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MODULAR PROPERTIES OF THETA-FUNCTIONS AND
REPRESENTATION OF NUMBERS BY POSITIVE

QUADRATIC FORMS

T. VEPKHVADZE

Abstract. By means of the theory of modular forms the formulas
for a number of representations of positive integers by two positive
quaternary quadratic forms of steps 36 and 60 and by all positive
diagonal quadratic forms with seven variables of step 8 are obtain.

Let r(n; f) denote a number of representations of a positive integer n by
a positive definite quadratic form f with a number of variables s. It is well
known that, for the case s > 4, r(n; f) can be represented as

r(n; f) = ρ(n; f) + ν(n; f),

where ρ(n; f) is a “singular series” and ν(n; f) is a Fourier coefficient of
cusp form. This can be expressed in terms of the theory of modular forms
by stating that

ϑ(τ ; f) = E(τ ; f) + X(τ),

where E(τ ; f) is the Eisenstein series and X(τ) is a cusp form.
In his work [1] Malyshev formulated the following problem: to define the

Eisenstein series and to develop a full theory of singular series for arbitrary
s ≥ 2. For s ≥ 3, its solution follows from Ramanathan’s results [2].

In the present paper we work out a full solution of this problem. More-
over, convenient formulas are obtained for calculating values of the function
ρ(n; f).

Thus, if the genus of the quadratic form f contains one class, then ac-
cording to Siegel’s theorem ([2], [3], [4]), ϑ(τ ; f) = E(τ ; f) and in that case
the problem for obtaining “exact” formulas for r(n; f) is solved completely.
If the genus contains more than one class, then it is necessary to find a cusp
form X(τ).
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A large number of papers is devoted to finding such formulas. Cusp
forms in these works are constructed in the form of linear combinations of
products of simple theta-functions with characteristics or their derivatives
(see, e.g., [5]), products of Jacobi theta-functions or their derivatives (see,
e.g., [6]), and theta-functions with spherical polynomials (see, e.g., [7]). All
these functions are certain particular cases of linear combinations of the
so-called generalized theta-functions with characteristics defined below by
the formula (1). In the present paper, using modular properties of these
functions, we have obtained by the unique method the exact formulas for
a number of representations of numbers by positive quadratic forms both
with an even (forms of such a kind were considered earlier) and an odd
number of variables. Moreover, it is shown that using [8], one can reduce
cumbersome calculations for obtaining formulas for a number of represen-
tations of numbers by the quadratic forms considered earlier and to obtain
new formulas.

§ 1. Let f = 1
2x′Ax be a positive definite qadratic form, let A be an

integral matrix with even diagonal elements, and the vector column x ∈ Zs,
s ∈ N , s ≥ 2. We call u ∈ Zs a special vector with respect to the form
f if Au ≡ 0 (mod N), where N is a step of the form f . Moreover, let
Pν = Pν(x) be a spherical function of the νth order (ν is a positive integer)
corresponding to the form f (see [9], p. 454). Then the generalized theta-
function with characteristics we define as follows:

ϑgh(τ ; pν , f)
∑

x≡g (mod N)

(−1)
h′A(x−g)

N2 pν(x)e
πiτx′Ax

N2 ; (1)

here and below, g and h are the special vectors with respect to the form f .
In the sequel, use will be made of the following lemmas (see Lemmas 1

and 4 in [8]).

Lemma 1. Let k be an arbitrary integral vector and l be a special vector
with respect to the form f . Then the following equalities hold:

ϑg+Nk,h(τ ; pν , f) = (−1)
h′Ak

N ϑgh(τ ; pν , f),

ϑg,h+2l(τ ; pν , f) = ϑgh(τ ; pν , f).

Lemma 2. Let F (τ) be an entire modular form of the type (−r,N, v(L))
and let there exist an integer l for which (v(L))l = 1. Then the function
F (τ) is identically equal to zero if in its expansion in powers of Q = e2πiτ

the coefficients cn equal 0 for n ≤ (r/12)N
∏

p|N (1 + p−1).

In the main theorem below we formulate modular properties of linear
combinations of functions (1).
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Theorem 1. Let f1 = f1(x) = 1
2x′A1x, . . . , fj = fj(x) = 1

2x′Ajx be
positive definite quadratic forms with a number of variables s, let P (k)

ν =
P (k)

ν (x) be the coresponding spherical functions of order ν, ∆k be the deter-
minant of the matrix Ak, Nk the step of the form fk (k = 1, . . . , j), ∆ the
determinant of the matrix A of some positive definite quadratic form 1

2x′Ax
with a number of variables s + 2ν and the step N .

Next, let g(k) and h(k) be special vectors with respect to fk; moreover,
given 2 - N

Nk
, let hk be the vector with even components (k = 1, . . . , j);

L =
(

α β
γ δ

)

∈ Γ0(N);

v(L) =
(

i
1
2 η(γ)(sgn δ−1))s+2ν(

i
(

|δ|−1
2

)2
)s+2ν

(2(sgn δ)β∆
|δ|

)

for 2 - s,

= (sgn δ)
s
2+ν

( (−1)
s
2+ν∆
|δ|

)

for 2 | s; (2)

η(γ) = 1 for γ ≥ 0,

= −1 for γ < 0;

( (−1)
s
2+ν∆
|∆|

)

is the Kronecker symbol,
(2(sgn δ)β∆

|δ|

)

is the Jacobi symbol.

Then the function

X(τ) =
j

∑

k=1

Bkϑg(k)h(k)(τ ; P (k)
ν , fk) (3)

for arbitrary complex numbers Bk is an entire modular form of the type
(−( s

2 + ν), N, v(L)) if and only if the conditions

Nk|N, N2
k |fk(g(k)), 4Nk

∣

∣

∣

N
Nk

fk(h(k))

are fulfilled, and for all α and δ such that αδ ≡ 1 (mod N) we have

j
∑

k=1

Bkϑαg(k),h(k)(τ ; p(k)
ν , fk)(sgn δ)ν

( (−1)[
1
2 ]∆k

|δ|

)

=

=
( (−1)[

s+2ν
2 ]∆

|δ|

)
j

∑

k=1

Bkϑg(k)h(k)(τ ; p(k)
ν , fk).

This theorem has been proved in [8] for even hk. It can easily be adjusted
to the case 2| N

Nk
hk. From this theorem we obtain the following two theorems

which are analogues of Theorems 4 and 2 from [8].
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Theorem 2. If all the conditions of Theorem 1 are fulfilled and either
ν > 0, or ν = 0 and all the g(k) vectors are nonzero, then the function (3)
is a cusp form of the type (−( 1

2 + ν), N, v(L)).

Theorem 3. Let f be an integral positive quadratic form with a number
of variables s and let ∆ be a determinant of the form f . Then the function
ϑ(τ ; f) defined by the formula

ϑ(τ ; f) = 1 +
∞
∑

n=1

r(n; f)e2πiτf (Im τ > 0) (4)

is the entire modular form of the type (− s
2 , N, ν(L)), where ν(L) are defined

by the formulas (2) for ν = 0.

From the results of [2], [3], [4] and [10] we obtain

Theorem 4. Let f be a positive quadratic form with a number of vari-
ables s and let ∆ be its determinant. Then the function E(τ, z; f), deter-
mined for Re z ≥ 2− s

2 and Im τ > 0 by the formula

E(τ, z; f) = 1 +
e

πis
4

2
s
2 ∆

s
2

∞
∑

q=1

∞
∑

H=−∞
(H,q)=1

S(fh, q)
q

s
2 (qτ −H)

s
2 |qτ −H|z

,

where S(fh, q) is the Gaussian sum, can be continued analytically into the
neighborhood of the point z = 0. Further, having defined the Eisenstein
series E(τ ; f) by the formulas

E(τ ; f) =
1
2
E(τ, z; f)

∣

∣

z=0 for s = 2

= E(τ, z; f)
∣

∣

z=0 for s > 2,

we have

E(τ ; f) = 1 +
1
2

∞
∑

n=1

ρ(n; f)e2πiτn for s = 2,

= 1 +
∞
∑

n=1

ρ(n; f)e2πiτn for s > 2; (5)

here ρ(n; f) is a singular series which is calculated as follows:
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(1) If 2 | s, v =
∏

p|n
p-2∆

pw, ∆ = r2ω (ω is a square-free number), then

ρ(n; f) =
π

s
2

Γ( s
2 )∆1/2 n

s
2−1χ2

∏

p|∆
p>2

χp

∏

p|r
p>2

(

1−
( (−1)

s
2 ω

p

)

p−
s
2

)−1
×

× L−1
(s

2
; (−1)

1
2 ω

)
∑

k|v

( (−1)
s
2 ∆

k

)

k1− s
2 .

(2) If 2 - s, ∆n = 2α+γv1v2 = r2ω, 2α‖n, 2γ‖∆, pl‖∆, pw‖n (p > 2),
v1 =

∏

p|n
p-2∆

pw = r2
1ω1, v2 =

∏

p|∆n
p|∆, p>2

pw+l = r2
2ω2 (ω, ω1, ω2 are square-

free numbers), then

ρ(n; f) =
(s− 1)! r2−s

1 n
s
2−1

Γ( s
2 )2s−2π

s
2−1|Bs−1|∆

1
2
χ2

∏

p|∆
p>2

χp ×

×
∏

p|2∆

(1− p1−s)−1L
(s− 1

2
; (−1)

s−1
2 ω

)
∏

p|r2
p>2

(

1−
( (−1)

s−1
2 ω

p

)

p
1−s
2

)

×

×
∑

k|r1

ks−2
∏

p|k

(

1−
( (−1)

s−1
2 ω

p

)

p
1−s
2

)

.

The values of χ2 and χp are given in [11] (formulas (9)–(13), p. 66);

L(k; (−1)kω) =
∞
∑

l=1
2-l

( (−1)kω
l

) 1
lk

=
∏

p
p>2

(

1−
( (−1)kω

p

)

p−k
)−1

;

Bs−1 are Bernoulli’s numbers.

§ 2. In this section we will obtain exact formulas for a number of repre-
sentations of numbers by quaternary quadratic forms:

x2
1 + x2

2 + x2
3 + 15x2

4 and 2x2
1 + 2x1x2 + 5x2

2 + 2x2
3 + 2x3x4 + 5x2

3.

The first form has been considered by Lomadze in [5] who, for the con-
struction of cusp form X(τ), used products of simple theta-functions with
characteristics and of their derivatives (some particular cases of the function
(1)) and therefore he had to use modular forms of step 240 instead of 60.
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Theorem 5. Let

f = x2
1 + x2

2 + x2
3 + 15x2

4, f1 = 3x2
1 + 15x2

2,

f2 = 4x2
1 + 2x1x2 + 4x2

2, g(1) =
(

20
20

)

, h(1) =
(

0
0

)

,

g(2) =
(

15
0

)

, h(2) =
(

0
15

)

, p(1)
1 = x2, p(2)

1 = x1 + x2.

Then the equality

ϑ(τ ; f) = E(τ ; f) +
4
15

ϑg(1)h(1)(τ ; p(1), f1) +
1
10

ϑg(2)h(2)(τ ; p(2)
1 , f2) (6)

holds, where the functions

ϑ(τ ; f), ϑg(1)h(1)(τ ; p(1)
1 , f1), ϑg(2)h(2)(τ ; p(2)

1 , f2)

are defined by formulas (4) and (1), while the function E(τ ; f) by formula
(5).

Proof. By Theorem 3, the function ϑ(τ ; f) belongs to the space of entire
modular forms of the type (−2, 60, v(L)), where v(L) is the corresponding
multiplier system. Then, according to Siegel’s theorem (see [2]), E(τ ; f)
also belongs to this space. Using Lemma 1, we can check that the function

X(τ) =
4
15

ϑg(1)h(1)(τ ; p(1)
1 , f1) +

1
10

ϑg(2)h(2)(τ ; p(2)
1 , f2)

satisfies all the conditions of Theorem 1.
Indeed, f1 is the binary form of step 60 and f2 is the binary form of step

30 (N1 = 60, N2 = 30), g(1) =
(

20
20

)

, and h(1) =
(

0
0

)

are special vectors

with respect to the form f1 = 3x2
1+15x2

2, and g(2) =
(

15
0

)

and h(2) =
(

0
15

)

are special vectors with respect to the form f2 = 4x2
1 +2x1x2 +4x2

2. 2 | h(1),
2 | N

N2
h(2), since N1 = N = 60, N2 = 30; but 60 | N , 30 | N , 602 | f1(g(1)),

302 | f2(g(2)), 240 | f1(h(n)), 120 | 2f2(h(2)).
If αδ ≡ 1 (mod 60), then either

α ≡ δ ≡ 1 (mod 3) or α ≡ δ ≡ −1 (mod 3).

Because of Lemma 1,

ϑαg(1),h(1)(τ ; p(1)
1 , f1) =

{

ϑg(1)h(1)(τ ; p(1)
1 , f1) for α ≡ δ ≡ 1 (mod 3),

ϑ−g(1)h(1)(τ ; p(1)
1 , f1) for α ≡ δ ≡ −1 (mod 3).
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Due to (1) we have

ϑg(1)h(1)(τ ; p1, f1) =
∑

x≡g(1) (mod 60)

x2e
2πiτ

3x2
1+15x2

2
602

= −
∑

x≡−g(1) (mod 60)

x2e
2πiτ

3x2
1+15x2

2
602 = −ϑ−g(1)h(1)(τ ; p(1)

1 , f1).

Thus

ϑαg(1),h(1)(τ ; p(1)
1 , f1)=

{

ϑg(1)h(1)(τ ; p(1)
1 , f1) for α≡δ≡1 (mod 3),

ϑ−g(1)h(1)(τ ; p(1)
1 , f1) for α≡δ≡−1 (mod 3).

(7)

We have

sgn δ
(−∆1

|δ|

)

= sgn δ
(−1
|δ|

)( 5
|δ|

)

,
( (−1)2∆

|δ|

)

=
(−1
|δ|

)( |δ|
3

)( 5
|δ|

)

. (8)

Furthermore, we have

( |δ|
3

)

=

{

sgn δ for δ ≡ 1 (mod 3),
− sgn δ for δ ≡ −1 (mod 3).

We can easily verify that formulas (7) and (8) imply

ϑαg(1)h(1)(τ ; p(1)
1 , f1) sgn δ

(−∆1

|δ|

)

=
( ∆
|δ|

)

ϑg(1)h(1)(τ ; p(1)
1 , f (1)

1 ). (9)

Analogously, we get

ϑαg(2)h(2)(τ ; p(2)
1 , f2) sgn δ

(−∆2

|δ|

)

=
( ∆
|δ|

)

ϑαg(2)h(2)(τ ; p(2)
1 , f2). (10)

Consequently, according to (9) and (10), the function

X(τ) =
4
15

ϑg(1)h(1)(τ ; p(1)
1 , f1) +

1
10

ϑg(2)h(2)(τ ; p(2)
1 , f2) (11)

satisfies the conditions of Theorem 1 and, due to Theorem 2, belongs to the
space of cusp forms of the type (−2, 60, v(L)).

Thus, owing to Lemma 2, the function

Ψ(τ) = ϑ(τ ; f)− E(τ ; f)−X(τ),

where X(τ) is defined by (11), will be identically zero if all coefficients for
Qn(n ≤ 24) are zero in its expansion in powers of Q = e2πiτ .

Next, let n = 2α3β15β2u, (u, 30) = 1. Then by Theorem 4,

E(τ ; f) = 1 +
∞
∑

n=1

ρ(n; f)Qn (

Q = e2πiτ)

, (12)
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where

ρ(n; f) =
1
12

(

2α+1 + (−1)β1

(−1
u

))(

3β1+1 − (−1)α+β2

(u
3

))

×

×
(

5β2+1 + (−1)α+β1+β2

(u
5

))
∑

d1d2=u

(15
d1

)

d2. (13)

Having calculated the values ρ(n; f) for all n ≤ 24 by formula (13), we
obtain because of (12):

E(τ ; f) = 1 + 3Q +
20
3

Q2 +
8
3
Q3 + 9Q4 + 24Q5 + 15Q6 +

+
16
3

Q7 +
68
3

Q8 + 39Q9 +
65
3

Q10 + 24Q11 +
56
3

Q12 + 24Q13 +

+ 48Q14 +
65
3

Q15 + 33Q16 + 72Q17 +
140
3

Q18 + 18Q19 +

+ 72Q20 + 96Q21 + 24Q22 +
88
3

Q23 + 75Q24 + . . . . (14)

Formulas (4) and (1) yield

ϑ(τ ; f) = 1 + 6Q + 12Q2 + 8Q3 + 6Q4 + 24Q5 + 24Q6 +

+ 12Q8 + 30Q9 + 24Q10 + 24Q11 + 8Q12 + 24Q13 +

+ 480Q14 + 2Q15 + 18Q16 + 72Q17 + 52Q18 + 36Q19 +

+ 72Q20 + 96Q21 + 24Q22 + 24Q23 + 84Q24 + . . . . (15)
4
15

ϑg(1)h(1)(τ ; p(1)
1 , f1) =

16
3

(Q2 + Q3 −Q7 − 2Q8 + Q10 −

− 2Q12 − 2Q15 + Q18 −Q23 + 4Q27 + . . . ), (16)
1
10

ϑg(2)h(2)(τ ; p(2)
1 , f2) =

3
2
(2Q− 2Q4 − 6Q6 − 6Q9 −

− 2Q10 − 6Q15 − 10Q16 + 12Q19 + 6Q24 + . . . ). (17)

Taking into account (14)–(17), we can easily verify that all coefficients
for Qn(n ≤ 24) in the expansion of the function ψ(τ) in powers of Q are
zero. Thus identity (6) is proved.

Theorem 6. Let f = x2
1 + x2

2 + x2
3 + 15x2

4, n = 2α3β15β2u, (u, 30) = 1.
Then

r(n; f) =
1
6

(

3β1+1 − (−1)β2

(u
3

))

×

×
(

5β2+1 + (−1)β1+β2

(u
5

))
∑

d1d2=u

(15
d1

)

d2 +
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+
3
2

∑

n=x2
1+x1x2+4x2

2
2-x1

(−1)
x1−1

2 (x1 + 2x2) for n ≡ 1 (mod 4),

=
1
12

(

2α+1 + (−1)β1

(−1
u

))(

3β1+1 − (−1)α+β2

(u
3

))

×

×
(

5β2+1 + (−1)α+β1+β2

(u
5

))
∑

d1d2=u

(15
d1

)

d2 +

+
3
2

∑

n=x2
1+x1x2+4x2

2
2-x1

(−1)
x1−1

2 (x1 + 2x2) +

+
16
3

∑

3n=x2
1+5x2

2
x1≡x2≡1 (mod 3)

x2 otherwise.

Proof. Equating coefficients of the same powers Q in both parts of identity
(6), we get

r(n; f) = ρ(n; f) +
16
3

ν1(n) +
3
2
ν2(n), (18)

where ν1(n), ν2(n) denote respectively the coefficients for Q in the expan-
sions of the functions

1
20

ϑg(1)h(1)(τ ; p(1)
1 , f1),

1
15

ϑg(2)h(2)(τ ; p(2)
1 , f2)

in powers of Q.
From (1) we have

1
20

ϑg(1)h(1)(τ ; p(1)
1 , f1) =

∑

x1,x2=−∞
(3x2 + 1)e

2πiτ((3x1+1)2+5(3x2+1)2)
3 ,

i.e.,

ν1(n) =
∑

3n=x2
1+5x2

2
x1≡x2≡1 (mod 3)

x2. (19)

It follows from (4) that

1
15

ϑg(2)h(2)(τ ; p(2)
1 , f2) =

=
∑

x1,x2=−∞
(−1)x1(2x1 + 1 + 2x2)e

2πiτ[(2x1+1)2+(2x1+1)x2+4x2
2]

1 ,
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i.e.,

ν2(n) =
∑

n=x2
1+x1x2+4x2

2
2-x1

(−1)
x1−1

2 (x1 + 2x2). (20)

From formulas (18), (13), (19), (20) we obtain the desired exspression for
r(n; f).

Theorem 7. Let f = 2x2
1 + 2x1x2 + 5x2

2 + 2x2
3 + 2x3x4 + 5x2

4, f1 =

3x2
1 + 9x2

2, g =
(

18
6

)

, h =
(

0
0

)

, p1 = x2. Then

ϑ(τ ; f) = E(τ ; f)− 1
9
ϑgh(τ ; p1, f1),

where the functions ϑ(τ ; f), E(τ ; f) and ϑgh(τ ; p1, f1) are defined respec-
tively by the formulas (4), (5) and (1).

Proof. Let n = 2α3βu, (u, 6) = 1. Then by Theorem 4, E(τ ; f) = 1 +
∑∞

n=1 ρ(n; f)Qn
(

Q = e2πiτ
)

, where

ρ(n; f) = 12(3β−1 − 1)
∑

µ|u

µ for α > 0, β > 0,

= 4(3β−1 − 1)
∑

µ|u

µ for α = 0, β > 0,

= 4
∑

µ|u

µ for α > 0, β > 0,

=
4
3

∑

µ|u

µ for (n, 6) = 1. (21)

Formulas (5) and (21) imply

E(τ ; f) = 1 +
4
3
Q + . . . , ϑ(τ ; f) = 1 + 4Q2 + . . . ,

−1
9
ϑ9h(τ ; p1, f1) = −4

3
Q + . . . .

(22)

By Theorem 3, the function ϑ(r; f) belongs to the space of entire modular
forms of the type (−2, 36, 1). Then by Siegel’s theorem (see [2]), E(τ ; f)
also belongs to this space. Using Lemma 1, we can easily verify that the
function ϑgh(τ ; p1, f1) satisfies all the conditions of Theorem 1. Therefore
by Theorem 2, it belongs to the space of cusp forms of the type (−2, 36, 1).
It is well known that this space is one-dimensional (see [12]). Therefore
from (22) we obtain the above assertion.

From Theorem 7 immediately follows
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Theorem 8. Let n = 2α3βu, (u, 6) = 1, f = 2x2
1 + 2x1x2 + 5x2

2 + 2x2
3 +

2x3x4 + 5x2
4. Then

r(n; f) = 12(3β−1 − 1)
∑

µ|u

µ for α > 0, β > 0,

= 4(3β−1 − 1)
∑

µ|u

µ for α = 0, β > 0,

= 4
∑

µ|u

µ for α > 0, β = 0,

=
4
3

∑

µ|u

µ− 2
3

∑

4n=3x2
1+x2

2
x1≡1 (mod 2)
x2≡1 (mod 6)

x2 for (n, 6) = 1.

Remark to Theorem 8. Let

ν(n) =
1
2

∑

4n=3x2
1+x2

2
x1≡1 (mod 2)
x2≡1 (mod 6)

x2.

It can be easily shown that

ν(n) =
1
2

∑

4n=3x2
1+x2

2
x1≡1 (mod 2)
x2≡1 (mod 6)

(x1 + x2).

Further, arguing as in [12] (p. 233), we can easily show that
(1) ν(n1n2) = ν(n1)ν(n2) if (n1, n2) = 1;

(2) ν(pβ) =
∑

0≤k< β
2

pkTr(πβ−2k(p)) + δ
(

β
2

)

p
β
2 ,

where π(p) is the Frobenius endomorphism of a curve y2 = x3+1 reduced in
modulo p, δ(r) is equal to one or to zero according to whether the number
r is an integer or not. In particular, if n = p is a prime number, then

ν(p) = −
p−1
∑

x=0

(x3 + 1
p

)

,

where
(x3+1

p

)

is the Legendre symbol.
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§ 3. In this section we obtain formulas for a number of representations of
numbers by quadratic forms with seven variables

f = 2
s

∑

j=1

x2
j +

7
∑

j=s+1

x2
j (1 ≤ s ≤ 6). (23)

The cases s = 0 and s = 1 are considered earlier (see, e.g., [13], Vol. II,
pp. 305, 309, 335 and Vol. III, p. 237). In these cases the corresponding
forms belong to one-class genera. The case s = 3 was considered in [6].

Theorem 9. Let f be of the kind (23), f1 = 2x2
1 + 2x2

2 + x2
3, f2 = x2

1 +

x2
2 + 2x2

3, g(1) =





4
4
0



, h(1) =





2
2
4



, p2 = x1x2, g(2) =





4
4
4



, h(2) =





4
4
0



.

Then the following equality holds,

ϑ(τ ; f) = E(τ ; f) + X(τ ; f), (24)

where

X(τ ; f) =
1
32

ϑg(1)h(1)(τ ; p2, f1) for s = 2, 4,

=
1

32(s− 1)
ϑg(2)h(2)(τ ; p2, f2) for s = 3, 5,

= 0 otherwise. (25)

Proof. By Theorem 3, the functions ϑ(τ ; f) belong to two different spaces
of modular forms (− 7

2 , 8, v(L)), where v(L) is a system of multipliers corre-
sponding to the form f . This system is the same for all s with the same even-
ness. Then, according to Siegel’s theorem (see [1]), the functions E(τ ; f)
also belong to appropriate spaces of modular forms. It can be easily verified
that functions (25) satisfy all the conditions of Theorem 1 and, by Theorem
2, they belong to two different spaces of cusp forms depending on s.

Let n = 2αu (2 - u, α ≥ 0), 2sn = r2
sωs, u = r2ω (s = 1, 2, . . . , 6) and let

ω and ωs be square-free numbers. Then by Theorem 4 we have

E(τ ; f) = 1 +
∞
∑

n=1

ρ(n; f)Qn (Q = e2πiτ ), (26)

where

ρ(n; f) = 2
5α
2 +9− s

2 π−3ω
5
2L(3;−ωs)χ2

∑

µ|r

µ5
∏

p|µ

(

1−
(−ωs

p

)

p−3
)

.
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By Lemma 27 from [14] we have

L(3;−1) =
π3

32
, L(3;−2) =

3π3

64
√

2
; (27)

L(3;−ω) =
π3

16ω
5
2

{
∑

1≤h≤ω
4

(ω2 − 16h2)
(h

ω

)

+ 3ω2
∑

ω
4 <h< ω

2

(h
ω

)

+

+ 16
∑

ω
4 <h≤ω

2

h(h− ω)
(h

ω

)}

, if ω ≡ 1 (mod 4), ω > 1,

=
π3

2ω
5
2

∑

1≤h≤ω
2

h(ω − 2h)
(h

ω

)

, if ω ≡ 3 (mod 4),

=
π3

32ω
5
2

{
∑

1≤h≤ ω
16

(3ω2 − 256h2)
( h

1
2ω

)

+

+ 4ω
∑

ω
16 <h< 3ω

16

(ω − 8h)
( h

1
2ω

)

+ 13ω2
∑

3ω
16 <h≤ω

4

( h
1
2ω

)

−

− 128
∑

3ω
16 <h≤ω

4

h(ω − 2h)
( h

1
2ω

)}

, if ω ≡ 2 (mod 8), ω > 2,

=
π3

32ω
5
2

{

32ω
∑

1≤h≤ ω
16

h
( h

1
2ω

)

− ω2
∑

ω
16 <h< 3ω

16

( h
1
2ω

)

+

+ 64
∑

ω
16 <h≤ 3ω

16

h(ω − 4h)
( h

1
2ω

)

+ 8ω
∑

3ω
16 <h≤ω

4

(ω − 4h)
( h

1
2ω

)}

,

if ω ≡ 6 (mod 8). (28)

Using formulas (33) of [9], after calculation of values χ2, we obtain

χ2 = 1 for 2 - s, α = 0, or for 2|s, α = 0, u ≡ 1 (mod 4),

or 2|s, α = 1,

= 1 + (−1)
u2−1

6 2
s
2−5, for 2|s, α = 0, u ≡ 3 (mod 4),

= 1 +
2

s
2−3(1− 2−

5α
2 · 63)

31
for 2|s, 2|α, u ≡ 1 (mod 4),

= 1 +
2

s
2−3(1− 2−

5α
2 + (−1)

u2−1
8 2−

5α
2 −2 · 31)

31
for 2|s,

2|α, u ≡ 3 (mod 4)

= 1 +
2

s
2−3(1− 2−

5α
2 + 5

2 · 63)
31

for 2|s, 2 - α, α > 1,
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= 1 +
2

s
2−

1
2 (1− 2−

5α
2 · 63)

31
for 2 - s, 2|α, α > 0,

= 1 +
2

s
2−

1
2 (1− 2−

5α
2 −

5
2 · 63)

31
for 2 - s, 2 - α, u ≡ 1 (mod 4),

= 1 +
2

s
2−

1
2 (1− 2−

5α
2 −

5
2 + (−1)

u2−1
8 2−

5α
2 −

9
2 · 31)

31
for 2 - s, 2 - α, u ≡ 3 (mod 4). (29)

By (1) we have

ϑg(1)h(1)(τ ; p2, f1) = 16
∞
∑

x1,x2,x3=−∞
(−1)x1+x2+x3(2x1 + 1)(2x2 + 1)×

× e
2πiτ[(2x1+1)2+(2x2+1)2+2x2

3]

2 , (30)

ϑg(2)h(2)(τ ; p2, f2) = 16
∞
∑

x1,x2,x3=−∞
(−1)x1+x2(2x1 + 1)(2x2 + 1)×

× e
2πiτ[(2x1+1)2+(2x2+1)2+2(2x3+1)2]

4 . (31)

Taking then into account (26)–(31) and arguing as in the proof Theorem
5, we obtain the above assertion.

From Theorem 9 we have

Theorem 10. Let n = 2αu (2 - u, α ≥ 0), 2sn = r2
1ωs, u = r2ω, and let

ω and ωs be square-free numbers, s = 1, 2, . . . , 6,

f = 2
s

∑

j=1

x2
j +

7
∑

j=s+1

x2
j .

Then

r(n; f) = 2
5α
2 −

s
2+9ω

5
2 π−3L(3;−ωs)χ2 ×

×
∑

µ|r

µ5
∏

p|µ

(

1−
(−ωs

p

)

p−3
)

+ ν(n; f),
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where

ν(n; f) = 0 for s = 1, 6,

=
1
2

∑

2n=x2
1+x2

2+2x2
3

2-x1, 2-x2

(−1)
x1x2−1

2 +x3x1x2 for s = 2, 4,

=
1

2s− 2

∑

4n=x2
1+x2

2+2x2
3

2-x1, 2-x2, 2-x3

(−1)
x1x2−1

2 x1x2 for s = 3, 5.

The values L(3;−ω3) and χ2 can be calculated by formulas (27)–(29).
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