ON THE GLOBAL SOLVABILITY OF THE CAUCHY PROBLEM FOR SINGULAR FUNCTIONAL DIFFERENTIAL EQUATIONS

I. KIGURADZE AND Z. SOKHADZE

ABSTRACT. Sufficient conditions are found for the global solvability of the weighted Cauchy problem

$$\frac{dx(t)}{dt} = f(x)(t), \quad \lim_{t \to a} \frac{\|x(t) - c_0\|}{h(t)} = 0,$$

where $f : C([a, b]; \mathbb{R}^n) \to L_{loc}(]a, b]; \mathbb{R}^n)$ is a singular Volterra operator, $c_0 \in \mathbb{R}^n$, $h: [a,b] \to [0,+\infty[$ is a function continuous and positive on]a, b], and $\|\cdot\|$ is the norm in \mathbb{R}^n .

Throughout the paper the following notation will be used:

R is the set of real numbers, $R_+ = [0, +\infty[; \text{ if } u \in R, \text{ then } [u]_+ =$ $\frac{1}{2}(|u|+u);$

 \mathbb{R}^n is the space of *n*-dimensional column vectors $x = (x_i)_{i=1}^n$ with elements $x_i \in R$ (i = 1, ..., n) and the norm $||x|| = \sum_{i=1}^n |x_i|;$

$$\begin{split} R_{\rho}^{n} &= \{ x \in R^{n} : \, \|x\| \leq \rho \}; \\ \text{if } x &= (x_{i})_{i=1}^{n}, \, \text{then } \, \text{sgn}(x) = (\text{sgn} \, x_{i})_{i=1}^{n}; \end{split}$$

 $x \cdot y$ is the scalar product of the vectors x and $y \in \mathbb{R}^n$;

 $C([a,b]; \mathbb{R}^n)$ is the space of continuous vector functions $x: [a,b] \to \mathbb{R}^n$ with the norm $||x||_C = \max\{||x(t)|| : a \le t \le b\};$

$$C_{\rho}([a,b]; \mathbb{R}^{n}) = \left\{ x \in C([a,b]; \mathbb{R}^{n}) : \|x\|_{C} \leq \rho \right\};$$

$$C([a,b]; \mathbb{R}_{+}) = \left\{ x \in C([a,b]; \mathbb{R}) : x(t) \geq 0 \text{ for } a \leq t \leq b \right\};$$

if $x \in C([a, b]; \mathbb{R}^n)$ and $a \leq s \leq t \leq b$, then

$$\nu(x)(s,t) = \max\{\|x(\xi)\| : s \le \xi \le t\};\$$

1072-947X/97/0700-0355\$12.50/0 © 1997 Plenum Publishing Corporation

¹⁹⁹¹ Mathematics Subject Classification. 34K05.

Key words and phrases. Volterra operator, functional differential equation, weighted Cauchy problem, global solvability.

³⁵⁵

 $L_{loc}(]a,b]; \mathbb{R}^n)$ is the space of vector functions $x:]a,b] \to \mathbb{R}^n$ which are summable on each segment of]a,b] with the topology of convergence in the mean on each segment from]a,b];

$$L_{loc}([a,b];R_{+}) = \{x \in L_{loc}([a,b];R) : x(t) \ge 0 \text{ for almost all } t \in [a,b] \}$$

Definition 1. An operator $f : C([a, b]; \mathbb{R}^n) \to L_{loc}(]a, b]; \mathbb{R}^n)$ is called a *Volterra* one if the equality f(x)(t) = f(y)(t) holds almost everywhere on $]a, t_0]$ for any $t_0 \in]a, b]$ and any vector-functions x and $y \in C([a, b]; \mathbb{R}^n)$ satisfying the condition x(t) = y(t) when $a < t \leq t_0$.

Definition 2. An operator $f : C([a, b]; \mathbb{R}^n) \to L_{loc}(]a, b]; \mathbb{R}^n)$ will be said to satisfy the *local Carathéodory conditions* if it is continuous and there exists a function $\gamma :]a, b] \times \mathbb{R}_+ \to \mathbb{R}_+$ nondecreasing with respect to the second argument such that $\gamma(\cdot, \rho) \in L_{loc}(]a, b]; \mathbb{R})$ for $\rho \in \mathbb{R}_+$, and the inequality

$$||f(x)(t)|| \le \gamma(t, ||x||_C)$$

is fulfilled for any $x \in C([a, b]; \mathbb{R}^n)$ almost everywhere on [a, b].

If

$$\int_{a}^{b} \gamma(t,\rho) dt < +\infty \quad \text{for} \quad \rho \in R_{+},$$

then the operator f is called *regular*, and, otherwise, *singular*.

Here we will consider the vector functional differential equation

$$\frac{dx(t)}{dt} = f(x)(t) \tag{1}$$

with the weighted initial condition

$$\lim_{t \to a} \frac{\|x(t) - c_0\|}{h(t)} = 0.$$
 (2)

It is assumed everywhere that $f: C([a, b]; \mathbb{R}^n) \to L_{loc}(]a, b]; \mathbb{R}^n)$ is a Volterra, generally speaking, singular operator satisfying the local Carathéodory conditions, $c_0 \in \mathbb{R}^n$, and $h: [a, b] \to [0, +\infty[$ is a continuous function nondecreasing and positive on]a, b].

We will separately consider the case where h(a) > 0 so that condition (2) takes the form

$$x(a) = c_0. \tag{21}$$

The vector differential equation with delay

$$\frac{dx(t)}{dt} = f_0(t, x(t), x(\tau_1(t)), \dots, x(\tau_m(t)))$$
(3)

is the important particular case of the functional differential equation (1).

Below, whenever equation (3) is discussed, it will be assumed that the vector function $f_0:]a, b[\times R^{(m+1)n} \to R^n$ satisfies the local Carathéodory conditions, i.e., $f_0(t, \cdot, \ldots, \cdot): R^{(m+1)n} \to R^n$ is continuous for almost all $t \in]a, b[, f_0(\cdot, x_0, x_1, \ldots, x_m):]a, b[\to R^n$ is measurable for all $x_k \in R^n$ $(k = 0, 1, \ldots, m)$, and on the set $]a, b[\times R^{(m+1)n}$ there holds the inequality

$$\left\| f_0(t, x_0, x_1, \dots, x_m) \right\| \le \gamma \left(t, \sum_{k=0}^m \|x_k\| \right),$$

where $\gamma : [a, b] \times R_+ \to R_+$ does not decrease with respect to the second argument and $\gamma(\cdot, \rho) \in L_{loc}(]a, b]; R_+)$ for $\rho \in R_+$. As for $\tau_i : [a, b] \to [a, b]$ (i = 1, ..., m), they are measurable and

$$\tau_i(t) \leq t \quad \text{for} \quad a \leq t \leq b \quad (i = 1, \dots, m).$$

Definition 3. If $b_0 \in [a, b]$, then:

(i) For any $x \in C([a, b_0]; \mathbb{R}^n)$, by f(x) is understood the vector function given by the equality $f(x)(t) = f(\overline{x})(t)$ for $a \leq t \leq b_0$, where

$$\overline{x}(t) = \begin{cases} x(t) & \text{for } a \le t \le b_0 \\ x(b_0) & \text{for } b_0 < t \le b_0 \end{cases};$$

(ii) a continuous vector function $x : [a, b_0] \to \mathbb{R}^n$ is called a solution of equation (1) on the segment $[a, b_0]$ if x is absolutely continuous on each segment contained in $]a, b_0]$ and satisfies equation (1) almost everywhere on $]a, b_0[;$

(iii) a vector function $x : [a, b_0] \to \mathbb{R}^n$ is called a solution of equation (1) on the semi-open segment $[a, b_0]$ if for each $b_1 \in]a, b_0[$ the restriction of xon $[a, b_1]$ is a solution of this equation on the segment $[a, b_1];$

(iv) a solution x of equation (1) satisfying the initial condition (2) is called a solution of problem (1), (2).

Definition 4. Problem (1), (2) is said to be globally solvable if it has at least one solution on the segment [a, b].

Definition 5. A solution x of equation (1) defined on the segment $[a, b_0] \subset [a, b[$ (on the semi-open segment $[a, b_0] \subset [a, b[$) is called *continuable* if for some $b_1 \in]b_0, b]$ ($b_1 \in [b_0, b]$) equation (1) has, on the segment $[a, b_1]$, a solution y satisfying the condition x(t) = y(t) for $a \leq t \leq b_0$. Otherwise, the solution x is called *noncontinuable*.

Definition 6. An operator $\varphi : C([a, b]; R_+) \to L_{loc}(]a, b]; R)$ is called nondecreasing if the inequality $\varphi(u)(t) \leq \varphi(v)(t)$ is fulfilled almost everywhere on]a, b[for any u and $v \in C([a, b]; R_+)$ satisfying the condition $u(t) \leq v(t)$ when $a \leq t \leq b$. **Theorem 1.** Let there exist a positive number ρ , summable functions p and $q : [a,b] \to R_+$, and a continuous nondecreasing Volterra operator $\varphi : C([a,b];R_+) \to L_{loc}(]a,b];R_+)$ such that

$$\limsup_{t \to a} \left(\frac{1}{h(t)} \int_{a}^{t} p(s) ds\right) < 1, \quad \lim_{t \to a} \left(\frac{1}{h(t)} \int_{a}^{t} q(s) ds\right) = 0 \tag{4}$$

and the inequalities

$$f(c_0 + hy)(t) \cdot \operatorname{sgn}(y(t)) \le \varphi(\|y\|)(t), \tag{5}$$

$$\varphi(u)(t) \le p(t)\nu(u)(a,t) + q(t) \tag{6}$$

are fulfilled for any $y \in C([a,b]; \mathbb{R}^n)$ and $u \in C_{\rho}([a,b]; \mathbb{R}_+)$ almost everywhere on [a,b]. Let furthermore the problem

$$\frac{dv(t)}{dt} = \varphi\left(\frac{v}{h}\right)(t); \quad \lim_{t \to a} \frac{v(t)}{h(t)} = 0 \tag{7}$$

have an upper solution on the segment [a,b]. Then problem (1), (2) is globally solvable and each of its noncontinuable solutions is defined on [a,b].

Proof. By virtue of Theorem 3.2 from [1] conditions (4)–(6) imply the existence of a noncontinuable solution of problem (1), (2). Let x be an arbitrary noncontinuable solution of problem (1), (2) defined on the segment I_0 . Our aim is to prove that $I_0 = [a, b]$.

By (4) there exist $b_0 \in]a, b]$ and $\alpha \in]0, 1[$ such that

$$\int_{a}^{t} p(s)ds \le \alpha h(t), \quad h_0(t) \le \rho h(t) \quad \text{for } a \le t \le b_0,$$
(8)

where $h_0(a) = 0$, and

$$h_0(t) = \frac{h(t)}{1 - \alpha} \sup\left\{\frac{1}{h(s)} \int_a^s q(\xi) d\xi : a < s \le t\right\} \text{ for } a < t \le b_0.$$
(9)

By Lemma 2.3 and Corollary 3.1 from [1], conditions (4)–(6) and (8) imply that $I_0 \supset [a, b_0]$ and

$$||x(t) - c_0|| \le h_0(t) \quad \text{for} \quad a \le t \le b_0.$$
(10)

Let v^* be an upper solution of problem (7). Then by conditions (4), (6), (8) and Lemma 2.3 from [1]

$$v^*(t) \le h_0(t)$$
 for $a \le t \le b_0$. (11)

By (9) the function

$$\varepsilon(t) = \begin{cases} \frac{h_0(t)}{h(t)} + \frac{t-a}{b_0 - t} & \text{for } a < t < b_0 \\ 0 & \text{for } t = a \end{cases}$$
(12)

is continuous on $[a, b_0[$.

For any $u \in C([a, b]; R)$ we set

$$\chi(u)(t) = \begin{cases} \varepsilon(t) & \text{for } u(t) > \varepsilon(t), \ a \le t < b_0\\ [u(t)]_+ & \text{for } u(t) \le \varepsilon(t), \ a \le t < b_0\\ [u(t)]_+ & \text{for } b_0 \le t \le b \end{cases}$$
(13)

and

$$\overline{\varphi}(u)(t) = \varphi\left(\chi\left(\frac{u}{h}\right)\right)(t). \tag{14}$$

Obviously, $\chi : C([a, b]; R) \rightarrow C([a, b]; R_+)$ and $\overline{\varphi} : C([a, b]; R) \rightarrow L_{loc}(]a, b]; R_+)$ are continuous nondecreasing Volterra operators and the inequality

$$\overline{\varphi}(hu)(t) \cdot \operatorname{sgn}(u(t)) \le p(t)\nu(u)(a,t) + q(t)$$
(15)

holds for any $u \in C_{\rho}([a,b];R)$ almost everywhere on]a,b[.

By Corollary 1.3 from [2] the problem

$$\frac{dv(t)}{dt} = \overline{\varphi}(v)(t); \quad \lim_{t \to a} \frac{v(t)}{h(t)} = 0 \tag{16}$$

has a noncontinuable upper solution \overline{v} defined on some interval *I*. On the other hand, by conditions (11)–(14),

$$\varphi\Big(\frac{v^*}{h}\Big)(t) \equiv \overline{\varphi}(v^*)(t)$$

and therefore v^* is a solution of problem (16). Thus

$$v^*(t) \le \overline{v}(t) \quad \text{for} \quad t \in I.$$
 (17)

By Lemma 2.3 and Corollary 3.1 from [1], conditions (4), (6), and (8) imply the estimate

$$0 \le \overline{v}(t) \le h_0(t)$$
 for $a \le t \le b_0$

and hence by (12)—(14) we obtain

$$\overline{\varphi}(\overline{v})(t) \equiv \varphi\left(\frac{\overline{v}}{h}\right)(t).$$

Therefore \overline{v} is a solution of problem (7) so that

$$\overline{v}(t) \le v^*(t) \quad \text{for} \quad t \in I.$$
(18)

By (17) and (18) it is obvious that I = [a, b] and $\overline{v}(t) \equiv v^*(t)$. Thus v^* is an upper solution of problem (16).

Due to conditions (5), (10) and (12)–(14) we have

$$\frac{d}{dt}(\|x(t) - c_0\|) \le \overline{\varphi}(\|x - c_0\|)(t)$$
(19)

almost everywhere on I_0 .

By Theorem 1.3 from [2], (19) and (2) imply the estimate

$$||x(t) - c_0|| \le v^*(t) \text{ for } t \in I_0.$$

Hence by Corollary 3.1 from [1], we conclude that $I_0 = [a, b]$.

For our further discussion we need

Definition 7. Let $D \subset C([a, b]; R^k)$ and $M \subset L_{loc}(]a, b]; R^l)$. An operator $g: D \to M$ is called a strictly Volterra operator if there exists a continuous nondecreasing function $\tau : [a, b] \to [a, b]$ such that

$$\tau(t) < t \text{ for } a < t \le b$$

and the equality

$$g(x)(t) = g(y)(t)$$

holds almost everywhere on $[a, t_0]$ for any $t_0 \in]a, b]$ and any vector functions x and $y \in D$ satisfying the condition

$$x(t) = y(t)$$
 for $a \le t \le \tau(t_0)$

Corollary 1. Let, for any $y \in C([a, b]; \mathbb{R}^n)$, the inequality

 $f(c_0 + hy) \cdot \operatorname{sgn}(y(t)) \le p(\|y\|)(t)\varphi_0(\nu(y)(a, t)) + q(\|y\|)(t)$

be fulfilled almost everywhere on]a,b[, where p and $q : C([a,b];R_+) \rightarrow L_{loc}([a,b];R_+)$ are continuous, nondecreasing, strictly Volterra operators satisfying, for some $\rho > 0$, the conditions

$$\limsup_{t \to a} \left(\frac{1}{h(t)} \int_{a}^{t} p(\rho)(s) ds \right) < 1, \quad \lim_{t \to a} \left(\frac{1}{h(t)} \int_{a}^{t} q(\rho)(s) ds \right) = 0,$$

and $\varphi_0: R_+ \to R_+$ is a continuous, nondecreasing function such that

$$\limsup_{s \to 0} \frac{\varphi_0(s)}{s} < 1, \tag{20}$$

$$\varphi_0(s) > 0, \quad \int\limits_s^{+\infty} \frac{d\xi}{\varphi_0(\xi)} = +\infty \quad for \quad s > 0.$$

$$(21)$$

Then the conclusion of Theorem 1 is valid.

Proof. By (20) the number $\rho > 0$ can be assumed to be so small that

$$\frac{\varphi_0(s)}{s} < \rho \quad \text{for} \quad 0 < s \le \rho.$$

We set

$$\varphi(u)(t) = p(u)(t)\varphi_0(\nu(u)(a,t)) + q(u)(t).$$
(22)

Then inequalities (5) and (6), where

$$p(t) \equiv p(\rho)(t), \quad q(t) \equiv q(\rho)(t),$$

are fulfilled almost everywhere on]a, b[for any $y \in C([a, b]; \mathbb{R}^n)$ and $u \in C_{\rho}([a, b]; \mathbb{R}_+)$.

By virtue of Theorem 1, to prove the corollary it is sufficient to show that problem (7) has an upper solution on the segment [a, b].

Choose $b_0 \in [a, b]$ and $\alpha \in [0, 1[$ such that inequalities (8) are fulfilled.

Let h_0 , ε , χ and $\overline{\varphi}$ be the functions and operators given by equalities (9) and (12)–(14). As shown while proving Theorem 1, problem (7) is equivalent to problem (16).

Following Corollary 1.3 from [2], problem (16) has an upper solution v^* defined on some interval I. Since problems (7) and (16) are equivalent it remains for us only to show that I = [a, b].

By virtue of Corollary 3.1 and Lemma 2.3 from [1], $I \supset [a, b_0]$ and inequality (11) is fulfilled.

Now assume that $I \neq [a, b]$. Then, by Corollary 3.1 from [1] and the nonnegativeness of the operator $\overline{\varphi}$, there exists $b_1 \in]b_0, b]$ such that $I = [a, b_1[$ and

$$\lim_{t \to b_1} v^*(t) = +\infty.$$
(23)

By (8) and (11)-(13)

$$\frac{v^*(t)}{h(t)} < \rho \quad \text{for} \quad 0 \le t \le b_0$$

and

$$\nu\left(\chi\left(\frac{v^*}{h}\right)\right)(a,t) \le \rho + \frac{v^*(t)}{h(b_0)} \quad \text{for} \quad b_0 \le t < b_1,$$

due to which (14) and (22) imply

$$\overline{\varphi}(v^*)(t) \le p_0(t)\varphi_0\left(\rho + \frac{v^*(t)}{h(b_0)}\right) \text{ for } b_0 \le t < b_1,$$

where

$$p_0(t) = p\left(\chi\left(\frac{v^*}{h}\right)\right)(t) + \frac{q(\chi(\frac{v^*}{h}))(t)}{\varphi_0(\rho)}.$$

On the other hand, since the operators p and q are the strictly Volterra ones, the function $p_0: [b_0, b_1] \to R_+$ is summable.

From the above discussion it follows that the inequality

$$\frac{dv^*(t)}{dt} / \varphi_0 \left(\rho + \frac{v^*(t)}{h(b_0)} \right) \le p_0(t)$$

is fulfilled almost everywhere on $]b_0, b_1[$.

If we integrate both parts of this inequality from b_0 to b_1 , by (23) we will obtain

$$h(b_0)\int_{s_0}^{+\infty} \frac{ds}{\varphi_0(s)} \le \int_{b_0}^{b_1} p_0(s)ds < +\infty,$$

which contradicts condition (21). The obtained contradiction proves the corollary. $\hfill\square$

The next corollary is proved similarly.

Corollary 2. Let, for any $y \in C([a, b]; \mathbb{R}^n)$, the inequality

$$f(c_0 + hy) \cdot \operatorname{sgn}(y(t)) \le p(\|y\|)(t)\varphi_0(\nu(y)(a,t))$$

be fulfilled almost everywhere on]a, b[, where $p : C([a, b]; R_+) \rightarrow L([a, b]; R_+)$ is a continuous, nondecreasing, strictly Volterra operator satisfying, for some $\rho > 0$, the condition

$$\lim_{t \to a} \left(\frac{1}{h(t)} \int_{a}^{t} p(\rho)(s) ds \right) = 0$$

and $\varphi_0: R_+ \to]0, +\infty[$ is a continuous, nondecreasing function such that

$$\int_{0}^{+\infty} \frac{ds}{\varphi_0(s)} = +\infty.$$
(24)

Then the conclusion of Theorem 1 is valid.

Corollary 3. Let, for any $y \in C([a,b]; \mathbb{R}^n)$, the inequality

$$f(c_0 + y)(t) \cdot \operatorname{sgn}(y(t)) \le \frac{\alpha}{b-a} \left(\frac{b-t}{b-a}\right)^\beta \exp\left[\nu(y)(a,\tau(t))\right]$$
(25)

be fulfilled almost everywhere on]a, b[, where

$$\tau(t) = b - (b - a) \left(1 + \ln \frac{b - a}{b - t} \right)^{-1},$$
(26)

 $\alpha > 0$ and β are constants such that

$$\beta > [\alpha - 1]_{+} - 1.$$
 (27)

Then problem (1), (2) is globally solvable and each of its noncontinuable solutions is defined on the entire [a,b].

Proof. By Theorem 1 it is sufficient to show that the problem

$$\frac{du(t)}{dt} = \frac{\alpha}{b-a} \left(\frac{b-t}{b-a}\right)^{\beta} \exp\left[\nu(u)(a,\tau(t))\right], \ u(a) = 0$$

has an upper solution on the segment [a, b]. But this problem is equivalent to the problem

$$\frac{du(t)}{dt} = \frac{\alpha}{b-a} \left(\frac{b-t}{b-a}\right)^{\beta} \exp\left[u(\tau(t))\right], \ u(a) = 0.$$
(28)

By Theorem 3.2 from [1] problem (28) has a noncontinuable solution. It is not difficult to verify that this solution is unique. We denote it by u. Let I be the definition interval of u. Our aim is to show that I = [a, b].

Consider the function

$$v(t) = \alpha \left(\frac{b-a}{b-t} - 1\right)$$
 for $a \le t < b$.

By virtue of (26) and (27)

$$a \le \tau(t) < t$$
 for $a < t < b$

and

$$\frac{dv(t)}{dt} = \frac{\alpha}{b-a} \left(\frac{b-t}{b-a}\right)^{\alpha-2} \exp\left[v(\tau(t))\right] \ge$$
$$\ge \frac{\alpha}{b-a} \left(\frac{b-t}{b-a}\right)^{\beta} \exp\left[v(\tau(t))\right] \quad \text{for} \quad a \le t < b.$$

Hence, by Corollary 1.8 from [2], we have

$$v(t) \ge u(t)$$
 for $t \in I$.

However, by Corollary 3.1 from [2] this estimate implies that $I \supset [a, b]$ and

$$u(t) \le \alpha \left(\frac{b-a}{b-t} - 1\right) \quad \text{for} \quad a \le t < b.$$
⁽²⁹⁾

On account of (27) there is $\varepsilon \in]0, 1[$ such that $\beta > [\alpha - 1]_+ - \varepsilon$. If, along with this inequality, we use equality (26) and estimate (29), then (28) will yield

$$u(t) \le \frac{\alpha}{b-a} \int_{a}^{t} \left(\frac{b-s}{b-a}\right)^{[\alpha-1]_{+}-\varepsilon} \exp\left[u(\tau(s))\right] ds \quad \text{for} \quad a \le t < b, \quad (30)$$

$$u(t) \leq \frac{\alpha}{b-a} \int_{a}^{t} \left(\frac{b-s}{b-a}\right)^{\alpha-1-\varepsilon} \left(\frac{b-s}{b-a}\right)^{-\alpha} ds =$$
$$= \alpha(b-a)^{\varepsilon} \int_{a}^{t} (b-s)^{-1-\varepsilon} ds < \frac{\alpha}{\varepsilon} \left(\frac{b-a}{b-t}\right)^{\varepsilon} \text{ for } a \leq t < b,$$

and hence

$$u(t) \le \alpha_1 + \frac{1 - \varepsilon}{2} \left(\frac{b - a}{b - t} \right) \text{ for } a \le t < b,$$
(31)

where

$$\alpha_1 = \frac{1}{\varepsilon} \left(\frac{2\alpha}{1-\varepsilon} \right)^{\frac{1}{1-\varepsilon}}.$$

By (26) and (31), from (30) we obtain

$$u(t) \le \frac{\alpha}{b-a} \exp(\alpha_1) \int_a^t \left(\frac{b-s}{b-a}\right)^{[\alpha-1]_+ -\varepsilon} \left(\frac{b-s}{b-a}\right)^{\frac{\varepsilon-1}{2}} ds \le \\ \le \frac{\alpha}{b-a} \exp(\alpha_1) \int_a^t \left(\frac{b-s}{b-a}\right)^{-\frac{1+\varepsilon}{2}} ds \le \alpha_2 \quad \text{for} \quad a \le t < b,$$

where

$$\alpha_2 = \frac{2\alpha}{1-\varepsilon}.$$

Hence by Corollary 3.1 from [1] it follows that I = [a, b]. \Box

Corollaries 1–3 imply the following propositions for equation (3).

Corollary 4. Let there exist $m_0 \in \{1, \ldots, m\}$ and a continuous nondecreasing function $\tau : [a, b] \rightarrow [a, b]$ such that

$$\tau_k(t) \le \tau(t) < t \text{ for } a < t \le b \ (k = m_0, \dots, m).$$
 (32)

Let furthermore on the set $]a, b[\times R^{(m+1)n}$ there hold the inequality

$$f_0(t, c_0 + h(t)y_0, c_0 + h(\tau_1(t))y_1, \dots, c_0 + h(\tau_m(t))y_m) \cdot \operatorname{sgn}(y_0) \le \le p(t, \sum_{k=m_0}^m \|y_k\|) \varphi_0(\sum_{k=0}^{m_0-1} \eta_k \|y_k\|) + q(t, \sum_{k=m_0}^m \|y_k\|),$$

where p and $q: [a,b] \times R_+ \to R_+$ are functions summable with respect to the first argument and continuously nondecreasing with respect to the second argument, and satisfying, for some $\rho > 0$, the conditions

$$\limsup_{t \to a} \left(\frac{1}{h(t)} \int_{a}^{t} p(s,\rho) ds \right) < 1, \quad \lim_{t \to a} \left(\frac{1}{h(t)} \int_{a}^{t} q(s,\rho) ds \right) = 0,$$

 $\varphi_0: R_+ \to R_+$ is a continuous nondecreasing function satisfying conditions (20) and (21), η_k ($k = 0, ..., m_0$) are non-negative constants such that

$$\sum_{k=0}^{m_0}\eta_k=1$$

Then problem (3), (2) is globally solvable and each of its noncontinuable solutions is defined on [a, b].

Corollary 5. Let the function h be nondecreasing and inequalities (32) be fulfilled, where $m_0 \in \{1, \ldots, m\}$ and $\tau : [a, b] \rightarrow [a, b]$ is a continuous nondecreasing function. Let, furthermore, on the set $]a, b[\times R^{(m+1)n}$ there hold the inequality

$$f_0(t, c_0 + h(t)y_0, c_0 + h(\tau_1(t))y_1, \dots, c_0 + h(\tau_m(t))y_m) \cdot \operatorname{sgn}(y_0) \le \\ \le p(t, \sum_{k=m_0}^m \|y_k\|)\varphi_0\Big(\sum_{k=0}^{m_0-1} \|y_k\|\Big),$$

where $p : [a,b] \times R_+ \to R_+$ is a function summable with respect to the first argument and continuously nondecreasing with respect to the second argument, and satisfying, for some $\rho > 0$, the condition

$$\lim_{t \to a} \left(\frac{1}{h(t)} \int_{a}^{t} p(s, \rho) ds \right) = 0,$$

 $\varphi_0: R_+ \to]0, +\infty[$ is a continuous nondecreasing function satisfying condition (21). Then the conclusion of Corollary 4 is valid.

Corollary 6. Let on the set $]a, b[\times R^{(m+1)n} \text{ and the segment }]a, b[$ there hold respectively the inequalities

$$f_0(t, c_0 + y_0, c_0 + y_1, \dots, c_0 + y_m) \cdot \operatorname{sgn}(y_0) \le \le \frac{\alpha}{b-a} \left(\frac{b-t}{b-a}\right)^{\beta} \exp\left(\sum_{k=1}^m \eta_k \|y_k\|\right)$$

and

$$\tau_k(t) \le b - (b-a) \left(1 + \ln \frac{b-a}{b-t}\right)^{-1} \quad (k = 1, \dots, m),$$

where $\alpha > 0$, β and $\eta_k \ge 0$ (k = 1, ..., m) are constants satisfying condition (27) and

$$\sum_{k=1}^{m} \eta_k = 1.$$

Then problem $(3),(2_1)$ is globally solvable and each of its noncontinuable solutions is defined on the entire [a,b].

Example 1. Consider problem (28) where $\alpha > 1$, $\beta = \alpha - 2$, τ is the function given by equality (26). All conditions of Corollary 6 except (27) are fulfilled. Nevertheless it has the noncontinuable solution

$$u(t) = \alpha \Big(\frac{b-a}{b-t} - 1\Big),$$

which is defined not on the segment [a, b] but on [a, b]. This example shows that in Corollaries 3 and 6 the strict inequality (27) cannot be replaced by the nonstrict inequality $\beta \ge [\alpha - 1]_+ - 1$.

Theorem 2. Let there exist $\delta : [a, b] \to]0, \infty[$ and $c : [a, b] \to R^n$ such that $\delta(s) < s - a$ for $a < s \leq b$, and for any numbers $s \in]a, b]$, $\rho > 0$ and any vector function $y \in C([a, s]; R^n)$ satisfying the condition

$$\|y(t)\| \le \rho \quad for \quad a \le t \le s - \delta(s), \tag{33}$$

let the inequality

$$f(c(s) + y)(t) \cdot \operatorname{sgn}(y(t)) \le \varphi_{s,\rho}(\|y\|)(t)$$
(34)

hold almost everywhere on $]s - \delta(s), s[$, where $\varphi_{s,\rho} : C([s - \delta(s), s]; R_+) \rightarrow L([s - \delta(s), s]; R_+)$ is a continuous nondecreasing Volterra operator. Let furthermore the problem

$$\frac{du(t)}{dt} = \varphi_{s,\rho}(u)(t), \quad u(s - \delta(s)) = \rho$$
(35)

have an upper solution on the interval $[s - \delta(s), s]$ for any $s \in]a, b]$ and $\rho > 0$. Then each noncontinuable solution of equation (1) is defined on [a, b].

Proof. Assume that the theorem is not valid. Then by virtue of Corollary 3.1 from [1] there exist $s \in]a, b]$ and a noncontinuable solution $x : [a, s[\to \mathbb{R}^n \text{ of equation } (1) \text{ such that }]$

$$\limsup_{t \to s} \|x(t)\| = +\infty.$$
(36)

We set y(t) = x(t) - c(s) and choose $\rho > 0$ such that inequality (33) is fulfilled. Then by (34) the inequality

$$\frac{d\|y(t)\|}{dt} \le \varphi_{s,\rho}(\|y\|)(t)$$

is fulfilled almost everywhere on $]s - \delta(s), s[$.

Moreover,

$$\|y(s-\delta(s))\| \le \rho.$$

By Corollary 1.7 from [2] the latter two inequalities yield the estimate

$$||y(t)|| \le u(t)$$
 for $s - \delta(s) \le t < s$.

Therefore

$$\limsup_{t \to s} \|x(t)\| \le \|c(s)\| + \limsup_{t \to s} \|y(t)\| \le \|c(s)\| + u(s) < +\infty,$$

which contradicts equality (36). The obtained contradiction proves the theorem. $\hfill\square$

Remark. It is obvious that if the conditions of Theorem 2 are fulfilled, then the local solvability of problem (1), (2) guarantees its global solvability. Therefore if the conditions of Theorem 2, as well as of Theorem 2.1 from [1], are fulfilled, then problem (1), (2) is globally solvable and each of its noncontinuable solutions is defined on [a, b].

Corollary 7. Let there exist functions $\delta : [a, b] \to [0, 1[, c :]a, b] \to R^n$, $\alpha : [a, b] \times R_+ \to R_+, \beta : [a, b] \times R_+ \to]-1, 0]$, and $\lambda_k : [a, b] \times R_+ \to [1, +\infty[(k = 1, ..., m) \text{ such that } \delta(s) < s - a \text{ for } a < s \leq b, \text{ and for any numbers} s \in]a, b], \rho > 0$ and any vector function $y \in C([a, b]; R^n)$ satisfying condition (33), there hold, almost everywhere on $|s - \delta(s), s|$, the inequality

$$f(c(s) + y)(t) \cdot \operatorname{sgn}(y(t)) \leq \leq \alpha(s,\rho)(s-t)^{\beta(s,\rho)} \left(1 + \sum_{k=1}^{m} \left[\nu(y)(s-\delta(s),\tau_{ks\rho}(t)) \right]^{\lambda_k(s,\rho)} \right) \times \\ \times \ln \left(2 + \sum_{k=1}^{m} \nu(y)(s-\delta(s),\tau_{ks\rho}(t)) \right),$$
(37)

where

$$\tau_{ks\rho}(t) = \begin{cases} s - \delta(s) & \text{for } s - \delta(s) \le t \le s - [\delta(s)]^{\lambda_k(s,\rho)} \\ s - (s - t)^{\frac{1}{\lambda_k(s,\rho)}} & \text{for } s - [\delta(s)]^{\lambda_k(s,\rho)} < t \le s \end{cases}$$
(38)

Then each noncontinuable solution of equation (1) is defined on [a, b].

Proof. Let $s \in]a,b]$ and $\rho > 0$ be arbitrarily fixed. We introduce $\varepsilon \in]0,\frac{1}{2}]$ such that

$$\beta(s,\rho) \ge 2\varepsilon - 1.$$

By virtue of Theorem 2 and inequality (37), to prove the corollary it is sufficient to establish that problem (35), where

$$\varphi_{s\rho}(u)(t) = \alpha(s,\rho)(s-t)^{2\varepsilon-1} \left(1 + \sum_{k=1}^{m} \left[\nu([u]_{+})(s-\delta(s),\tau_{ks\rho}(t)) \right]^{\lambda_{k}(s,\rho)} \right) \times \\ \times \ln \left(2 + \sum_{k=1}^{m} \nu([u]_{+})(s-\delta(s),\tau_{ks\rho}(t)) \right),$$
(39)

has an upper solution on the interval $[s - \delta(s), s]$.

By Corollary 1.3 from [2] and equalities (38) and (39), problem (35) has a noncontinuable upper solution u^* on some interval $I \subset [s - \delta(s), s]$. On the other hand, from Corollary 2 it immediately follows that $I \supset [s - \delta(s), s]$. It remains for us to show that $s \in I$.

Choose numbers $\delta_0 \in]0, \delta(s)[$ and $\rho_0 \in]\rho, +\infty[$ such that

$$\frac{1}{\varepsilon} < \ln \frac{1}{\delta_0} < \left[\alpha(s,\rho)(m+1)(1+\ln(2+m)) \right]^{-1} \delta_0^{-\varepsilon}, \tag{40}$$

$$u^*(s-\delta_0) < \rho_0, \tag{41}$$

and for any $k \in \{1, \ldots, m\}$ and $u \in C([s - \delta_0, s]; R)$ put

$$\tau_k^*(t) = \begin{cases} s - \delta_0 & \text{for } s - \delta_0 \le t \le s - \delta_0^{\lambda_k(s,\rho)} \\ s - (s - t)^{\frac{1}{\lambda_k(s,\rho)}} & \text{for } s - \delta_0^{\lambda_k(s,\rho)} < t \le s \end{cases},$$
(42)

$$\nu_k^*(u)(t) = \begin{cases} \rho_0 & \text{for } s - \delta_0 \le t \le s - \delta_0^{\lambda_k(s,\rho)} \\ \left[u(\tau_k^*(t)) \right]_+ & \text{for } s - \delta_0^{\lambda_k(s,\rho)} < t \le s \end{cases},$$
(43)

$$\varphi^*(u)(t) = \alpha(s,\rho)(s-t)^{2\varepsilon-1} \left(1 + \sum_{k=1}^m \left[\nu_k^*(u)(t)\right]^{\lambda_k(s,\rho)}\right) \times \\ \times \ln\left(2 + \sum_{k=1}^m \nu_k^*(u)(t)\right).$$

$$(44)$$

Then by virtue of (38) and (39) the inequality $\varphi_{s,\rho}(u^*)(t) \leq \varphi^*(u^*)(t)$ holds almost everywhere on $]s - \delta_0, s[$ and therefore

$$0 < \frac{du^*(t)}{dt} \le \varphi^*(u^*)(t).$$

$$\tag{45}$$

Let l be a natural number so large that

$$\delta_0^{-\frac{(l+\frac{1}{2})\varepsilon}{\lambda_k(s,\rho)}} > \rho_0 \quad (k=1,\ldots,m).$$

$$\tag{46}$$

Setting $v(t) = (s-t)^{-(l+\frac{1}{2})\varepsilon}$, we obtain

$$v(s - \delta_0) > \rho_0. \tag{47}$$

,

Moreover, with (42), (43), and (46) taken into account we find

$$\nu_k^*(v)(t) = \begin{cases} \rho_0 & \text{for } s - \delta_0 \le t \le s - \delta_0^{\lambda_k(s,\rho)} \\ (s-t)^{-\frac{(l+\frac{1}{2})\varepsilon}{\lambda_k(s,\rho)}} & \text{for } s - \delta_0^{\lambda_k(s,\rho)} < t \le s \end{cases}$$

and

$$\nu_k^*(v)(t) \le (s-t)^{-\frac{(l+\frac{1}{2})\varepsilon}{\lambda_k(s,\rho)}} \text{ for } s_0 - \delta_0 \le t < s \ (k = 1, \dots, m).$$
(48)

By (44) and (48) the inequality

$$\begin{split} \varphi^*(v)(t) &\leq \alpha(s,\rho)(s-t)^{2\varepsilon-1} \left(1+m(s-t)^{-(l+\frac{1}{2})\varepsilon}\right) \times \\ &\times \ln\left(2+m(s-t)^{-(l+\frac{1}{2})\varepsilon}\right) \leq \alpha(s,\rho)(m+1) \times \\ &\times (s-t)^{2\varepsilon-1-(l+\frac{1}{2})\varepsilon} \ln\left[(2+m)(s-t)^{-(l+\frac{1}{2})\varepsilon}\right] \end{split}$$

holds almost everywhere on $]s - \delta_0, s[$.

On the other hand, using (40) we have

$$\begin{split} (s-t)^{\varepsilon} \ln \frac{1}{s-t} &\leq \delta_0^{\varepsilon} \ln \frac{1}{\delta_0} \leq \\ &\leq \left[\alpha(s,\rho)(m+1)(1+\ln(2+m)) \right]^{-1} \quad \text{for} \quad s-\delta_0 \leq t < s \end{split}$$

and

$$\ln\left[(2+m)(s-t)^{-(l+\frac{1}{2})\varepsilon}\right] = \ln(2+m) + \left(l+\frac{1}{2}\right)\varepsilon\ln\frac{1}{s-t} \le \\ \le \left(1+\ln(2+m)\right)\left(l+\frac{1}{2}\right)\varepsilon\ln\frac{1}{s-t} \le \\ \le \frac{(l+\frac{1}{2})\varepsilon}{\alpha(s,\rho)(m+1)}(s-t)^{-\varepsilon} \text{ for } s-\delta_0 \le t < s.$$

Therefore

$$\varphi^*(v)(t) \le \left(l + \frac{1}{2}\right)\varepsilon(s-t)^{\varepsilon - 1 - \left(l + \frac{1}{2}\right)\varepsilon}$$
(49)

and

$$\frac{dv(t)}{dt} > \varphi^*(v)(t).$$
(50)

By Theorem 1.4 from [2] inequalities (41), (45), (50) imply the estimate

 $0 < u^*(t) < (s-t)^{-(l+\frac{1}{2})\varepsilon}$ for $s - \delta_0 \le t < s$,

by means of which we find from (45) and (49) that

$$0 \le \frac{du^*(t)}{dt} \le \rho_1(s-t)^{-(l-1+\frac{1}{2})\varepsilon-1},$$

where $\rho_1 = (l + \frac{1}{2})\varepsilon$. Assume now that the inequality

$$0 \le \frac{du^*(t)}{dt} \le \rho_k (s-t)^{-(l-k+\frac{1}{2})\varepsilon - 1},$$
(51)

where ρ_k is a positive constant, holds almost everywhere on $]s - \delta_0, s[$ for some $k \in \{1, \ldots, l\}$. Then

$$0 < u^{*}(t) \le \rho_{0} + \left(l - k + \frac{1}{2}\right)^{-1} \varepsilon^{-1} (s - t)^{-(l - k + \frac{1}{2})\varepsilon} \le \\ \le \rho_{1k} (s - t)^{-(l - k + \frac{1}{2})\varepsilon} \quad \text{for} \quad s - \delta_{0} \le t < s,$$

where $\rho_{1k} = \rho_0 + \left(l - k + \frac{1}{2}\right)^{-1} \varepsilon^{-1} \rho_k$. On account of this, estimates (42)–(46) yield

$$\begin{split} \nu_k^*(u^*)(t) &\leq \rho_0 + \rho_{1k}(s-t)^{-\frac{(l-k+\frac{1}{2})\varepsilon}{\lambda_k(s,\rho)}} \leq \\ &\leq (\rho_0 + \rho_{1k})(s-t)^{-\frac{(l-k+\frac{1}{2})\varepsilon}{\lambda_k(s,\rho)}}, \\ 1 + \sum_{k=1}^m \left[\nu_k^*(u^*)(t)\right]^{\lambda_k(s,\rho)} &\leq 1 + \sum_{k=1}^m (\rho_0 + \rho_{1k})^{\lambda_k(s,\rho)}(s-t)^{-(l-k+\frac{1}{2})\varepsilon} \leq \\ &\leq \left[1 + \sum_{k=1}^m (\rho_0 + \rho_{1k})^{\lambda_k(s,\rho)}\right](s-t)^{-(l-k+\frac{1}{2})\varepsilon}, \\ &\ln\left(2 + \sum_{k=1}^m \nu_k^*(u)(t)\right) \leq \ln\left[\left(2 + \sum_{k=1}^m (\rho_0 + \rho_{1k})\right)(s-t)^{-l}\right] \leq \\ &\leq \ln\left(2 + \sum_{k=1}^m (\rho_0 + \rho_{1k})\right) + l\ln\left(\frac{1}{s-t}\right) \leq \\ &\leq \left[\ln\left(2 + \sum_{k=1}^m (\rho_0 + \rho_{1k})\right) + l\right]\ln\frac{1}{s-t} \end{split}$$

and

$$0 < \frac{du^{*}(t)}{dt} \le \rho_{k+1}(s-t)^{-(l-k-1+\frac{1}{2})\varepsilon}(s-t)^{\varepsilon}\ln\frac{1}{s-t} \le \\ \le \rho_{k+1}(s-t)^{-(l-k-1+\frac{1}{2})\varepsilon}\delta_{0}^{\varepsilon}\ln\frac{1}{\delta_{0}} < \rho_{k+1}(s-t)^{-(l-k-1+\frac{1}{2})\varepsilon},$$

where

$$\rho_{k+1} = \alpha(s,\rho) \Big[1 + \sum_{k=1}^{m} (\rho_0 + \rho_{1k})^{\lambda_k(s,\rho)} \Big] \Big[\ln \Big(2 + \sum_{k=1}^{m} (\rho_0 + \rho_{1k}) \Big) + l \Big].$$

We have thus shown by induction that inequality (51) holds almost everywhere on $]s - \delta_0, s[$ for each $k \in \{1, \ldots, l+1\}$. Therefore

$$0 < \frac{du^*(t)}{dt} \le \rho_{l+1}(s-t)^{\frac{\varepsilon}{2}-1}$$

and $0 < u^*(t) < \rho^*$ for $s - \delta_0 \leq t < s$, where $\rho^* = \rho_0 + \frac{2}{\varepsilon} \delta_0^{\frac{\varepsilon}{2}}$. By Corollary 3.3, the latter estimate implies $s \in I$. \Box

The proved proposition immediately implies

Corollary 8. Let there exist functions $\delta : [a, b] \to [0, 1[, c :]a, b] \to R^n$, $\alpha : [a, b] \times R_+ \to R_+, \beta : [a, b] \to [-1, 0], \lambda_k : [a, b] \to [1, +\infty[(k = 1, ..., m) and a number <math>m_0 \in \{1, ..., m\}$ such that the inequalities

$$\tau_k(t) \le s - (s - t)^{\frac{1}{\lambda_k(s)}} \quad (k = 1, \dots, m_0),$$

$$\tau_k(t) \le s - \delta(s) \quad (k = m_0 + 1, \dots, m),$$

and

$$f_{0}(t,c(s) + y_{0},...,c(s) + y_{m}) \cdot \operatorname{sgn}(y_{0}) \leq \\ \leq \alpha \Big(s, \sum_{k=m_{0}+1}^{m} \|y_{k}\|\Big)(s-t)^{\beta(s)} \Big(1 + \sum_{k=1}^{m_{0}} \|y_{k}\|^{\lambda_{k}(s)}\Big) \times \\ \times \ln \Big(2 + \sum_{k=1}^{m_{0}} \|y_{k}\|\Big)$$
(52)

hold respectively on $]s - \delta(s), s[$ and $]s - \delta(s), s[\times R^{(m+1)n}$. Then each noncontinuable solution of equation (3) is defined on [a, b].

Example 2. ¹ Let $b - a \leq 1$, $\lambda \geq 1$ and $\varepsilon > 0$. Then the differential equation

$$\frac{dx(t)}{dt} = \frac{\lambda}{\varepsilon} \left| x(b - (b - t)^{\frac{1}{\lambda}}) \right|^{\lambda + \varepsilon}$$

has the noncontinuable solution $x(t) = (b-t)^{-\frac{\lambda}{2}}$ defined on the interval [a, b[.

 $^{1}See [3].$

This example shows that the index $\lambda_k(s)$ on the right-hand side of (52) cannot be replaced by $\lambda_k(s) + \varepsilon$ for any $k \in \{1, \ldots, m\}$ no matter how small $\varepsilon > 0$ is.

To conclude, note that Corollaries 1, 2, 4, and 5 are analogues of the well-known theorem of A. Wintner ([4], Ch. III, $\S3.5$) for problems (1), (2) and (3), (2), and Corollaries 7 and 8 are generalizations of the theorem of A. Myshkis and Z. Tsalyuk [3] (see also [5]).

References

1. I. Kiguradze and Z. Sokhadze, On the Cauchy problem for evolution singular functional differential equations. (Russian) *Differential'nye Urav*neniya (to appear).

2. I. Kiguradze and Z. Sokhadze, On singular functional differential inequalities. *Georgian Math. J.* 4(1997), No. 4, 259–278.

3. A. D. Myshkis and Z. B. Tsalyuk. On nonlocal continuability of solutions of differential systems with deviating argument. (Russian) *Differential'nye Uravneniya* **5**(1996), No. 6, 1128–1130.

4. P. Hartman, Ordinary differential equations. John Wiley & Sons, New York-London-Sydney, 1964.

5. Z. Sokhadze, On a theorem of Myshkis–Tsalyuk. Mem. Differential Equations Math. Phys. 5(1995), 131–132.

(Received 21.05.1995)

Authors' addresses:

I. Kiguradze

A. Razmadze Mathematical Institute

Georgian Academy of Sciences 1, M. Aleksidze St., Tbilisi 380093 Georgia

Z. Sokhadze

A. Tsereteli Kutaisi State University 55, Queen Tamar St., Kutaisi 384000 Georgia