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ON THE SOLVABILITY OF THE MULTIDIMENSIONAL
VERSION OF THE FIRST DARBOUX PROBLEM FOR A

MODEL SECOND-ORDER DEGENERATING HYPERBOLIC
EQUATION

S. KHARIBEGASHVILI

Abstract. A multidimensional version of the first Darboux problem
is considered for a model second order degenerating hyperbolic equa-
tion. Using the technique of functional spaces with a negative norm,
the correct formulation of this problem in the Sobolev weighted space
is proved.

In a space of variables x1, x2, t let us consider a second-order degenerating
hyperbolic equation of the type

Lu ≡ utt − |x2|mux1x1 − ux2x2 + a1ux1 + a2ux2 + a3ut + a4u = F, (1)

where ai, i = 1, . . . , 4, F are given real functions and u is an unknown real
function, m = const > 0.

Denote by D : x2 < t < 1− x2, 0 < x2 < 1
2 , an unbounded domain lying

in a space x2 > 0 and bounded by characteristic surfaces S1 : t − x2 = 0,
0 < x2 < 1

2 , S2 : t + x2 − 1 = 0, 0 < x2 < 1
2 , of equation (1) and by a plane

surface S0 : x2 = 0, 0 < t < 1, of time type with an equation degenerating
on it. The coefficients ai, i = 1, . . . , 4, of equation (1) in the domain D are
assumed to be bounded functions of the class C1(D).

For equation (1) let us consider a multidimensional version of the first
Darboux problem formulated as follows: find in the domain D a solution
u(x1, x2, t) of equation (1) satisfying the boundary condition

u
∣

∣

S0∪S1
= 0. (2)
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The problem in the domain D for the equation

L∗v ≡ vtt − xm
2 vx1x1 − vx2x2 − (a1v)x1 − (a2v)x2 − (a3v)t + a4v = F (3)

is posed analogously by the boundary condition

v
∣

∣

S0∪S2
= 0, (4)

where L∗ is a formally conjugate operator of L.
Note that similar problems for m = 0, when equation (1) is not degen-

erating and contains, in its principal part, a wave operator, were studied in
[1–6]. Other versions of multidimensional Darboux problems can be found
in [7–9].

Denote by E, E∗ the classes of functions from the Sobolev space W 2
2 (D)

satisfying respectively the boundary condition (2) and the boundary condi-
tion (4). Let W+(W ∗

+) be the weighted Hilbert space obtained by closing
the space E(E∗) in the norm

‖u‖21,+ =
∫

D

(u2
t + xm

2 u2
x1

+ u2
x2

+ u2)dD.

Denote by W−(W ∗
−) the space with a negative norm constructed with re-

spect to L2(D) and W+(W ∗
+) [10].

Consider the condition

M = sup
D

∣

∣x−
m
2

2 a1(x1, x2, t)
∣

∣ < ∞ (5)

imposed an the lowest coefficient a1 in equation (1).
The uniqueness theorem required for solving problem (1), (2) of the class

W 2
2 (D) follows from

Lemma 1. Let condition (5) be fulfilled. Then for every u ∈ W 2
2 (D)

satisfying the homogeneous boundary condition

u
∣

∣

S0
= 0 (6)

the a priori estimate

‖u‖1,+ ≤ c
(

‖f‖1,∗ + ‖F‖L2(D)
)

(7)

is valid, where the positive constant c does not depend on u; f = u|S1 ,
F = Lu,

‖f‖21,∗ =
∫

S1

[

xm
2 f2

x1
+

( ∂f
∂N

)2]

ds,

and
∂

∂N
= −1

2

( ∂
∂x2

+
∂
∂t

)

is the derivative with respect to the conormal

which is the inner differential operator on the characteristic surface S1.
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Proof. Let n = (ν1, ν2, ν0) be the outer unit vector to ∂D, i.e., ν1 =
cos(n̂, x1), ν2 = cos(n̂, x2), ν0 = cos( ̂n, t). For the function u ∈ W 2

2 (D)
satisfying the boundary condition (6) and λ = const > 0 a simple integra-
tion by parts gives

2
∫

D

e−λtuttut dD =
∫

∂D

e−λtu2
t ν0 ds +

∫

D

λe−λtu2
t dD, (8)

−2
∫

D

e−λt(xm
2 ux1x1ut + ux2x2ut)dD =

= −2
∫

∂D

e−λt(xm
2 ux1utν1 + ux2utν2)ds +

+
∫

De−λt(xm
2 u2

x1
+ u2

x2
)ν0 ds +

∫

D

e−λt(λxm
2 u2

x1
+ λu2

x2
)dD. (9)

It can be easily seen that

u
∣

∣

S0
= ut

∣

∣

S0
= ν0

∣

∣

S0
= 0, n

∣

∣

S1
=

(

0,
1√
2
,− 1√

2

)

,

ν0
∣

∣

S2
> 0, (ν2

0 − xm
2 ν2

1 − ν2
2)

∣

∣

S1∪S2
= 0.

(10)

Taking into account (8)–(10), multiplying both parts of equation (1)
by 2e−λtut, where F = Lu, and integrating the obtained expression with
respect to D, we obtain

2(Lu, e−λtut)L2(D) =
∫

D

e−λt[λ(u2
t + xm

2 u2
x1

+ u2
x2

) +

+2(a1ux1 + a2ux2 + a3ut + a4u)ut
]

dD +
∫

S1∪S2

e−λtν−1
0

[

xm
2 (ν0ux1 −

−ν1ut)2 + (ν0ux2 − ν2ut)2 + (ν2
0 − xm

2 ν2
1 − ν2

2)u2
t

]

ds ≥

≥
∫

D

e−λt[λ(u2
t + xm

2 u2
x1

+ u2
x2

) + 2(a1ux1 + a2ux2 + a3ut +

+a4u)ut
]

dD −
√

2
∫

S1

e−λt
[

xm
2 u2

x1
+

( ∂u
∂N

)2]

ds. (11)
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Owing to condition (6) and the structure of D, one can easily verify that
the inequality

∫

D

u2dD ≤ c0

∫

D

u2
x2

dD (12)

is valid for some c0 = const > 0 not depending on u ∈ W 2
2 (D).

Using inequality (5), we can show that

|2a1ux1ut| ≤ 2M(x
m
2
2 ux1)ut ≤ M(xm

2 u2
x1

+ u2
t ). (13)

By virtue of (12) and (13), from (11) for sufficiently large λ we get

2(Lu, e−λtut)L2(D) ≥ c1

∫

D

(u2
t + xm

2 u2
x1

+ u2
x2

+ u2)dD −

− c2

∫

S1

[

xm
2 u2

x1
+

( ∂u
∂N

)2]

ds, (14)

where the positive constants c1 and c2 do not depend on u; note that de-
pending on λ, the constant c1 can be chosen arbitrarily large. Therefore
estimate (7) follows obviously from (14).

Remark 1. Since for the principal part of the operator L the derivative

with respect to the conormal
∂

∂N
= ν0

∂
∂t
− xm

2 ν1
∂

∂x1
− ν2

∂
∂x2

is the inner

differential operator on the characteristic surfaces of equation (1), by (2)
and (4) we have

∂u
∂N

∣

∣

∣

S1

= 0,
∂v
∂N

∣

∣

∣

S2

= 0 (15)

for the functions u ∈ E and v ∈ E∗.

Lemma 2. Let condition (5) be fulfilled. Then for all functions
u ∈ E, v ∈ E∗ the inequalities

‖Lu‖W∗
−
≤ c1‖u‖W+ , (16)

‖L∗v‖W− ≤ c2‖v‖W∗
+

(17)

are fulfilled, where the positive constants c1 and c2 do not depend respectively
on u and v, ‖ · ‖W+ = ‖ · ‖W∗

+
= ‖ · ‖1,+.
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Proof. According to the definition of a negative norm and because of (2),
(4), and (15), we have

‖Lu‖W∗
−

= sup
v∈W∗

+

‖v‖−1
W∗

+
(Lu, v)L2(D) = sup

v∈E∗
‖v‖−1

W∗
+
(Lu, v)L2(D) =

= sup
v∈E∗

‖v‖−1
W∗

+

∫

∂D

[utvν0 − xm
2 ux1vν1 − ux2vν2]ds + sup

v∈E∗
‖v‖−1

W∗
+

∫

D

[−utvt +

+xm
2 ux1vx1 + ux2vx2 + a1ux1v + a2ux2v + a3utv + a4uv]dD =

= sup
v∈E∗

‖v‖−1
W∗

+

∫

S1∪S2

∂
∂N

v ds + sup
v∈E∗

‖v‖−1
W∗

+

∫

D

[−utvt + xm
2 ux1vx1 +

+ux2vx2 + a1ux1v + a2ux2v + a3utv + a4uv]dD = sup
v∈E∗

‖v‖−1
W∗

+

∫

D

[−utvt +

+xm
2 ux1vx1 + ux2vx2 + a1ux1v + a2ux2v + a3utv + a4uv]dD. (18)

Due to condition (5) and the Schwartz inequality we obtain

∣

∣

∣

∫

D

[−utvt + xm
2 ux1vx1 + ux2vx2 ]dD

∣

∣

∣ ≤ 3
[

∫

D

(u2
t + xm

2 u2
x1

+ u2
x2

)dD
] 1

2 ×

×
[

∫

D

(v2
t + xm

2 v2
x1

+ v2
x2

)dD
] 1

2 ≤ 3‖u‖W+‖v‖W∗
+
, (19)

∣

∣

∣

∫

D

(a1ux1v + a2ux2v + a3utv + a4uv]dD
∣

∣

∣ ≤ M
(

∫

D

xm
2 u2

x1
dD)

1
2 ‖v‖L2(D) +

+sup
D
|a2| ‖ux2‖L2(D)‖v‖L2(D) + sup

D
|a3| ‖ut‖L2(D)‖v‖L2(D) +

+sup
D
|a4| ‖u‖L2(D)‖v‖L2(D) ≤

(

M +
4

∑

i=1

sup
D
|ai|

)

‖u‖W+‖v‖W∗
+
. (20)

From (18)–(20) it follows that

‖Lu‖W∗
−
≤

(

3 + M +
4

∑

i=2

sup
D
|ai|

)

sup
v∈E∗

‖v‖−1
W∗

+
‖u‖W+‖v‖W∗

+
=

=
(

3 + M +
4

∑

i=2

sup
D
|ai|

)

‖u‖W+ ,

which proves inequality (16). Thus Lemma 2 is completely proved, since
the proof of inequality (17) repeats that of the inequality (16).
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Remark 2. By inequalities (16) and (17), the operator L : W+ → W ∗
−(L :

W ∗
+ → W−) with a dense domain of definition E(E∗) admits a closure which

is a continuous operator from W+(W ∗
+) to W ∗

−(W−). Denoting this closure
as previously by L(L∗), we note that it is defined on the whole Hilbert space
W+(W ∗

+).

Lemma 3. Problems (1), (2) and (3), (4) are self-conjugate, i.e., the
equality

(Lu, v) = (u, L∗v) (21)

holds for every u ∈ W+ and v ∈ W ∗
+.

Proof. By Remark 2 it suffices to prove equality (21) when u ∈ E and
v ∈ E∗. We have

(Lu, v) = (Lu, v)L2(D) =
∫

∂D

[utvν0 − xm
2 ux1vν1 − ux2vν2]ds +

+
∫

∂D

[a1ν1 + a2ν2 + a3ν0]uv ds +
∫

D

[

− utvt + xm
2 ux1vx1 + ux2vx2 −

−u(a1v)x1 − u(a2v)x2 − u(a3v)t + a4uv
]

dD =
∫

∂D

[utvν0 − xm
2 ux1vν1 −

−ux2vν2]ds +
∫

∂D

[a1ν1 + a2ν2 + a3ν0]uv ds−
∫

∂D

[uvtν0 − xm
2 uvx1ν1 −

−uvx2ν2]ds +
∫

D

[

uvtt − xm
2 uvx1x1 − uvx2x2 − u(a1v)x1 −

−u(a2v)x2 − u(a3v)t + a4uv
]

dD =
∫

∂D

[(

v
∂u
∂N

− u
∂v
∂N

)

+

+(a1ν1 + a2ν2 + a3ν3]uv
]

ds + (u, L∗v)L2(D). (22)

By (2), (4), and (15), equality (21) follows directly from (22), which
proves Lemma 3.

Lemma 4. Let condition (5) be fulfilled. Then for every u ∈ W+ we
have the inequality

c‖u‖L2(D) ≤ ‖Lu‖W∗
−

(23)

with the positive constant c not depending on u.
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Proof. By Remark 2 it suffices to prove the inequality (23) when u ∈ E. If
u ∈ E, then it can be easily verified that the function

v(x1, x2, t) =

ϕ2(x1,x2)
∫

t

e−λτu(x1, x2, τ)dτ, λ = const > 0,

where t = ϕ2(x1, x2) is the equation of the characteristic surface S2, belongs
to the space E∗, and the equalities

vt(x1, x2, t) = −e−λtu(x1, x2, t), u(x1, x2, t) = −eλtvt(x1, x2, t) (24)

are valid. By (10), (15) and (24) we have

(Lu, v)L2(D) =
∫

D

[

v
∂u
∂N

+ (a1ν1 + a2ν2 + a3ν0)uv
]

ds +

+
∫

D

[−utvt + xm
2 ux1vx1 + ux2vx2 − ua1x1v − ua1vx1 − ua2x2v −

−ua2vx2 − ua3tv − ua3vt + a4uv]dD =
∫

D

e−λtutu dD +

+
∫

D

eλt[−xm
2 vx1tvx1 − vx2tvx2 + a1x1vtv + a1vtvx1 + a2x2vtv +

+a2vtvx2 + a3tvtv + a3v2
t − a4vtv]dD. (25)

Analogously to (8) and (9), because of (2) we have
∫

D

e−λtutu dD =
1
2

∫

∂D

e−λtu2ν0 ds +
1
2

∫

D

e−λtλu2 dD =

=
1
2

∫

S2

e−λtu2ν0 ds +
1
2

∫

D

eλtλv2
t dD =

=
1
2

∫

S2

eλtv2
t ν0 ds +

1
2

∫

D

eλtλv2
t dD, (26)

∫

D

eλt[−xm
2 vx1tvx1 − vx2tvx2 ]dD = −1

2

∫

∂D

eλt[xm
2 v2

x1
+ v2

x2
]ν0 ds +

+
1
2

∫

D

eλtλ[xm
2 v2

x1
+ v2

x2
]dD. (27)
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Since v
∣

∣

S2
= 0, for some α on S2 we have

vt = αν0, vx1 = αν1, vx2 = αν2.

Therefore, since the surface S2 is characteristic, we have

(v2
t − xm

2 v2
x1
− v2

x2
)
∣

∣

S2
= α2(ν2

0 − xm
2 ν2

1 − ν2
2)

∣

∣

S2
= 0. (28)

Due to the fact that ν0
∣

∣

S0
= 0, ν0

∣

∣

S1
< 0 and owing to equalities (4) and

(28), we find that

1
2

∫

S2

eλtv2
t ν0 ds− 1

2

∫

∂D

eλt[xm
2 v2

x1
+ v2

x2
]ν0 ds =

=
1
2

∫

S2

eλtv2
t ν0 ds− 1

2

∫

S1

eλt[xm
2 v2

x1
+ v2

x2
]ν0 ds−

−1
2

∫

S2

eλt[xm
2 v2

x1
+ v2

x2
]ν0 ds ≥ 1

2

∫

S2

eλtv2
t ν0 ds− 1

2

∫

S2

eλt[xm
2 v2

x1
+

+v2
x2

]ν0 ds =
1
2

∫

S2

eλt[v2
t − xm

2 v2
x1
− v2

x2
]ν0 ds = 0. (29)

Taking into consideration (26), (27), and (29), from (25) we get

(Lu, v)L2(D) =
1
2

∫

S2

eλtv2
t ν0 ds +

1
2

∫

D

eλtλv2
t dD −

−1
2

∫

∂D

eλt[xm
2 v2

x1
+ v2

x2
]ν0 ds +

1
2

∫

D

eλtλ[xm
2 v2

x1
+ v2

x2
]dD +

+
∫

D

eλt[a1vtvx1 + a2vtvx2 + a3v2
t + (a1x1 + a2x2 + a3t − a4)vtv

]

dD ≥

≥ λ
2

∫

D

eλt[v2
t + xm

2 v2
x1

+ v2
x2

]dD −
∣

∣

∣

∫

D

eλt[a1vtvx1 +

+a2vtvx2 + a3v2
t + (a1x1 + a2x2 + a3t − a4)vtv]dD

∣

∣

∣. (30)

Putting

µ = max
(

sup
D
|a2|, sup

D
|a3|, sup

D
|a1x1 + a2x2 + a3t − a4|

)
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and taking into account (5), we find that
∣

∣

∣

∫

D

eλt[a1vtvx1 + a2vtvx2 + a3v2
t + (a1x1 + a2x2 + a3t − a4)vtv]dD

∣

∣

∣ ≤

≤
∫

D

eλt
[

M
1
2
(xm

2 v2
x1

+ v2
t ) +

µ
2

(v2
x2

+ v2
t ) + µv2

t +
µ
2

(v2 + v2
t )

]

dD =

=
∫

D

eλt
[(1

2
M + 2µ

)

v2
t +

1
2
Mxm

2 v2
x1

+
µ
2

v2
x2

+
µ
2

v2
]

dD ≤

≤
(1

2
M + 2µ

)

∫

D

eλt[v2
t + xm

2 v2
x1

+ v2
x2

+ v2]dD. (31)

Since the function e
λ
2 tv

∣

∣

S0
= 0, by virtue of inequality (12) we have

∫

D

eλtv2dD ≤ c0

∫

D

eλtv2
x2

dD ≤ c0

∫

D

eλt[v2
t + xm

2 v2
x1

+ v2
x2

]dD

and, consequently,
∫

D

eλt[v2
t + xm

2 v2
x1

+ v2
x2

]dD≥ 1
1 + c0

∫

D

eλt[v2
t + xm

2 v2
x1

+ v2
x2

+ v2]dD. (32)

By (31), (32), and (24) from (30) we obtain

(Lu, v)L2(D) ≥
λ

2(1 + c0)

∫

D

eλt[v2
t + xm

2 v2
x1

+ v2
x2

+ v2]dD −

−
(1

2
M + 2µ

)

∫

D

eλt[v2
t + xm

2 v2
x1

+ v2
x2

+ v2]dD =

=
( λ

2(1 + c0)
− 1

2
M − 2µ

)

∫

D

eλt[v2
t + xm

2 v2
x1

+ v2
x2

+ v2]dD ≥

≥ σ
[

∫

D

eλtv2
t dD

] 1
2
[

∫

D

[v2
t + xm

2 v2
x1

+ v2
x2

+ v2]dD
] 1

2
=

= σ
[

∫

D

e−λtu2dD
] 1

2 ‖v‖W∗
+
≥ σ · inf

D
e−λt‖u‖L2(D)‖v‖W∗

+
, (33)

where σ =
( λ

2(1 + c0)
− 1

2
M − 2µ

)

> 0 for sufficiently large λ, while

infD e−λt = const > 0 owing to the structure of the domain D.
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If now we apply the generalized Schwartz inequality

(Lu, v)L2(D) ≤ ‖Lu‖W∗
−
‖v‖W∗

−

to the left-hand side of (33), then after reduction by ‖v‖W∗
+

we obtain
inequality (23), where c = σ infD e−λt = const > 0.

Lemma 5. Let condition (5) be fulfilled. Then for every v ∈ W ∗
+ the

inequality

c‖v‖L2(D) ≤ ‖L∗v‖W− (34)

is valid for some c = const > 0 not depending on v ∈ W ∗
+.

Proof. As in Lemma 4, by Remark 2 it suffices to prove the validity of
inequality (34) for v ∈ E∗. Let v ∈ E∗ and introduce into consideration the
function

u(x1, x2, t) =

t
∫

ϕ1(x1,x2)

eλτv(x1, x2, τ)dτ, λ = const > 0,

where t = ϕ1(x1, x2) is the equation of the characteristic surface S1. It is
easily seen that the function u(x1, x2, t) belongs to the class E, and we have
the equalities

ut(x1, x2, t) = eλtv(x1, x2, t), v(x1, x2, t) = e−λtut(x1, x2, t). (35)

Because of (10), (15), and (35) we have

(L∗v, u)L2(D) =
∫

∂D

[

u
∂v
∂N

− (a1ν1 + a2ν2 + a3ν0)uv
]

ds +

+
∫

D

[−vtut + xm
2 vx1ux1 + vx2ux2 + a1vux1 + a2vux2 + a3vut + a4uv]dD =

= −
∫

D

eλtvtv dD +
∫

D

e−λt[xm
2 ux1tux1 + ux2tux2 ]dD +

+
∫

D

e−λt[a1ux1 + a2ux2 + a3ut + a4u]ut dD. (36)

Similarly to (26)–(29) we can prove the equalities

−
∫

D

eλtvtv dD = −1
2

∫

∂D

eλtv2ν0 ds +
1
2

∫

D

eλtλv2 dD =



MULTIDIMENSIONAL VERSION OF THE FIRST DARBOUX PROBLEM 351

= −1
2

∫

S1

e−λtu2
t ν0 ds +

1
2

∫

D

e−λtλu2
t dD, (37)

∫

D

e−λt[xm
2 ux1tux1 + ux2tux2 ]dD =

1
2

∫

∂D

e−λt[xm
2 u2

x1
+ u2

x2
]ν0 ds +

+
1
2

∫

D

e−λtλ[xm
2 u2

x1
+ u2

x2
]dD, (38)

(u2
t − xm

2 u2
x1
− u2

x2
)
∣

∣

S1
= 0, (39)

−1
2

∫

S1

e−λtu2
t ν0 ds +

1
2

∫

∂D

e−λt[xm
2 u2

x1
+ u2

x2
]ν0 ds =

= −1
2

∫

S1

e−λtu2
t ν0 ds +

1
2

∫

S1

e−λt[xm
2 u2

x1
+ u2

x2
]ν0 ds +

+
1
2

∫

S2

e−λt[xm
2 u2

x1
+u2

x2
]ν0 ds ≥

≥ −1
2

∫

S1

e−λt[u2
t − xm

2 u2
x1
− u2

x2
]ν0 ds = 0. (40)

To obtain inequality (40) we have used the fact that ν0|S2 > 0.
Owing to (37)–(40), from (36) we get

(L∗v, u)L2(D) ≥
1
2

∫

D

e−λtλ[u2
t + xm

2 u2
x1

+ u2
x2

]dD +

+
∫

D

e−λt[a1ux1 + a2ux2 + a3ut + a4u]ut dD ≥ λ
2

∫

D

e−λt[u2
t + xm

2 u2
x1

+

+u2
x2

]dD −
∣

∣

∣

∫

D

e−λt[a1ux1 + a2ux2 + a3ut + a4u]ut dD
∣

∣

∣.

whence, as in obtaining inequality (33) from (30), we have

(L∗v, u)L2(D) ≥
[ λ
2(1 + c0)

−
(1

2
M + max

i=2,3,4
sup
D
|ai|

)]

×

× inf
D

e−λt‖v‖L2(D)‖u‖W+ .

Inequality (34) follows directly from the above inequality for sufficiently
large λ.

Definition 1. If F ∈ L2(D), then the function u will be called a strong
generalized solution of problem (1), (2) of the class W+ if u ∈ W+, and
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there exists a sequence of functions un ∈ E such that un → u and Lun → F
respectively in the spaces W+ and W ∗

− as n →∞, i.e.,

lim
n→∞

‖un − u‖W+ = 0. lim
n→∞

‖Lun − F‖W∗
−

= 0.

Definition 2. If F ∈ W ∗
−, then the function u will be called a strong

generalized solution of problem (1), (2) of the class L2 if u ∈ L2(D), and
there exists a sequence of functions un ∈ E such that un → u and Lun → F
respectively in the spaces L2(D) and W ∗

− as n →∞, i.e.,

lim
n→∞

‖un − u‖L2(D) = 0. lim
n→∞

‖Lun − F‖W∗
−

= 0.

According to the results of [11], the theorems below are consequences of
Lemmas 2–5.

Theorem 1. Let condition (5) be fulfilled. Then for every F ∈ W ∗
− there

exists a unique strong generalized solution u of problem (1), (2) of the class
L2 for which the estimate

‖u‖L2(D) ≤ c‖F‖W∗
−
, (41)

with a positive constant c not depending on F, is valid.

Theorem 2. Let condition (5) be fulfilled. Then for every F ∈ L2(D)
there exists a unique strong generalized solution u of problem (1), (2) of the
class W+ for which estimate (41) is valid.

Proof. The existence of a solution of problem (1), (2) in Theorem 2 follows,
for example, from the arguments as follows. By virtue of inequality (34),
the functional (F, v)L2(D) can be regarded as a linear continuous functional
of L∗v, where v ∈ E∗, F ∈ L2(D). Indeed, using this inequality, we have

|(F, v)L2(D)| ≤ ‖F‖L2(D)‖v‖L2(D) ≤ c∗‖L∗v‖W− , c∗ = const > 0.

By the Khan–Banach theorem, this functional can be linearly and con-
tinuously extended into the whole space W−. Following the theorem on
a general type of a linear continuous functional over W−, there exists a
function u ∈ W+ such that

(u, L∗)L2(D) = (F, v)L2(D), v ∈ E∗. (42)

Equality (42) means that u is a weak generalized solution of the problem
(1), (2). Let us now show that this solution is also a strong generalized
solution of problem (1), (2) of the class W+.

Since the space E is dense in W+, there exists a sequence un ∈ E of
functions such that

lim
n→∞

‖un − u‖W+ = 0. (43)
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Using equalities (21) and (42), we have

(un − u, L∗v)L2(D) = (Lun − F, v)L2(D). (44)

Now, according to the generalized Schwartz inequality,
∣

∣(un − u, L∗v)L2(D)
∣

∣ ≤ ‖un − u‖W+‖L∗v‖W− . (45)

It follows from (43)–(45) that in the space W ∗
− the sequence Lun of

functions converges weakly to the function F . But since this sequence,
because of (16) and (43), converges in the norm of the space W ∗

−, we obtain

lim
n→∞

‖Lun − F‖W∗
−

= 0.

Consequently, the function u is a strong generalized solution of problem
(1), (2) of the class W+.

This fact can be proved in a different way. Indeed, using equalities (21)
and (42) and inequality (17), we have

‖Lun − F‖W∗
−

= sup
v∈W∗

+

‖v‖−1
W∗

+
(Lun − F, v)L2(D) =

= sup
v∈E∗

‖v‖−1
W∗

+

[

(Lun, v)L2(D) − (F, v)L2(D)
]

=

= sup
v∈E∗

‖v‖−1
W∗

+

[

(un, L∗v)L2(D) − (u, L∗v)L2(D)
]

=

= sup
v∈E∗

‖v‖−1
W∗

+
(un − u, L∗v)L2(D) ≤

≤ sup
v∈E∗

‖v‖−1
W∗

+
‖un − u‖W+‖L∗v‖W− ≤

≤ sup
v∈E∗

‖v‖−1
W∗

+
‖un − u‖W+c2‖v‖W∗

+
= c2‖un − u‖W+ ,

whence limn→∞ ‖Lun − F‖W∗
−

= 0.
The uniqueness of a strong generalized solution of problem (1), (2) of the

class W+ in Theorem 2 as well as estimate (41) follow from inequality (23).
As for Theorem 1, it can be proved as follows. Since the space L2(D) is

dense in the space W ∗
−, for every element F ∈ W ∗

− there exists a sequence
Fn ∈ L2(D) of functions such that lim

n→∞
‖Fn − F‖W∗

−
= 0. According to

Theorem 2, for every function Fn ∈ L2(D) there exists a unique strong
generalized solution un of problem (1), (2) of the class W+. Furthermore,
using inequality (23) and passing to the limit, we obtain the existence and
the uniqueness of a strong generalized solution of problem (1), (2) of the
class L2 as well as estimate (41).
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