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ON THE ABSOLUTE CONVERGENCE OF FOURIER
SERIES

T. KARCHAVA

Abstract. The necessary and sufficient conditions of the absolute
convergence of a trigonometric Fourier series are established for con-
tinuous 2π-periodic functions which in [0, 2π] have a finite number of
intervals of convexity, and whose nth Fourier coefficients are
O(ω(1/n; f)/n), where ω(δ; f) is the continuity modulus of the fun-
ction f .

Let ω be an arbitrary modulus of continuity, i.e., a nondecreasing function
continuous on [0, 1], ω(0) = 0 and ω(δ1 + δ2) ≤ ω(δ1) + ω(δ2). As usual,
denote by Hω the class of all functions f continuous on [0, 2π] for which

ω(δ; f) = sup
|x1−x2|≤δ

|f(x1)− f(x2)| = O(ω(δ)), 0 ≤ δ ≤ 1

(see, for instance, [5, Ch. 3, pp. 150, 157]).
Let M be the class of all continuous 2π-periodic functions f for which

there exists a partitioning of the segment [0, 2π] by the points 0 = x1(f) <
· · · < xm+1(f) = 2π such that f is convex or concave on each segment
[xk(f), xx+1(f)], k = 1, . . .m.

The Fourier coefficients of a function f with respect to the trigonometric
system will be denoted by an = an(f), bn = bn(f).

Problems pertaining to the absolute convergence of Fourier series have
been studied quite completely (see, for instance, the monographs of Bari [2,
Ch. 9], Zygmund [3, Ch. 6], Kahane [4, Ch. 2], and the survey by Guter
and Ulyanov [5, p. 391]).

This paper deals with some problems of the absolute convergence of
trigonometric Fourier series of a function from the class M .

The following facts are well known:
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(1) The Fourier series of any 2π-periodic continuous even function, convex
on [0, 2π], converges absolutely ([4, Ch. 2]).

(2) Let f be an odd function convex on [0,+∞). Then f ∈ Aloc if and
only if

∫ 1
0 f(t)dt

t < ∞ [4, Ch. 2]. Here Aloc is the set of all functions f ,
continuous on (−∞, +∞), for which every point can be encircled by an
interval on which f = g, where g is a function, continuous on [0, 2π], whose
Fourier series converges absolutely.

We have obtained the following results:

Theorem 1. If f ∈ M , then for the absolute convergence of the Fourier
series of the function f it is necessary and sufficient that

∞
∑

n=1

∣

∣

∣f
(

xk(f) +
1
n

)

− f
(

xk(f)− 1
n

)∣

∣

∣

1
n

< +∞, k = 1, . . . ,m.

Theorem 2.
(a) Let f ∈ M ; then

an(f) = O
(

ω
( 1

n
; f

) 1
n

)

, bn(f) = O
(

ω
( 1

n
; f

) 1
n

)

.

(b) If
∑∞

n=1 ω( 1
n ) 1

n = +∞, then in the class Hω ∩ M there exists a a
function whose Fourier series does not converge absolutely.

Theorem 3. Let f ∈ M and at least one of the following conditions be
fulfilled:

(1) for any adjacent intervals (xk(f), xk+1(f)) and (xk+1(f), xk+2(f)),
the function f is convex on one of them and concave on the other;

(2) each point xk(f) can be encircled by an interval where the function f
is monotonous;

(3) for any xk(f), at least one of the two series

∞
∑

n=1

∣

∣

∣f
(

xk(f) +
1
n

)

− f(xk(f))
∣

∣

∣

1
n

and
∞
∑

n=1

∣

∣

∣f
(

xk(f)− 1
n

)

− f(xk(f))
∣

∣

∣

1
n

converges.
Then the convergence of the series

∑∞
n=1 ω( 1

n ; f) 1
n is the necessary and

sufficient condition for the Fourier series of the function f to converge ab-
solutely.

Proof of Theorem 1. Let f1, f2, f be continuous 2π-periodic functions de-
fined as follows: f1 is convex or concave on a segment [0, π], f1(0) = f1(π) =
0, linear on [1, π], f1(x) = 0, for x ∈ [−π, 0]; f2 is convex or concave on
[−π, 0], f2(−π) = f2(0) = 0, linear on [−π,−1], f1(x) = 0 for x ∈ [0, π];
f = f1 + f2.
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The theorem will be proved by showing that for the Fourier series of f
to converge it is necessary and sufficient that

∞
∑

n=1

∣

∣

∣f
( 1

n

)

− f
(

− 1
n

)∣

∣

∣

1
n

< +∞.

This follows from Wiener’s theorem and from the following facts: If the
function f is convex or concave on a segment [a, b], then f ∈ Lip 1 on
any segment [c, d] entirely lying inside [a, b], and the Fourier series of the
functions f(x) and f(x + c) simultaneously converge or diverge absolutely.

The function f1 is convex on [0, π] and continuous, which means that it
is absolutely continuous so that one can apply integration by parts and the
Newton–Leibniz formulas to obtain an(f) = an(f1) + an(f2).

an(f1) =
1
π

2π
∫

0

f1(t) cos nt dt =
1
π

2π
∫

0

f1(t)d
sin nt

n
=

1
π

(

f1(t)
sin nt

n

)2π

0
−

− 1
πn

2π
∫

0

f ′1(t) sin nt dt =
−1
πn

2π
∫

0

f ′1(t) sin nt dt =
−1
πn

π
∫

0

f ′1(t) sin nt dt =

= − 1
πn

1/n
∫

0

f ′1(t) sin nt dt− 1
πn

1
∫

1/n

f ′1(t) sin nt dt− 1
πn

π
∫

1

f ′1(t) sin nt dt.

The derivative f ′ of the convex or concave function f is monotonous and
therefore, applying the second theorem of the mean value, we obtain

∣

∣

∣

1
πn

1
∫

1/n

f ′1(t) sin nt dt
∣

∣

∣ =
∣

∣

∣

1
πn

f ′1
( 1

n
+ 0

)

ξ
∫

1/n

sin nt +

+
1

πn
f ′1(1− 0)

1
∫

ξ

sin nt dt
∣

∣

∣ ≤
1

πn2

∣

∣

∣f ′1
( 1

n
+ 0

)∣

∣

∣ +
1

πn2

∣

∣f ′1(1− 0)
∣

∣

with 1/n < ξ < 1.
Wherever we come across expressions of the form f ′(x ± 0), the left

and right limits are considered with respect to the set at whose points the
derivative f ′ exists.

For the convex (concave) function f we have the relation

f(x2)− f(x1)
x2 − x1

≥ f ′(x2 ± 0) ≥ f(x3)− f(x2)
x3 − x2
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(f(x2)− f(x1)
x2 − x1

≤ f ′(x2 ± 0) ≤ f(x3)− f(x2)
x3 − x2

)

where x1 < x2 < x3. Therefore
∣

∣

∣f ′1
( 1

n
+ 0

)∣

∣

∣ ≤
f1

( 1
n

)

− f1
( 1

n+1

)

1/n− 1/(n + 1)
≤ (n + 1)2

(

f1

( 1
n

)

− f1

( 1
n + 1

))

.

Hence
∞
∑

n=1

∣

∣

∣f ′1
( 1

n
+ 0

)∣

∣

∣

1
n2 ≤ 2

∞
∑

n=1

(

f1

( 1
n

)

− f1

( 1
n + 1

))

< +∞.

Since f1 ∈ Lip 1 on the segment [ε, π], we have |f ′1(1 − 0)| ≤ M and
∑∞

n=1 |f ′1(1− 0)|/n2 ≤
∑∞

n=1 M/n2 < +∞.
The function f1 is linear on the segment [1, π], i.e., f ′1(t) = cos nt = c, so

that 1/n
∣

∣

∫ π
1 f ′1(t) sin nt

∣

∣ ≤ c/n2.

Finally, an(f1) = − 1
πn

∫ 1/n
0 f ′1(t) sin nt dt + γn, where

∑∞
n=1 |γn| < +∞.

If we introduce the notation In = −1
πn

∫ 1/n
0 f ′1(t) sin nt dt, then an(f1) =

In + γn, In = an(f1)− γn.
Since the function f1 has a bounded variation, we have

f1(x) =
an(f1)

2
+

∞
∑

n=1

an(f1) cos nx + bn(f1) sin nx.

By substituting here x = 0 we obtain
∑∞

n=1 an(f1) < ∞. Therefore
∑∞

n=1 In =
∑∞

n=1(an(f1)− γn) < ∞.
One can easily verify that the values In do not change their sign for

sufficiently large n. Thus
∑∞

n=1 |In| < +∞. Since |an(f1)| ≤ |In|+ |γn|, we
obtain

∑∞
n=1 |an(f1)| < +∞.

In a similar manner we shall show that
∑∞

n=1 |an(f2)| < ∞. We have
|an(f)| = |an(f1) + an(f2)| ≤ |an(f1)|+ |an(f2)| and

∑∞
n=1 |an(f)| < +∞.

Now consider the coefficients bn(f). We have bn(f) = bn(f1) + bn(f2),

bn(f1)=
1
π

2π
∫

0

f1(t) sin nt dt=
1
π

2π
∫

0

f1(t)d
cos nt

n
=

1
π

(

f1(t)
cosnt

n

)∣

∣

∣

2π

0
−

− 1
πn

2π
∫

0

f ′1(t) cos nt dt=− 1
πn

2π
∫

0

f ′1(t) cos nt dt=− 1
πn

π
∫

0

f ′1(t) cos nt dt=

= − 1
πn

1/n
∫

0

f ′1(t) cos nt dt− 1
πn

1
∫

1/n

f ′1(t) cos nt dt− 1
πn

π
∫

1

f ′1(t) cosnt dt.
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The function f1 is linear on the segment [1, π], i.e., f ′1(t) = const = C,
so that

1
n

∣

∣

∣

π
∫

1

f ′1(t) cos nt dt
∣

∣

∣ ≤
C
n2 .

Again applying the theorem of the mean, we obtain (with 1/n < ξ < 1)

∣

∣

∣

1
n

1
∫

1/n

f ′1(t) cos nt dt
∣

∣

∣=
1
n

∣

∣

∣f ′1
( 1

n
+ 0

)

ξ
∫

1/n

cos nt dt +

+f ′1(1− 0)

1
∫

ξ

cos nt dt
∣

∣

∣≤
1
n2

∣

∣

∣f ′1
( 1

n
+ 0

)∣

∣

∣ +
1
n2 |f

′
1(1− 0)| < +∞.

Therefore bn(f1) = − 1
πn

∫ 1/n
0 f ′1(t) cos nt dt + γn,

∑∞
n=1 |γn| < +∞.

− 1
πn

1/n
∫

0

f ′1(t) cos nt dt =
1

πn

1/n
∫

0

f ′1(t)(1− cos nt− 1)dt =

=
−1
πn

1/n
∫

0

f ′1(t)dt +
1

πn

1/n
∫

0

f ′1(t)(1− cos nt)dt =

=
−1
πn

f1

( 1
n

)

+
1

πn

1/n
∫

0

f ′1(t)2 sin2 nt
2

dt,

∣

∣

∣

∣

1
πn

1/n
∫

0

f ′1(t)2 sin2 nt
2

dt
∣

∣

∣

∣

≤ 2
πn

1/n
∫

0

|f ′1(t)| | sinnt|dt = 2|In|.

As we have seen above,
∑∞

n=1 |In| < +∞ and therefore

bn(f1) = − 1
πn

f1

( 1
n

)

+ Cn =
−1
πn

f
( 1

n

)

+ Cn,

where
∑∞

n=1 |Cn| < +∞. In a similar manner it will be shown that

bn(f2) =
1

πn
f
(

− 1
n

)

+ Pn, where
∞
∑

n=1

|Pn| < +∞.

Since bn(f) = bn(f1) + bn(f2), we have

bn(f) =
−1
πn

{

f
( 1

n

)

− f
(−1

n

)}

+ γn,
∞
∑

n=1

|γn| < +∞.
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Proof of Theorem 2.
(a) It is the well-known fact that estimates of Fourier coefficients can be

derived using the integral modulus of continuity (see, for instance [3, Ch.
2])

|an| ≤ sup
|h|≤ 1

n

1
π

2π
∫

0

∣

∣f(x + h) + f(x− h)− 2f(x)
∣

∣dx.

Applying the above inequality, we obtain

|an| ≤ sup
|h|≤ 1

n

1
π

2π
∫

0

∣

∣f(x + h) + f(x− h)− 2f(x)
∣

∣dx =

= sup
|h|≤ 1

n

1
π

2π
∫

0

∣

∣f(x + kh) + f(x + (k − 2)h)− 2f(x + (k − 1)h)
∣

∣dx =

=
1

πn
sup
|h|≤ 1

n

2π
∫

0

n
∑

k=1

∣

∣f(x + kh) + f(x + (k − 2)h)−

−2f(x + (k − 1)h)
∣

∣dx =
1

πn
sup
|h|≤ 1

n

2π
∫

0

(
n

∑

k=1

|uk − uk−1|
)

dx,

where uk = f(x + kh)− f(x + (k − 1)h).
Convexity (concavity) of a function f on some segment [a, b] implies that

f(x+kh)+f(x−(k−2)h)−2f(x+(k−1)h) = uk−uk−1 ≤ 0 (uk−uk−1 ≥ 0)

for x+(k−2)h, x+(k−1)h, x+kh ∈ [a, b]. Therefore on the segment [0, 2π]
the values uk − uk−1 change their sign a finite number of times. Thus

|an(f)| ≤ 1
πn

sup
|h|≤ 1

n

2π
∫

0

(
n

∑

k=1

|uk − uk−1|
)

dx ≤

≤ 1
πn

sup
|h|≤ 1

n

2π
∫

0

∣

∣

∣

n
∑

k=1

uk − uk−1

∣

∣

∣dx +
C(f)

n
ω
( 1

n
, f

)

≤ C1(f)
n

ω
( 1

n
, f

)

.

The proof of the estimate for bn(f) is similar.
(b) Let

∑∞
n=1 ω( 1

n ) 1
n = +∞. By Stechkin’s lemma (see [6]) there exists

a convex modulus of continuity ω′(δ) such that Hω = Hω′ . Hence ω(δ) can
be regarded as convex function.
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Consider a continuous function

f0(t) =

{

ω(t), t ∈ [0, 1],
linear for [t ∈ [1, 2π], f0(t + 2π) = f0(t).

Clearly, f0 ∈ Hω ∩M .
On the interval [1, 2π] the function f0(t) is linear, f(2π) = f(0) = 0.

Therefore f0

(

− 1
n

)

= f
(

2π − 1
n

)

= c0
n , where c0 is some number . We

have
∞
∑

n=1

∣

∣

∣f0

( 1
n

)

− f0

(−1
n

)∣

∣

∣

1
n
≥

∞
∑

n=1

∣

∣

∣f0

( 1
n

)∣

∣

∣−
∣

∣

∣f0

(−1
n

)∣

∣

∣

1
n

=

=
∞
∑

n=1

∣

∣

∣f0

( 1
n

)∣

∣

∣

1
n
−

∞
∑

n=1

∣

∣

∣f0

(

− 1
n

)∣

∣

∣

1
n

=
∞
∑

n=1

ω
( 1

n

) 1
n
−

∞
∑

n=1

C0

n2 = +∞.

By virtue of Theorem 1 we see that the necessary condition for Fourier
series to be absolutely convergent is not fulfilled. The Fourier series of f0
does not converge absolutely.

Proof of Theorem 3. The sufficiency follows from part (a) of the proof of
Theorem 2.

First note that if the function is convex (concave) on [a, b], then its mo-
dulus of continuity on [a, b] equals

max
{

|f(a + δ)− f(a)|, |f(b− δ)− f(b)|
}

.

Therefore

ω(1/n, f) ≤ max
1≤k≤m

{

|f(xk + 1/n)− f(xk)|+ |f(xk − 1/n)− f(xk)|
}

,

where xk ≡ xk(f).
Hence it follows that if

∑∞
n=1 ω( 1

n , f) 1
n = +∞, then for some xk we have

∞
∑

n=1

∣

∣

∣f
(

xk +
1
n

)

− f(xk)
∣

∣

∣

1
n

= +∞ or
∞
∑

n=1

∣

∣

∣f
(

xk −
1
n

)

− f(xk)
∣

∣

∣

1
n

= +∞.

For convenience we assume that
∞
∑

n=1

∣

∣

∣f
(

xk +
1
n

)

− f(xk)
∣

∣

∣

1
n

= +∞.

If the conditions (2) are fulfilled, then
∞
∑

n=1

∣

∣

∣f
(

xk +
1
n

)

− f
(

xk −
1
n

)∣

∣

∣

1
n
≥

∞
∑

n=1

∣

∣

∣f
(

xk +
1
n

)

− f(xk)
∣

∣

∣

1
n

= +∞,
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i.e., by Theorem 1 the Fourier series of the function f is not absolutely
convergent.

If the conditions (3) are fulfilled, then
∞
∑

n=1

∣

∣

∣f
(

xk +
1
n

)

− f
(

xk −
1
n

)∣

∣

∣

1
n

=

=
∞
∑

n=1

∣

∣

∣f
(

xk +
1
n

)

− f(xk) + f(xk)− f
(

xk −
1
n

)∣

∣

∣

1
n
≥

≥
∞
∑

n=1

∣

∣

∣f
(

xk +
1
n

)

− f(xk)
∣

∣

∣

1
n
−

∞
∑

n=1

∣

∣

∣f
(

xk −
1
n

)

− f(xk)
∣

∣

∣

1
n

= +∞.

which proves the theorem under conditions (3).
If , however, the conditions of (1) are fulfilled, then, as one can easily

verify, the conditions of (2) or (3) are fulfilled too.

References

1. V. K. Dziadik, Introduction to the theory of uniform approximation
of function by polynomials. (Russian) Nauka, Moscow, 1977.

2. N. K. Bari, Trigonometric series. (Russian) Gos. Isd. Fiz-Mat. Lit.,
Moscow, 1961.

3. A. Zygmund, Trigonometric series, v. 1. Cambridge University Press,
1959; Russian translation: Mir, Moscow, 1965.
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