_{2}+1}+(-1)^{\alpha+\beta_{1}+\beta_{2}}\left(\frac{u}{5}\right)\right) \sum_{d_{1} d_{2}=u}\left(\frac{15}{d_{1}}\right) d_{2} \tag{13}
\end{align*}
$$

Having calculated the values $\rho(n ; f)$ for all $n \leq 24$ by formula (13), we obtain because of (12):

$$
\begin{align*}
E(\tau ; f) & =1+3 Q+\frac{20}{3} Q^{2}+\frac{8}{3} Q^{3}+9 Q^{4}+24 Q^{5}+15 Q^{6}+ \\
& +\frac{16}{3} Q^{7}+\frac{68}{3} Q^{8}+39 Q^{9}+\frac{65}{3} Q^{10}+24 Q^{11}+\frac{56}{3} Q^{12}+24 Q^{13}+ \\
& +48 Q^{14}+\frac{65}{3} Q^{15}+33 Q^{16}+72 Q^{17}+\frac{140}{3} Q^{18}+18 Q^{19}+ \\
& +72 Q^{20}+96 Q^{21}+24 Q^{22}+\frac{88}{3} Q^{23}+75 Q^{24}+\ldots \tag{14}
\end{align*}
$$

Formulas (4) and (1) yield

$$
\begin{align*}
& \vartheta(\tau ; f)=1+6 Q+12 Q^{2}+8 Q^{3}+6 Q^{4}+24 Q^{5}+24 Q^{6}+ \\
&+12 Q^{8}+30 Q^{9}+24 Q^{10}+24 Q^{11}+8 Q^{12}+24 Q^{13}+ \\
&+480 Q^{14}+2 Q^{15}+18 Q^{16}+72 Q^{17}+52 Q^{18}+36 Q^{19}+ \\
&+72 Q^{20}+96 Q^{21}+24 Q^{22}+24 Q^{23}+84 Q^{24}+\ldots \tag{15}\\
& \frac{4}{15} \vartheta_{g^{(1)} h^{(1)}}\left(\tau ; p_{1}^{(1)}, f_{1}\right)=\frac{16}{3}\left(Q^{2}+Q^{3}-Q^{7}-2 Q^{8}+Q^{10}-\right. \\
&\left.-2 Q^{12}-2 Q^{15}+Q^{18}-Q^{23}+4 Q^{27}+\ldots\right), \tag{16}\\
& \frac{1}{10} \vartheta_{g^{(2)} h^{(2)}}\left(\tau ; p_{1}^{(2)}, f_{2}\right)=\frac{3}{2}\left(2 Q-2 Q^{4}-6 Q^{6}-6 Q^{9}-\right. \\
&\left.-2 Q^{10}-6 Q^{15}-10 Q^{16}+12 Q^{19}+6 Q^{24}+\ldots\right) . \tag{17}
\end{align*}
$$

Taking into account (14)-(17), we can easily verify that all coefficients for $Q^{n}(n \leq 24)$ in the expansion of the function $\psi(\tau)$ in powers of Q are zero. Thus identity (6) is proved.

Theorem 6. Let $f=x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+15 x_{4}^{2}, n=2^{\alpha} 3^{\beta_{1}} 5^{\beta_{2}} u,(u, 30)=1$. Then

$$
\begin{aligned}
r(n ; f)= & \frac{1}{6}\left(3^{\beta_{1}+1}-(-1)^{\beta_{2}}\left(\frac{u}{3}\right)\right) \times \\
& \times\left(5^{\beta_{2}+1}+(-1)^{\beta_{1}+\beta_{2}}\left(\frac{u}{5}\right)\right) \sum_{d_{1} d_{2}=u}\left(\frac{15}{d_{1}}\right) d_{2}+
\end{aligned}
$$

$$
\begin{aligned}
& +\frac{3}{2} \sum_{\substack{n=x_{1}^{2}+x_{1} x_{2}+4 x_{2}^{2} \\
2 \nmid x_{1}}}(-1)^{\frac{x_{1}-1}{2}}\left(x_{1}+2 x_{2}\right) \text { for } n \equiv 1(\bmod 4) \\
= & \frac{1}{12}\left(2^{\alpha+1}+(-1)^{\beta_{1}}\left(\frac{-1}{u}\right)\right)\left(3^{\beta_{1}+1}-(-1)^{\alpha+\beta_{2}}\left(\frac{u}{3}\right)\right) \times \\
& \times\left(5^{\beta_{2}+1}+(-1)^{\alpha+\beta_{1}+\beta_{2}}\left(\frac{u}{5}\right)\right) \sum_{d_{1} d_{2}=u}\left(\frac{15}{d_{1}}\right) d_{2}+ \\
& +\frac{3}{2} \sum_{n=x_{1}^{2}+x_{1} x_{2}+4 x_{2}^{2}}^{2 \nmid x_{1}} \sum(-1)^{\frac{x_{1}-1}{2}}\left(x_{1}+2 x_{2}\right)+ \\
& +\frac{16}{3} \sum_{\substack{3 n=x_{1}^{2}+5 x_{2}^{2} \\
x_{1} \equiv x_{2} \equiv 1(\bmod 3)}} x_{2} \text { otherwise. }
\end{aligned}
$$

Proof. Equating coefficients of the same powers Q in both parts of identity (6), we get

$$
\begin{equation*}
r(n ; f)=\rho(n ; f)+\frac{16}{3} \nu_{1}(n)+\frac{3}{2} \nu_{2}(n) \tag{18}
\end{equation*}
$$

where $\nu_{1}(n), \nu_{2}(n)$ denote respectively the coefficients for Q in the expansions of the functions

$$
\frac{1}{20} \vartheta_{g^{(1)} h^{(1)}}\left(\tau ; p_{1}^{(1)}, f_{1}\right), \quad \frac{1}{15} \vartheta_{g^{(2)} h^{(2)}}\left(\tau ; p_{1}^{(2)}, f_{2}\right)
$$

in powers of Q.
From (1) we have

$$
\frac{1}{20} \vartheta_{g^{(1)} h^{(1)}}\left(\tau ; p_{1}^{(1)}, f_{1}\right)=\sum_{x_{1}, x_{2}=-\infty}\left(3 x_{2}+1\right) e^{\frac{2 \pi i \tau\left(\left(3 x_{1}+1\right)^{2}+5\left(3 x_{2}+1\right)^{2}\right)}{3}}
$$

i.e.,

$$
\begin{equation*}
\nu_{1}(n)=\sum_{\substack{3 n=x_{1}^{2}+5 x_{2}^{2} \\ x_{1} \equiv x_{2} \equiv 1(\bmod 3)}} x_{2} \tag{19}
\end{equation*}
$$

It follows from (4) that

$$
\begin{gathered}
\frac{1}{15} \vartheta_{g^{(2)} h^{(2)}}\left(\tau ; p_{1}^{(2)}, f_{2}\right)= \\
=\sum_{x_{1}, x_{2}=-\infty}(-1)^{x_{1}}\left(2 x_{1}+1+2 x_{2}\right) e^{\frac{2 \pi i \tau\left[\left(2 x_{1}+1\right)^{2}+\left(2 x_{1}+1\right) x_{2}+4 x_{2}^{2}\right]}{1}}
\end{gathered}
$$

i.e.,

$$
\begin{equation*}
\nu_{2}(n)=\sum_{\substack{n=x_{1}^{2}+x_{1} x_{2}+4 x_{2}^{2} \\ 2 \nmid x_{1}}}(-1)^{\frac{x_{1}-1}{2}}\left(x_{1}+2 x_{2}\right) \tag{20}
\end{equation*}
$$

From formulas (18), (13), (19), (20) we obtain the desired exspression for $r(n ; f)$.

Theorem 7. Let $f=2 x_{1}^{2}+2 x_{1} x_{2}+5 x_{2}^{2}+2 x_{3}^{2}+2 x_{3} x_{4}+5 x_{4}^{2}, f_{1}=$ $3 x_{1}^{2}+9 x_{2}^{2}, g=\binom{18}{6}, h=\binom{0}{0}, p_{1}=x_{2}$. Then

$$
\vartheta(\tau ; f)=E(\tau ; f)-\frac{1}{9} \vartheta_{g h}\left(\tau ; p_{1}, f_{1}\right)
$$

where the functions $\vartheta(\tau ; f), E(\tau ; f)$ and $\vartheta_{g h}\left(\tau ; p_{1}, f_{1}\right)$ are defined respectively by the formulas (4), (5) and (1).

Proof. Let $n=2^{\alpha} 3^{\beta} u,(u, 6)=1$. Then by Theorem 4, $E(\tau ; f)=1+$ $\sum_{n=1}^{\infty} \rho(n ; f) Q^{n}\left(Q=e^{2 \pi i \tau}\right)$, where

$$
\begin{align*}
\rho(n ; f) & =12\left(3^{\beta-1}-1\right) \sum_{\mu \mid u} \mu \text { for } \alpha>0, \beta>0 \\
& =4\left(3^{\beta-1}-1\right) \sum_{\mu \mid u} \mu \text { for } \alpha=0, \beta>0 \\
& =4 \sum_{\mu \mid u} \mu \text { for } \alpha>0, \beta>0 \\
& =\frac{4}{3} \sum_{\mu \mid u} \mu \text { for } \quad(n, 6)=1 \tag{21}
\end{align*}
$$

Formulas (5) and (21) imply

$$
\begin{align*}
E(\tau ; f)= & 1+\frac{4}{3} Q+\ldots, \quad \vartheta(\tau ; f)=1+4 Q^{2}+\ldots, \\
& -\frac{1}{9} \vartheta_{9 h}\left(\tau ; p_{1}, f_{1}\right)=-\frac{4}{3} Q+\ldots \tag{22}
\end{align*}
$$

By Theorem 3, the function $\vartheta(r ; f)$ belongs to the space of entire modular forms of the type $(-2,36,1)$. Then by Siegel's theorem (see [2]), $E(\tau ; f)$ also belongs to this space. Using Lemma 1, we can easily verify that the function $\vartheta_{g h}\left(\tau ; p_{1}, f_{1}\right)$ satisfies all the conditions of Theorem 1. Therefore by Theorem 2, it belongs to the space of cusp forms of the type $(-2,36,1)$. It is well known that this space is one-dimensional (see [12]). Therefore from (22) we obtain the above assertion.

From Theorem 7 immediately follows

Theorem 8. Let $n=2^{\alpha} 3^{\beta} u,(u, 6)=1, f=2 x_{1}^{2}+2 x_{1} x_{2}+5 x_{2}^{2}+2 x_{3}^{2}+$ $2 x_{3} x_{4}+5 x_{4}^{2}$. Then

$$
\begin{aligned}
r(n ; f) & =12\left(3^{\beta-1}-1\right) \sum_{\mu \mid u} \mu \text { for } \alpha>0, \beta>0, \\
& =4\left(3^{\beta-1}-1\right) \sum_{\mu \mid u} \mu \text { for } \alpha=0, \beta>0, \\
& =4 \sum_{\mu \mid u} \mu \text { for } \alpha>0, \beta=0, \\
& =\frac{4}{3} \sum_{\mu \mid u} \mu-\frac{2}{3} \sum_{\substack{4 n=3 x_{1}^{2}+x_{2}^{2} \\
x_{1} \equiv 1(\bmod 2) \\
x_{2} \equiv 1(\bmod 6)}} x_{2} \text { for } \quad(n, 6)=1 .
\end{aligned}
$$

Remark to Theorem 8. Let

$$
\nu(n)=\frac{1}{2} \sum_{\substack{4 n=3 x_{1}^{2}+x_{2}^{2} \\ x_{1} \equiv 1(\bmod 2) \\ x_{2} \equiv 1(\bmod 6)}} x_{2} .
$$

It can be easily shown that

$$
\nu(n)=\frac{1}{2} \sum_{\substack{4 n=3 x_{1}^{2}+x_{2}^{2} \\ x_{1} \equiv 1(\bmod 2) \\ x_{2} \equiv 1(\bmod 6)}}\left(x_{1}+x_{2}\right) .
$$

Further, arguing as in [12] (p. 233), we can easily show that
(1) $\nu\left(n_{1} n_{2}\right)=\nu\left(n_{1}\right) \nu\left(n_{2}\right)$ if $\left(n_{1}, n_{2}\right)=1$;
(2) $\nu\left(p^{\beta}\right)=\sum_{0 \leq k<\frac{\beta}{2}} p^{k} \operatorname{Tr}\left(\pi^{\beta-2 k}(p)\right)+\delta\left(\frac{\beta}{2}\right) p^{\frac{\beta}{2}}$,
where $\pi(p)$ is the Frobenius endomorphism of a curve $y^{2}=x^{3}+1$ reduced in modulo $p, \delta(r)$ is equal to one or to zero according to whether the number r is an integer or not. In particular, if $n=p$ is a prime number, then

$$
\nu(p)=-\sum_{x=0}^{p-1}\left(\frac{x^{3}+1}{p}\right)
$$

where $\left(\frac{x^{3}+1}{p}\right)$ is the Legendre symbol.
$\S 3$. In this section we obtain formulas for a number of representations of numbers by quadratic forms with seven variables

$$
\begin{equation*}
f=2 \sum_{j=1}^{s} x_{j}^{2}+\sum_{j=s+1}^{7} x_{j}^{2} \quad(1 \leq s \leq 6) \tag{23}
\end{equation*}
$$

The cases $s=0$ and $s=1$ are considered earlier (see, e.g., [13], Vol. II, pp. 305, 309, 335 and Vol. III, p. 237). In these cases the corresponding forms belong to one-class genera. The case $s=3$ was considered in [6].

Theorem 9. Let f be of the kind (23), $f_{1}=2 x_{1}^{2}+2 x_{2}^{2}+x_{3}^{2}, f_{2}=x_{1}^{2}+$ $x_{2}^{2}+2 x_{3}^{2}, g^{(1)}=\left(\begin{array}{l}4 \\ 4 \\ 0\end{array}\right), h^{(1)}=\left(\begin{array}{l}2 \\ 2 \\ 4\end{array}\right), p_{2}=x_{1} x_{2}, g^{(2)}=\left(\begin{array}{l}4 \\ 4 \\ 4\end{array}\right), h^{(2)}=\left(\begin{array}{l}4 \\ 4 \\ 0\end{array}\right)$. Then the following equality holds,

$$
\begin{equation*}
\vartheta(\tau ; f)=E(\tau ; f)+X(\tau ; f) \tag{24}
\end{equation*}
$$

where

$$
\begin{align*}
X(\tau ; f) & =\frac{1}{32} \vartheta_{g^{(1)} h^{(1)}}\left(\tau ; p_{2}, f_{1}\right) \text { for } s=2,4 \\
& =\frac{1}{32(s-1)} \vartheta_{g^{(2)} h^{(2)}}\left(\tau ; p_{2}, f_{2}\right) \text { for } s=3,5 \\
& =0 \text { otherwise } . \tag{25}
\end{align*}
$$

Proof. By Theorem 3, the functions $\vartheta(\tau ; f)$ belong to two different spaces of modular forms $\left(-\frac{7}{2}, 8, v(L)\right)$, where $v(L)$ is a system of multipliers corresponding to the form f. This system is the same for all s with the same evenness. Then, according to Siegel's theorem (see [1]), the functions $E(\tau ; f)$ also belong to appropriate spaces of modular forms. It can be easily verified that functions (25) satisfy all the conditions of Theorem 1 and, by Theorem 2 , they belong to two different spaces of cusp forms depending on s.

Let $n=2^{\alpha} u(2 \nmid u, \alpha \geq 0), 2^{s} n=r_{s}^{2} \omega_{s}, u=r^{2} \omega(s=1,2, \ldots, 6)$ and let ω and ω_{s} be square-free numbers. Then by Theorem 4 we have

$$
\begin{equation*}
E(\tau ; f)=1+\sum_{n=1}^{\infty} \rho(n ; f) Q^{n} \quad\left(Q=e^{2 \pi i \tau}\right) \tag{26}
\end{equation*}
$$

where

$$
\rho(n ; f)=2^{\frac{5 \alpha}{2}+9-\frac{s}{2}} \pi^{-3} \omega^{\frac{5}{2}} \mathcal{L}\left(3 ;-\omega_{s}\right) \chi_{2} \sum_{\mu \mid r} \mu^{5} \prod_{p \mid \mu}\left(1-\left(\frac{-\omega_{s}}{p}\right) p^{-3}\right)
$$

By Lemma 27 from [14] we have

$$
\begin{align*}
& \mathcal{L}(3 ;-1)=\frac{\pi^{3}}{32}, \quad \mathcal{L}(3 ;-2)=\frac{3 \pi^{3}}{64 \sqrt{2}} ; \tag{27}\\
& \mathcal{L}(3 ;-\omega)= \frac{\pi^{3}}{16 \omega^{\frac{5}{2}}}\left\{\sum_{1 \leq h \leq \frac{\omega}{4}}\left(\omega^{2}-16 h^{2}\right)\left(\frac{h}{\omega}\right)+3 \omega^{2} \sum_{\frac{\omega}{4}<h<\frac{\omega}{2}}\left(\frac{h}{\omega}\right)+\right. \\
&\left.+16 \sum_{\frac{\omega}{4}<h \leq \frac{\omega}{2}} h(h-\omega)\left(\frac{h}{\omega}\right)\right\}, \text { if } \omega \equiv 1(\bmod 4), \omega>1, \\
&= \frac{\pi^{3}}{2 \omega^{\frac{5}{2}}} \sum_{1 \leq h \leq \frac{\omega}{2}} h(\omega-2 h)\left(\frac{h}{\omega}\right), \text { if } \omega \equiv 3(\bmod 4), \\
&= \frac{\pi^{3}}{32 \omega^{\frac{5}{2}}}\left\{\sum_{1 \leq h \leq \frac{\omega}{16}}\left(3 \omega^{2}-256 h^{2}\right)\left(\frac{h}{\frac{1}{2} \omega}\right)+\right. \\
&+4 \omega \sum_{\frac{\omega}{16}<h<\frac{3 \omega}{16}}(\omega-8 h)\left(\frac{h}{\frac{1}{2} \omega}\right)+13 \omega^{2} \sum_{\frac{3 \omega}{16}<h \leq \frac{\omega}{4}}\left(\frac{h}{\frac{1}{2} \omega}\right)- \\
&\left.-128 \sum_{\frac{3 \omega}{16}<h \leq \frac{\omega}{4}} h(\omega-2 h)\left(\frac{h}{\frac{1}{2} \omega}\right)\right\}, \quad \text { if } \omega \equiv 2(\bmod 8), \omega>2, \\
&= \frac{\pi^{3}}{32 \omega^{\frac{5}{2}}}\left\{32 \omega \sum_{1 \leq h \leq \frac{\omega}{16}} h\left(\frac{h}{\frac{1}{2} \omega}\right)-\omega^{2} \sum_{\frac{\omega}{16}<h<\frac{3 \omega}{16}}\left(\frac{h}{\frac{1}{2} \omega}\right)+\right. \\
&\left.+64 \sum_{\frac{\omega}{16}<h \leq \frac{3 \omega}{16}} h(\omega-4 h)\left(\frac{h}{\frac{1}{2} \omega}\right)+8 \omega \sum(\omega-4 h)\left(\frac{3 \omega}{\frac{1}{2} \omega}\right)\right\}, \\
& \text { if } \omega \equiv 6(\bmod 8) . \tag{28}
\end{align*}
$$

Using formulas (33) of [9], after calculation of values χ_{2}, we obtain

$$
\begin{aligned}
\chi_{2}= & \text { for } 2 \nmid s, \alpha=0, \text { or for } 2 \mid s, \alpha=0, u \equiv 1(\bmod 4), \\
& \text { or } 2 \mid s, \alpha=1, \\
= & 1+(-1)^{\frac{u^{2}-1}{6}} 2^{\frac{s}{2}-5}, \text { for } 2 \mid s, \alpha=0, u \equiv 3(\bmod 4), \\
= & 1+\frac{2^{\frac{s}{2}-3}\left(1-2^{-\frac{5 \alpha}{2}} \cdot 63\right)}{31} \text { for } 2|s, 2| \alpha, u \equiv 1(\bmod 4), \\
= & 1+\frac{2^{\frac{s}{2}-3}\left(1-2^{-\frac{5 \alpha}{2}}+(-1)^{\frac{u^{2}-1}{8}} 2^{-\frac{5 \alpha}{2}-2} \cdot 31\right)}{31} \text { for } 2 \mid s, \\
& 2 \mid \alpha, u \equiv 3(\bmod 4) \\
= & 1+\frac{2^{\frac{s}{2}-3}\left(1-2^{-\frac{5 \alpha}{2}+\frac{5}{2}} \cdot 63\right)}{31} \text { for } 2 \mid s, 2 \nmid \alpha, \alpha>1,
\end{aligned}
$$

$$
\begin{align*}
& =1+\frac{2^{\frac{s}{2}-\frac{1}{2}}\left(1-2^{-\frac{5 \alpha}{2}} \cdot 63\right)}{31} \text { for } 2 \nmid s, 2 \mid \alpha, \alpha>0 \\
& =1+\frac{2^{\frac{s}{2}-\frac{1}{2}}\left(1-2^{-\frac{5 \alpha}{2}-\frac{5}{2}} \cdot 63\right)}{31} \text { for } 2 \nmid s, 2 \nmid \alpha, u \equiv 1(\bmod 4) \text {, } \\
& =1+\frac{2^{\frac{s}{2}-\frac{1}{2}}\left(1-2^{-\frac{5 \alpha}{2}-\frac{5}{2}}+(-1)^{\frac{u^{2}-1}{8}} 2^{-\frac{5 \alpha}{2}-\frac{9}{2}} \cdot 31\right)}{31} \\
& \quad \text { for } 2 \nmid s, 2 \nmid \alpha, u \equiv 3(\bmod 4) \tag{29}
\end{align*}
$$

By (1) we have

$$
\begin{align*}
\vartheta_{g^{(1)} h^{(1)}}\left(\tau ; p_{2}, f_{1}\right) & =16 \sum_{x_{1}, x_{2}, x_{3}=-\infty}^{\infty}(-1)^{x_{1}+x_{2}+x_{3}}\left(2 x_{1}+1\right)\left(2 x_{2}+1\right) \times \\
& \times e^{\frac{2 \pi i \tau\left[\left(2 x_{1}+1\right)^{2}+\left(2 x_{2}+1\right)^{2}+2 x_{3}^{2}\right]}{2}} \tag{30}\\
\vartheta_{g^{(2)} h^{(2)}}\left(\tau ; p_{2}, f_{2}\right) & =16 \sum_{x_{1}, x_{2}, x_{3}=-\infty}^{\infty}(-1)^{x_{1}+x_{2}}\left(2 x_{1}+1\right)\left(2 x_{2}+1\right) \times \\
& \times e^{\frac{2 \pi i \tau\left[\left(2 x_{1}+1\right)^{2}+\left(2 x_{2}+1\right)^{2}+2\left(2 x_{3}+1\right)^{2}\right]}{4}} \tag{31}
\end{align*}
$$

Taking then into account (26)-(31) and arguing as in the proof Theorem 5 , we obtain the above assertion.

From Theorem 9 we have

Theorem 10. Let $n=2^{\alpha} u(2 \nmid u, \alpha \geq 0), 2^{s} n=r_{1}^{2} \omega_{s}, u=r^{2} \omega$, and let ω and ω_{s} be square-free numbers, $s=1,2, \ldots, 6$,

$$
f=2 \sum_{j=1}^{s} x_{j}^{2}+\sum_{j=s+1}^{7} x_{j}^{2}
$$

Then

$$
\begin{aligned}
r(n ; f) & =2^{\frac{5 \alpha}{2}-\frac{s}{2}+9} \omega^{\frac{5}{2}} \pi^{-3} \mathcal{L}\left(3 ;-\omega_{s}\right) \chi_{2} \times \\
& \times \sum_{\mu \mid r} \mu^{5} \prod_{p \mid \mu}\left(1-\left(\frac{-\omega_{s}}{p}\right) p^{-3}\right)+\nu(n ; f)
\end{aligned}
$$

where

$$
\begin{aligned}
\nu(n ; f) & =0 \text { for } s=1,6, \\
& =\frac{1}{2} \sum_{\substack{2 n=x_{1}^{2}+x_{2}^{2}+2 x_{3}^{2} \\
2 \nmid x_{1}, 2 \nmid x_{2}}}(-1)^{\frac{x_{1} x_{2}-1}{2}+x_{3}} x_{1} x_{2} \quad \text { for } s=2,4, \\
& =\frac{1}{2 s-2} \sum_{\substack{4 n=x_{1}^{2}+x_{2}^{2}+2 x_{3}^{2} \\
2 \nmid x_{1}, 2 \nmid x_{2}, 2 \nmid x_{3}}}(-1)^{\frac{x_{1} x_{2}-1}{2}} x_{1} x_{2} \quad \text { for } s=3,5 .
\end{aligned}
$$

The values $\mathcal{L}\left(3 ;-\omega_{3}\right)$ and χ_{2} can be calculated by formulas (27)-(29).

References

1. A. B. Malyshev, Formulas for a number of representations of numbers by positive quadratic forms. (Russian) Actual problems of analytic number theory (Russian) 119-137, Minsk, 1974.
2. K. G. Ramanathan, On the analytic theory of quadratic forms. Acta Arithmetica 21(1972), 423-436.
3. T. V. Vepkhvadze, To one Siegel's formula. (Russian) Acta Arithmetica 40(1982), 125-142.
4. T. V. Vepkhvadze, To the analytic theory of quadratic forms. (Russian) Trudy Tbilis. Mat. Inst. Razmadze 72(1983), 12-31.
5. G. A. Lomadze, On a number of representations of numbers by quadratic forms with four variables. (Russian) Trudy Tbilis. Mat. Inst. Razmadze 40(1971), 106-139.
6. H. Peterson, Modulfunktionen und quadratische Formen, SpringerVerlag, Berlin, 1982.
7. G. A. Lomadze, On cusp forms of a prime step and of basic type II. (Russian) Trudy Tbilis. Mat. Inst. Razmadze 57(1977), 63-81.
8. T. V. Vepkhvadze, Generalized theta-functions with characteristics and representation of numbers by quadratic forms. (Russian) Acta Arithmetica 53(1990), 433-451.
9. C. Shimura, On modular forms of half-integral weight. Ann. of Math. 97(1973), 440-481.
10. R. I. Beridze, On summation of a singular Hardy-Littlewood series. (Russian) Soobshch. Acad. Nauk Gruz. SSR 38(1965), No. 3, 529-534.
11. A. V. Malyshev, On the representation of integers by positive quadratic forms. (Russian) Trudy Mat. Inst. Steklov. 65(1962), 1-211.
12. A. N. Andrianov, Representation of numbers by some quadratic forms in connection with the theory of elliptic curves. (Russian) Izv. Acad. Nauk SSSR, Ser. Mat. 29(1965), No. 1, 227-238.
13. L. E. Dickson, History of the theory of numbers, Vols. II and III. New York, 1934.
14. H. Steefkerk, Over het aantal oplossingen der diophantische vergelijking $U=\sum_{i=1}^{s} A x_{i}^{2}+B x_{i}+C_{i}$. Dissertation, Amsterdam, 1943.
(Received 22.01.1995)
Author's address:
Faculty of Physics
I. Javakhishvili Tbilisi State University

1, I. Chavchavadze Ave., Tbilisi 380028
Georgia

[^0]: 1991 Mathematics Subject Classification. 11E20.
 Key words and phrases. Quadratic form, number of representations, modular form, generalized theta-function.

