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ON SINGULAR FUNCTIONAL DIFFERENTIAL
INEQUALITIES

I. KIGURADZE AND Z. SOKHADZE

Abstract. Classical theorems on differential inequalities [1, 2, 3] are
generalized for initial value problems of the kind

dx(t)
dt

≤ f(x)(t), lim
t→a

∥

∥[x(t)− c0]+
∥

∥/h(t) = 0

and
dx(t)

dt
≥ f(x)(t), lim

t→a

∥

∥[x(t)− c0]−
∥

∥/h(t) = 0,

where f : C([a, b]; Rn) → Lloc(]a, b]; Rn) is a singular Volterra opera-
tor, c0 ∈ Rn, h : [a, b] → [0, +∞[ is continuous and positive on ]a, b],
‖ · ‖ is a norm in Rn, and [u]+ and [u]− are respectively the positive
and the negative part of the vector u ∈ Rn.

§ 1. Statement of the Basic Results

1.1. Main Notation and Definitions. Throughout this paper use will
be made of the following notation:

R is the set of real numbers; R+ = [0, +∞[ ;
Rn is the space of n-dimensional column vectors x = (xi)n

i=1 with ele-
ments xi ∈ R (i = 1, . . . , n) and norm ‖x‖ =

∑n
i=1 |xi|;

Rn
+={x=(xi)n

i=1∈Rn : xi ≥ 0 (i=1, . . . , n)}; Rn
ρ={x∈Rn : ‖x‖≤ ρ};

if x = (xi)n
i=1, then

sgn(x) = (sgn xi)n
i=1; [x]+ =

( |xi|+ xi

2

)n

i=1
, [x]− =

( |xi| − xi

2

)n

i=1
;

if x and y ∈ Rn, then x ≤ y ⇐⇒ y − x ∈ Rn
+;

x · y is the scalar product of vectors x and y ∈ Rn;
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C([a, b];Rn) is the space of continuous vector functions x : [a, b] → Rn

with the norm ‖x‖C = max{‖x(t)‖ : a ≤ t ≤ b};

Cρ([a, b];Rn) =
{

x ∈ C([a, b];Rn) : ‖x‖C ≤ ρ
}

;

C([a, b];R+) =
{

x ∈ C([a, b];R) : x(t) ≥ 0 for a ≤ t ≤ b
}

;

if x ∈ C([a, b];Rn) and a ≤ s ≤ t ≤ b, then

ν(x)(s, t) = max
{

‖x(ξ)‖ : s ≤ ξ ≤ t
}

;

Lloc(]a, b];Rn) is the space of vector functions x : ]a, b] → Rn summable
on every segment contained in ]a, b] with the topology of mean convergence
on every segment from ]a, b];

Lloc(]a, b]; R+) =
{

x ∈ Lloc(]a, b]; R) : x(t) ≥ 0 for almost all t ∈ [a, b]
}

.

Definition 1.1. An operator f : C([a, b];Rn) → Lloc(]a, b]; Rn) is said to
be Volterra if for every t0 ∈ ]a, b] and every x and y ∈ C([a, b]; Rn) satisfying
x(t) = y(t) for a < t ≤ t0, the equality f(x)(t) = f(y)(t) is fulfilled a.e. on
]a, t0[.

Definition 1.2. We say that an operator f :C([a, b];Rn)→Lloc(]a, b];Rn)
satisfies the local Carathéodory conditions if it is continuous and there exists
a function γ : ]a, b]×R+ → R+ nondecreasing in the second argument such
that γ(·, ρ) ∈ Lloc(]a, b];R) for ρ ∈ R+, and for any x ∈ C([a, b]; Rn) the
inequality ‖f(x)(t)‖ ≤ γ(t, ‖x‖C) is fulfilled a.e. on ]a, b[.

If
b

∫

a

γ(t, ρ)dt < +∞ for ρ ∈ R+,

then the operator f is called regular. Otherwise f is called singular.

Definition 1.3. An operator f : C([a, b];Rn) → Lloc(]a, b];Rn) is said
to be nondecreasing if for every x and y ∈ C([a, b]; Rn) satisfying x(t) ≤ y(t)
for a ≤ t ≤ b, the inequality f(x)(t) ≤ f(y)(t) is fulfilled a.e. on ]a, b[.

In the present paper we consider the following weighted initial value
problems:

dx(t)
dt

= f(x)(t), (1.1)

lim
t→a

‖x(t)− c0‖
h(t)

= 0; (1.2)

dz(t)
dt

≤ f(z)(t), (1.3)
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lim
t→a

‖[z(t)− c0]+‖
h(t)

= 0; (1.4)

dz(t)
dt

≥ f(z)(t), (1.5)

lim
t→a

‖[z(t)− c0]−‖
h(t)

= 0, (1.6)

where everywhere below f : C([a, b];Rn) → Lloc(]a, b]; Rn) is assumed to be
a Volterra, in general singular, operator satisfying the local Carathéodory
conditions, c0 ∈ Rn, and h : [a, b] → [0,+∞[ is continuous, nondecreasing
and positive on ]0, a].

We shall separately consider the case where h(a) > 0, so that the condi-
tions (1.2), (1.4) and (1.6) have respectively the form

x(a) = c0, (1.21)

z(a) ≤ c0, (1.41)
z(a) ≥ c0. (1.61)

The question of estimating solutions of functional differential inequalities
(1.3) and (1.5) satisfying the initial conditions

z(a) < c0, (1.42)

z(a) > c0 (1.62)

will also be studied.
The vector differential equation and differential inequalities with delay:

dx(t)
dt

= f0
(

t, x(t), x(τ1(t)), . . . , x(τm(t))
)

, (1.7)

dz(t)
dt

≤ f0
(

t, z(t), z(τ1(t)), . . . , z(τm(t))
)

, (1.8)

dz(t)
dt

≥ f0
(

t, z(t), z(τ1(t)), . . . , z(τm(t))
)

(1.9)

are important particular cases of the vector functional differential equation
(1.1) and of the vector functional differential inequalities (1.3) and (1.4).

In the sequel, when considering equation (1.7) or inequalities (1.8) and
(1.9), it will be assumed that the vector function f0 : ]a, b[×R(m+1)n → Rn

satisfies the local Caratéodory conditions, i.e., f0(t, ·, . . . , ·) : R(m+1)n →
Rn is continuous for almost all t ∈ ]a, b[, f0(·, x0, x1, . . . , xn) : ]a, b[×Rn is
measurable for all xk ∈ Rn (k = 0, 1, . . . , m), and on the set ]a, b[×R(m+1)n

the following inequality is fulfilled:

‖f0(t, x0, x1, . . . , xm)‖ ≤ γ
(

t,
m

∑

k=0

‖xk‖
)

,
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where γ : ]a, b] × R+→R+ does not decrease in the second argument, and
γ(·, ρ) ∈ Lloc(]a, b]; R+) for ρ ∈ R+. As for τi : [a, b] → [a, b] (i = 1, . . . , m),
they are measurable, and

τi(t) ≤ t for a ≤ t ≤ b (i = 1, . . . ,m).

By f∗(·, c0, ρ) and f∗0 (·, c0, ρ) are meant the functions given by the equal-
ities

f∗(t, c0, ρ) = sup
{

f(t, c0 + y)(t) · sgn(y(t)) : y ∈ Cρ([a, b];Rn)
}

,

f∗0 (t; c0, ρ) = sup
{

f0(t, c0 + y0, c0 + y1, . . . , c0 + ym) · sgn(y0) :

y0 ∈ Rm
ρ , . . . , ym ∈ Rn

ρ

}

.

Definition 1.4. If b0 ∈ ]a, b], then
(i) for every x ∈ C([a, b0]; Rn) by f(x) is understood the vector function

given by the equality f(x)(t) = f(x)(t) for a ≤ t ≤ b0, where x(t) = x(t)
for a ≤ t ≤ b0 and x(t) = x(b0) for b0 < t ≤ b.

(ii) a continuous vector function x : [a, b0] → Rn is said to be a solution
of equation (1.1) (of inequality (1.3) or (1.5)) on the segment [a, b0] if x
is absolutely continuous on every segment contained in ]a, b0] and satisfies
equation (1.1) (inequality (1.3) or (1.5)) a. e. on ]a, b0[;

(iii) a vector function x : [a.b0[→ Rn is said to be a solution of equation
(1.1) (of inequality (1.3) or (1.5)) on a half-open interval [a, b0[ if for ev-
ery b1 ∈ ]a, b0[ the restriction of x on [a, b1] is a solution of this equation
(inequality) on the segment [a, b1];

(iv) a solution x of equation (1.1) (of inequality (1.3) or (1.5)) satisfying
the initial condition (1.2) (the initial condition (1.4) or (1.6)) is said to be
a solution of problem (1.1), (1.2) (of problem (1.1), (1.4) or (1.5), (1.6)).

Definition 1.5. A solution x of equation (1.1) defined on a segment
[a, b0] ⊂ [a, b[ (on a half-open interval [a, b0[⊂ [a, b[) is said to be continuable
if for some b1 ∈ ]b0, b] (b1 ∈ [b0, b]) equation (1.1) has a solution y on the
segment [a, b1] satisfying the condition x(t) = y(t) for a ≤ t ≤ b0. Otherwise
x is said to be noncontinuable.

Definition 1.6. A solution x∗ (solution x∗) of problem (1.1), (1.2) de-
fined in the interval I0 ⊂ [a, b] is said to be upper (lower) if an arbitrary
solution x of this problem defined in some interval I ⊂ [a, b] satisfies

x(t) ≤ x∗(t) (x(t) ≥ x∗(t)) for t ∈ I0 ∩ I.
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1.2. Existence of a Non-Continuable Solution of Problem (1.1),
(1.2). In [4] the following propositions are proved.

Theorem 1.1. Let there exist a positive number ρ and summable func-
tions p and q : [a, b] → R+ such that

lim sup
t→a

(

1
h(t)

t
∫

a

p(s)ds
)

< 1, lim
t→a

(

1
h(t)

t
∫

a

q(s)ds
)

= 0 (1.10)

and for every y ∈ Cρ([a, b]; Rn) the inequality

f(c0 + hy)(t) · sgn(y(t)) ≤ p(t)ν(y)(a, t) + q(t) (1.11)

is fulfilled a.e. on [a, b[. Then problem (1.1), (1.2) has at least one non-
continuable solution and every continuable solution of this problem is a re-
striction of some noncontinuable solution.

Corollary 1.1. Let for some ρ > 0, on the set ]a, b[×R(m+1)n
ρ the fol-

lowing inequality be fulfilled:

f0
(

t, c0 + h(t)y0, c0 + h(τ1(t))y1, . . . , c0 + h(τm(t))ym
)

· sgn(y0) ≤

≤
m

∑

k=0

pk(t)‖yk‖+ q(t),

where pk : [a, b] → R+ (k = 0, . . . , m) and q : [a, b] → R+ are summable
functions satisfying conditions (1.10), where p(t) =

∑m
k=0 pk(t). Then prob-

lem (1.7), (1.2) has at least one noncontinuable solution, and every con-
tinuable solution of this problem is a restriction of some noncontinuable
solution.

1.3. Theorems on the Existence of Upper and Lower Solution of
Problem (1.1), (1.2).

Theorem 1.2. Let f be a nondecreasing operator satisfying the condi-
tions of Theorem 1.1. Let, moreover, b∗ ∈ ]a, b] be such that the interval
of definition of an arbitrary noncontinuable solution of problem (1.1), (1.2)
contains the segment [a, b∗]. Then problem (1.1), (1.2) has on the segment
[a, b∗] the upper and the lower solution.

Corollary 1.2. Let f be a nondecreasing operator and for some ρ > 0
and b∗ ∈ ]a, b] let the inequality

b∗
∫

a

f∗(t; c0, ρ)dt < ρ (1.12)
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be fulfilled. Then the interval of definition of an arbitrary noncontinuable
solution of problem (1.1), (1.21) contains the segment [a, b∗] and this problem
has on [a, b∗] the upper and the lower solution.

Let n = 1 and f(x)(t) = g(t, x(t)), where f0 : [a, b]×R → R is a function
from the Carathéodory class. Then we can exclude from Corollary 1.2 the
requirement for f to be a non-decreasing operator (see [1], Ch. II, §1,
Theorem 1.2). However, if f is an arbitrary operator, then this requirement
is essential and it cannot be neglected. To verify the above-said, let us
consider

Example 1.1. J. Heidel [5]1 proved the existence of a continuous func-
tion p : [a, b] → ] −∞, 0[ such that the equation has on the segment [a, b]
a non-trivial solution u′′(t) = p(t)u1/3(t) which in any neighborhood of the
point b changes sign, and u(b) = u′(b) = 0. The function x(t) = u(b+a− t)
is obviously a non-zero solution of the problem

dx(t)
dt

=

t
∫

a

p(a + b− s)x1/3(s)ds, (1.13)

x(a) = 0. (1.14)

On the other hand, if for ρ = 1 we choose a number b∗ such that

(b∗ − a)

b∗
∫

a

|p(a + b− s)|ds < 1,

then the operator f(x)(t) =
∫ t

a p(a + b − s)x1/3(s)ds will satisfy condition
(1.12). However, since p is negative, the operator f is not nondecreasing.
Suppose that problem (1.13), (1.14) has on the interval [a, b∗] the upper
solution x∗. Since this problem has as well the zero solution, x∗(t) ≥ 0 for
a ≤ t ≤ b∗, whence, owing to the fact that p is negative and because of
(1.14), we obtain dx∗(t)

dt ≤ 0 for a ≤ t ≤ b∗ and x∗(t) = 0 for a ≤ t ≤ b∗.
But this contradicts the inequality x∗(t) ≥ x(t) for a ≤ t ≤ b∗, since the
solution x takes positive values in any right-hand neighborhood of the point
a. The above-obtained contradiction proves that problem (1.13), (1.14) has
no upper solution. The fact that this problem has no lower solution either
is proved analogously.

Corollary 1.3. Let f be a nondecreasing operator satisfying the condi-
tions of Theorem 1.1. Then problem (1.1), (1.2) has the noncontinuable
upper and the noncontinuable lower solution.

1See also [6], Theorem 17.7.
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Corollary 1.4. Let the vector function f0 be nondecreasing in the last
(m+1)n variables and let the conditions of Corollary 1.1 be fulfilled. More-
over, let b∗ ∈ ]a, b] be such that the interval of definition of an arbitrary
noncontinuable solution of problem (1.7), (1.2) contains the segment [a, b∗].
Then problem (1.7), (1.2) has on the segment [a, b∗] the upper and the lower
solution.

Corollary 1.5. Let the vector function f0 be nondecreasing in the last
(m + 1)n variables and let for some ρ > 0 and b∗ ∈ ]a, b] the inequality

b∗
∫

a

f∗0 (t; c0, ρ)dt < ρ

be fulfilled. Then problem (1.7), (1.21) has on the segment [a, b∗] the upper
and the lower solution.

Corollary 1.6. Let the vector function f0 be nondecreasing in the last
(m + 1)n variables and let the conditions of Corollary 1.2 be fulfilled. Then
problem (1.7), (1.2) has the noncontinuable upper and the noncontinuable
lower solution.

1.4. Theorems on Functional Differential Inequalities.

Theorem 1.3. Let f be a nondecreasing operator satisfying the condi-
tions of Theorem 1.1. Moreover, let x∗ be the upper solution (x∗ be the
lower solution) of problem (1.1), (1.2) on the interval I0 ⊂ [a, b], and let z
be a solution of problem (1.3), (1.4) (of problem (1.5), (1.6)) in the interval
I ⊂ [a, b]. Then

z(t) ≤ x∗(t) (z(t) ≥ x∗(t)) for t ∈ I ∩ I0. (1.15)

Corollary 1.7. Let f be a nondecreasing operator satisfying f∗(·; c0, ρ) ∈
L([a, b];R) for some ρ > 0. Moreover, let x∗ be the upper solution (x∗ be
the lower solution) of problem (1.1), (1.21) on the interval I ⊂ [a, b], and
let z be a solution of problem (1.3), (1.41) (of problem (1.5), (1.61)) on the
interval I ⊂ [a, b]. Then estimate (1.15) is valid.

Corollary 1.8. Let the vector function f0 be nondecreasing in the last
(m+1)n variables and let the conditions of Corollary 1.1 be fulfilled. More-
over, let x∗ be the upper solution (x∗ be the lower solution) of problem (1.7),
(1.2) on the interval I0 ⊂ [a, b], and let z be a solution of problem (1.8), (1.4)
(of problem (1.9), (1.6)) on the interval I ⊂ [a, b]. Then the estimate (1.15)
is valid.
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Corollary 1.9. Let the vector function f0 be nondecreasing in the last
(m + 1)n variables and let f∗0 (·; c0, ρ) ∈ L([a, b];R) for some ρ > 0. More-
over, let x∗ be the upper solution (x∗ be the lower solution) of problem
(1.7), (1.21), and let z be a solution of problem (1.8), (1.41) (of problem
(1.9), (1.61)) on the interval I ⊂ [a, b]. Then estimate (1.15) is valid.

Theorem 1.4. Let f be a nondecreasing operator satisfying the condi-
tions of Theorem 1.1. Moreover, let x∗ be the upper solution (x∗ be the lower
solution) of problem (1.1), (1.2) on the interval I0, and let z be a solution
of problem (1.3), (1.42) (of problem (1.5), (1.62)) on the interval I. Then

z(t) < x∗(t) (z(t) > x∗(t)) for t ∈ I ∩ I0. (1.16)

Corollary 1.10. Let the vector function f0 be nondecreasing in the last
(m+1)n variables and let the conditions of Corollary 1.1 be fulfilled. More-
over, let x∗ be the upper solution (x∗ be the lower solution) of problem
(1.7), (1.2), and let z be a solution of problem (1.8), (1.42) (of problem
(1.9), (1.62)). Then the estimate (1.16) is valid.

§ 2. Auxiliary Propositions

2.1. Lemma on an a priori estimate. In [4] the following Lemma is
proved.

Lemma 2.1. Let p and q : [a, b] → R+ be summable functions satisfying
conditions (1.10) and let numbers b0 ∈ ]a, b] and α ∈ ]0, 1[ be such that

t
∫

a

p(s)ds ≤ αh(t) for a ≤ t ≤ b0.

Then any solution x : [a, b0] → Rn of the differential inequality

x′′(t) · sgn(x(t)− c0) ≤ p(t)ν
( 1

h
(x− c0)

)

(a, t) + q(t) (2.1)

satisfying the initial condition (1.2) admits the estimate

‖x(t)− c0‖ ≤ h(t)ε(t) for a ≤ t ≤ b0, (2.2)

where ε(a) = 0 and

ε(t) =
1

1− α
sup

{

1
h(s)

s
∫

a

q(ξ)dξ : a < s ≤ t
}

for a < t ≤ b0. (2.3)
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2.2. Lemma on the Boundedness of a Set of Solutions of Problem
(1.1), (1.2). Denote by I∗(f ; c0, h) the set of those b∗ ∈]a, b] for which the
interval of definition of every noncontinuable solution of problem (1.1), (1.2)
contains the segment [a, b∗].

Lemma 2.2. If the conditions of Theorem 1.1 are fulfilled, then
I∗(f ; c0, h) 6= ∅. Moreover, for every b∗ ∈ I∗(f ; c0, h) the set X of re-
strictions of all noncontinuable solutions of problem (1.1), (1.2) on [a, b∗] is
a compact set of the space C([a, b∗]; Rn). Moreover, there exists a bounded
function h∗ : [a, b∗] → R+ such that

lim
t→a

h∗(t)
h(t)

= 0 (2.4)

and an arbitrary solution x ∈ X admitting the estimate

‖x(t)− c0‖ ≤ h∗(t) for a ≤ t ≤ b∗. (2.5)

Proof. Let ρ, b0, α and ε be the numbers and the function appearing in
Theorem 1.1 and Lemma 2.1. By (1.10) and (2.3), without loss of generality,
we may assume that

ε(t) < ρ for a ≤ t ≤ b0. (2.6)

Let x be an arbitrary noncontinuable solution of problem (1.1), (1.2)
which is defined on the interval I0. Let us show that [a, b0] ⊂ I0 and

‖x(t)− c0‖ < ρh(t) for a < t ≤ b0. (2.7)

Assume the contrary. Then by Corollary 3.1 from [4], there exists t0 ∈
]a, b0] ∩ I0 such that

‖x(t)− c0‖ < ρh(t) for a < t < t0, ‖x(t0)− c0‖ = ρh(t0). (2.8)

Due to conditions (1.11) and (2.8), the vector function x is a solution of prob-
lem (2.1), (1.2) on the interval [a, t0]. By Lemma 2.1, it admits the estimate
‖x(t) − c0‖ ≤ ε(t)h(t) for a ≤ t ≤ t0. From this, owing to (2.6), we find
that ‖x(t0)− c0‖ < ρh(t0), which contradicts condition (2.8). The obtained
contradiction proves that b0 ∈ I∗(f ; c0, h), and an arbitrary noncontinuable
solution x of problem (1.1), (1.2) admits estimate (2.7). Conditions (1.10),
(2.7) and Lemma 2.1 result in estimate (2.2).

Let b∗ ∈ I∗(f, c0, h), and let X be the set of restrictions of all noncontinu-
able solutions of problem (1.1), (1.2) on [a, b∗]. If b∗ = b0, then according
to the above arguments, X is the bounded set. Consider the case where
b0 < b∗, and prove that X is bounded. For any t ∈ ]a, b∗] assume

r(t) = sup{‖x(t)‖ : x ∈ X}, r∗(t) = sup{r(s) : a ≤ s ≤ t}.
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Because of (2.2), r∗(b0) < +∞. Denote by t∗ the exact upper bound
of the set of t ∈ [a, b∗] for which r∗(t) < +∞. Obviously, t∗ ∈ [b0, b∗].
Show that r∗(t∗) < +∞. Assume the contrary. Then t∗ > b0, and there
exist a sequence tk ∈]b0, t∗[ (k = 1, 2, . . . ) and a sequence (xk)∞k=1 of non-
continuable solutions of problem (1.1), (1.2) such that

lim
k→∞

tk = t∗, lim
k→+∞

‖xk(tk)‖ = +∞. (2.9)

By virtue of (1.10) and (2.2), for every β ∈ [b0, t∗[ and natural k we have
‖xk(t)− c0‖ ≤ hβ(t) for a ≤ t ≤ β, where

hβ(t) =

{

ε(t)h(t) for a ≤ t ≤ b0

‖c0‖+ r∗(β) for b0 < t ≤ β
, lim

t→a

hβ(t)
h(t)

= 0.

Applying now Lemma 2.1 from [4], it becomes clear that (xk)∞k=1 contains a
subsequence (xkj )

∞
j=1 which converges uniformly on every segment contained

in [a, t∗[ , and

x0(t) = lim
j→+∞

xkj (t) for a ≤ t < t∗ (2.10)

is a solution of problem (1.1), (1.2) on [a, t∗[ . According to one of the
conditions of the lemma, x0 is a continuable solution, and thus

r0 = sup
{

‖x0(t)‖ : a ≤ t < t∗
}

< +∞. (2.11)

Let

γ(t; δ) = sup
{

‖f(y)(t)‖; y ∈ Cδ([a, b];Rn)
}

. (2.12)

Then γ(·; δ) ∈ Lloc(]a, b];R+) for δ ∈ R+, and for every y ∈ C([a, b];Rn)
the inequality

f(y)(t) · sgn(y(t)) ≤ γ(t; ν(y)(a, t)) (2.13)

is fulfilled a.e. on ]a, b[ .
By (2.10), (2.11), and (2.13), there exist t∗ ∈ ]b0, t∗[ and a natural number

k0 such that

t∗
∫

t∗

γ(t, r0 + 2)dt < 1, ‖xk(t)‖ < r0 + 1 for a ≤ t ≤ t∗ (k = k0, k0 + 1, . . . ),

x′k(t) · sgn(xk(t)) ≤ γ(t, ν(xk)(a, t)) for a < t < t∗ (k = k0, k0 + 1, . . . ).

This, owing to Lemma 3.1 from [4], implies that

‖xk(t)‖ < r0 + 2 for a < t < t∗ (k = k0, k0 + 1, . . . ).
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But this contradicts condition (2.9). The obtained contradiction proves that
r∗(t∗) < +∞.

If now we again apply Lemma 3.1 from [4], then from the condition
r∗(t∗) < +∞ and the definition of t∗ we conclude that t∗ = b∗. Thus the
boundedness of X is proved. Moreover, we have proved that an arbitrary
solution x ∈ X admits estimate (2.5), where h∗(t) = ε(t)h(t) for a ≤ t ≤ b0,
h∗(t) = r∗(b∗) for b0 < t ≤ b∗, the function h∗ being bounded and satisfying
condition (2.4). This, due to Lemma 2.1 from [4], implies that X is a
compactum from C([a, b∗];Rn).

2.3. Lemmas on Differential Inequalities.

Lemma 2.3. Let f be a nondecreasing operator satisfying the conditions
of Theorem 1.1, and b∗ ∈ I∗(f ; c0, h). Then for an arbitrary solution z
of problem (1.3), (1.4) (of problem (1.5), (1.6)) defined on some segment
[a, b] ⊂ [a, b∗] there exists a solution x (a solution x) of problem (1.1), (1.2)
such that

z(t) ≤ x(t) (z(t) ≥ x(t)) for a ≤ t ≤ b. (2.14)

Proof. Let ρ be the number appearing in Theorem 1.1 and let z : [a, b] → Rn

be a solution of problem (1.3), (1.4).
By (1.4), there exists an absolutely continuous vector function z0 : [a, b] →

Rn such that

z(t) < z0(t) for a < t ≤ b (2.15)

and

ε0(t) = sup
{‖z0(s)− c0‖

h(s)
: a < s ≤ t

}

→ 0 for t → a. (2.16)

On the other hand, according to (1.10), we can choose the numbers b0 ∈ ]a, b[
and α ∈ ]0, 1[ such that

t
∫

a

p(s)ds ≤ αh(t), ε(t) = t− a +
1 + α
1− α

ε0(t) +

+
1

1− α
sup

{ 1
h(s)

s
∫

a

q(ξ)dξ : a < s ≤ t
}

< ρ for a < t ≤ b0. (2.17)

It is also clear that

lim
t→a

ε(t) = 0. (2.18)
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For any natural k suppose

tk = a +
b− a
2k

, fk(x)(t) =

{

z′0(t) for a < t ≤ tk
f(x)(t) for tk < t < b

(2.19)

and consider the differential equation

dx(t)
dt

= fk(x)(t). (2.20)

By virtue of Theorem 1.1, for every natural k problem (2.20), (1.21) has
a noncontinuable solution xk defined on some interval Ik.

By (2.16) and (2.19), it is clear that Ik ⊃ [a, tk],

xk(t) = z0(t) for a ≤ t ≤ tk (2.21)

and on ]a, tk] the following inequality is fulfilled:

‖xk(t)− c0‖ < ε(t)h(t). (2.22)

Let us show that Ik ⊃ [a, b0] and inequality (2.22) is fulfilled on the whole
]a, b0]. Assume the contrary. Then by Corollary 3.1 from [4], there exists
bk ∈ Ik∩ ]tk, b0[ such that

‖xk(t)− c0‖ < ε(t)h(t) for a < t < bk, (2.23)

‖xk(bk)− c0‖ = ε(bk)h(bk). (2.24)

Owing to (1.11), (2.17), (2.19) and (2.23), the inequality

‖xk(t)− c0‖′ = f(xk)(t) · sgn(xk(t)− c0) ≤

≤ p(t)ν
( 1

h
(xk − c0)

)

(a, t) + q(t)

is fulfilled a.e. on ]tk, bk[ . On the other hand, ‖xk(tk)−c0‖ = ‖z0(tk)−c0‖ ≤
ε0(tk)h(tk) ≤ ε0(t)h(t) for tk ≤ t ≤ bk and

ν
( 1

h
(xk − c0)

)

(a, t) ≤ ν
( 1

h
(xk − c0)

)

(a, tk) + ν
( 1

h
(xk − c0)

)

(tk, t) ≤

≤ ν
( 1

h
(z0 − c0)

)

(a, tk) + ν
( 1

h
(xk − c0)

)

(tk, t) ≤

≤ ε0(t) + ν
( 1

h
(xk − c0)

)

(tk, t) for tk ≤ t ≤ bk.

Therefore

‖xk(t)− c0‖ ≤ ‖xk(tk)− c0‖+

t
∫

tk

p(s)ν
( 1

h
(xk − c0)

)

(a, s)ds +

t
∫

tk

q(s)ds ≤
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≤ ε0(t)
[

h(t) +

t
∫

a

p(s)ds
]

+ ν
( 1

h
(xk − c0)

)

(tk, t)

t
∫

a

p(s)ds +

t
∫

a

q(s)ds,

‖xk(t)− c0‖
h(t)

≤ (1 + α)ε0(t) + αν
( 1

h
(xk − c0)

)

(tk, t) +

+
1

h(t)

t
∫

a

q(s)ds for a < t ≤ bk

which by (2.17), implies

ν
( 1

h
(xk − c0)

)

(tk, t) ≤ (1− α)[ε(t)− t + a] +

+αν
( 1

h
(xk − c0)

)

(tk, t) for a < t ≤ bk.

Therefore ν( 1
h (xk − c0))(tk, bk) ≤ ε(bk)− tk + a < ε(bk), which contradicts

equality (2.24). Thus we have shown that Ik ⊃ [a, b0] and inequality (2.22)
is fulfilled on ]a, b0].

By (2.15) and (2.21), if ˜t ∈ ]tk, b0] and ˜t− tk is sufficiently small, then on
]a,˜t] we have

z(t) < xk(t). (2.25)

Denote by t∗ the exact upper bound of the set of ˜t ∈ ]tk, b0] for which
inequality (2.25) is fulfilled on the interval [a,˜t]. Then because of inequality
(1.3) and the fact that the operator f is nondecreasing, we have

xk(t∗) = z0(tk) +

t∗
∫

tk

f(xk)(s)ds ≥ z0(tk) +

t∗
∫

tk

f(z)(s)ds ≥

≥ z0(tk) +

t∗
∫

tk

z′(s)ds = z0(tk)− z(tk) + z(t∗) > z(t∗).

This, by the definition of t∗, implies that t∗ = b0, and hence inequality
(2.25) is fulfilled on ]a, b0].

By Lemma 2.1 from [4], conditions (2.18), (2.19), and (2.22) ensure
the existence of a subsequence (xkj )

∞
j=1 of the sequence (xk)∞k=1 such that

(xkj )
∞
j=1 converges uniformly on [a, b0], and x0(t) = limj→∞ xkj (t) is a so-

lution of problem (1.1), (1.2) in [a, b0]. On the other hand, from (2.25) it is
clear that

z(t) ≤ x0(t) for a ≤ t ≤ b0. (2.26)
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For any x ∈ C([b0, b];Rn) assume

χ(x)(t) =

{

x0(t) + [x(b0)− z(b0)]− for a ≤ t ≤ b0

z(t) + [x(t)− z(t)]+ for b0 < t ≤ b
, (2.27)

˜f(x)(t) = f(χ(x))(t) for b0 ≤ t ≤ b. (2.28)

Obviously, ˜f : C([b0, b];Rn) → L([b0, b]; Rn) is a Volterra operator satisfying
the local Carathéodory conditions. Moreover, for any x ∈ C([b0, b]; Rn)
the inequality ‖ ˜f(x)(t)‖ ≤ γ̃(t, ‖x‖C) is fulfilled a.e. on [b0, b], where γ̃ :
[b0, b]× R+ → R+ does not decrease in the second argument, and γ̃(·; s) ∈
L([b0, b]; R) for s ≥ 0.

By Theorem 1.1, the problem

dx(t)
dt

= ˜f(x)(t), (2.29)

x(b0) = x0(b0) (2.30)

has a noncontinuable solution x̃ defined on some interval ˜I ⊂ [b0, b] whose
left end is equal to b0.

Because of conditions (1.3), (2.26)–(2.28) and the fact that the operator
f is nondecreasing, we have

χ(x̃)(t) =

{

x0(t) for a ≤ t ≤ b0

z(t) + [x̃(t)− z(t)]+ for t ∈ ˜I
, (2.31)

χ(x̃)(t) ≥ z(t) for t ∈ [a, b0] ∪ ˜I

and x̃′(t) = f(χ(x̃))(t) ≥ f(z)(t) ≥ z′(t) for almost all t ∈ ˜I. Taking into
account (2.26), we arrive at

x̃(t) ≥ x0(b0) + z(t)− z(b0) ≥ z(t) for t ∈ ˜I. (2.32)

Assume I = [a, b0] ∪ ˜I and x(t) = x0(t) for t ∈ [a, b0], x(t) = x̃(t) for
t ∈ ˜I.

By virtue of (2.31) and (2.32), x(t) = χ(x̃)(t) for t ∈ I. This implies
that x is a solution of problem (1.1), (1.2) on the interval I. If now we take
into consideration that x̃ is a noncontinuable solution of problem (2.29),
(2.30) and the interval of definition of an arbitrary noncontinuable solution
of problem (1.1), (1.2) contains the segment [a, b], then it becomes clear that
˜I = [b0, b] and I = [a, b]. Consequently, x is a solution of problem (1.1),
(1.2) on the interval [a, b] and, as follows from (2.26), (2.31), it satisfies
the inequality z(t) ≤ x(t) for a ≤ t ≤ b. Analogously, we can prove that
if z : [a, b] → Rn is a solution of problem (1.5), (1.6), then there exists a
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solution x of problem (1.1), (1.2) satisfying the inequality z(t) ≥ x(t) for
a ≤ t ≤ b.

Lemma 2.4. Let f be a nondecreasing operator, b0 ∈ ]a, b[ and let x be
a solution of equation (1.1) on the interval [a, b0]. Let, moreover,

ρ0 = max
{

‖x(t)‖ : a ≤ t ≤ b0
}

, (2.33)

and b1 ∈ ]b0, b] be such that

b1
∫

b0

γ(t, ρ0 + 2)dt < 1, (2.34)

where γ is a function given by equality (2.12). Then equation (1.1) has on the
interval [a, b1] a solution x (a solution x) such that x(t) = x(t) (x(t) = x(t))
for a ≤ t ≤ b0, and for any b ∈ ]b0, b1] an arbitrary solution z : [a, b] → Rn

of differential inequality (1.3) (of differential inequality (1.5)) satisfying on
z(t) ≤ x(t) (z(t) ≥ x(t)) for a ≤ t ≤ b0 admits the estimate z(t) ≤ x(t)
(z(t) ≥ x(t)) for a ≤ t ≤ b.

Proof. We will prove only the existence of the solution x, since the existence
of the solution x can be proved analogously.

For any y ∈ C([b0, b];Rn) we assume

χ(y)(t) =

{

x(t) + y(b0)− x(b0) for a ≤ t ≤ b0

y(t) for b0 < t ≤ b
, (2.35)

f1(y)(t) = f(χ(y))(t). (2.36)

Let ck ∈ Rn (k = 1, 2, . . . ) be an arbitrary sequence satisfying the in-
equalities

‖x(b0)− ck‖ <
1
k

(k = 1, 2, . . . ), (2.37)

ck > x(b0) (k = 1, 2, . . . ). (2.38)

For every natural k consider the initial value problem

dy
dt

= f1(y)(t), (2.39)

y(b0) = ck. (2.40)

Because of (2.12) and (2.33)–(2.35),

f∗1 (t; ck, 1) = sup
{

‖f1(ck + y)(t) · sgn(y(t))‖ : y ∈ C1([b0, b]; Rn)
}

≤
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≤ γ(t, ρ0 + 2) and

b1
∫

b0

f∗1 (t; ck, 1)dt ≤ 1.

This, according to Corollary 2.1 from [4], implies that problem (2.39), (2.40)
has on the interval [b0, b] a solution yk such that ‖yk(t)‖ ≤ ‖ck‖+ ‖yk(t)−
ck‖ ≤ ρ0 + 2, ‖y′k(t)‖ ≤ γ(t; ρ0 + 2) for b0 ≤ t ≤ b1.

Hence, the sequence (yk)∞k=1 is uniformly bounded and equicontinuous.
By Arzela–Ascoli’s lemma, it can be assumed to be uniformly convergent.
Let

y(t) = lim
k→∞

yk(t) for b0 ≤ t ≤ b1 (2.41)

and

x(t) = x(t) for a ≤ t ≤ b0, x(t) = y(t) for b0 < t ≤ b1. (2.42)

Since the operator f1 is continuous, by condition (2.37) y is a solution
of equation (1.1) under the initial condition y(b0) = x(b0). Taking this fact
into account, it follows from (2.35), (2.36) that χ(y)(t) ≡ x(t), f1(y)(t) ≡
f(x)(t), and hence x is a solution of equation (1.1) on the interval [a, b1].

Let b ∈]b0, b1] and let z : [a, b] → Rn be a solution of differential inequality
(1.3) satisfying the condition

z(t) ≤ x(t) for a ≤ t ≤ b0. (2.43)

Our aim is to prove that

z(t) ≤ x(t) for a ≤ t ≤ b. (2.44)

Due to (2.38) and (2.43), for every natural k the inequality

z(t) < yk(t) (2.45)

is fulfilled in a right-hand neighborhood of the point b0. Let us show that
this inequality is fulfilled on the whole [b0, b]. Assume the contrary. Then
there exists b ∈ ]b0, b] such that on [b0, b[ inequality (2.45) is fulfilled but for
t = b it does not hold. By (1.3), (2.35), (2.36) and the fact that the operator
f is nondecreasing, χ(yk)(t) > z(t) for a ≤ t < b and the inequality y′k(t) ≥
f(z)(t) ≥ z′(t) is fulfilled a.e. on ]a, b1[. Therefore yk(b) − z(b) ≥ yk(b0) −
z(b0) ≥ ck − x(b0) > 0, which contradicts our assumption that inequality
(2.45) does not hold for t = b. Thus we have proved that inequality (2.45)
is fulfilled on the whole [a, b].

By (2.41) and (2.42), from (2.43) and (2.45) we obtain estimate (2.44).
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§ 3. Proof of the Main Results

Proof of Theorem 1.2. We will prove only the existence of the upper solution,
since that of the lower solution is proved analogously.

Let X be the set of restrictions of all noncontinuable solutions of problem
(1.1), (1.2) on the segment [a, b∗]. By Lemma 2.2, X is a compactum in
C([a, b∗];Rn). Moreover, there exists a bounded function h∗ : [a, b∗] → R+

satisfying condition (2.4) such that every solution x ∈ X admits estimate
(2.5). On the other hand, there exists γ∗ ∈ Lloc(]a, b∗];R+) such that

‖x(t)− x(s)‖ ≤
t

∫

s

γ∗(ξ)dξ for x ∈ X, a < s < t ≤ b∗. (3.1)

Assume x∗i (t) = sup{xi(t) : x = (xj)n
j=1 ∈ X} and x∗(t) = (x∗i (t))

n
i=1.

Then from (2.5) and (3.1) we find

‖x∗(t)− c0‖ ≤ nh∗(t) for a ≤ t ≤ b∗, (3.2)

‖x∗(t)− x∗(s)‖ ≤ n

t
∫

s

γ∗(ξ)dξ for a < s < t ≤ b∗.

Consequently, x∗ is continuous on [a, b∗] and absolutely continuous on
every segment contained in ]a, b∗].

If we take into account that the operator f is nondecreasing, then from
the equality

x(t) = x(s) +

t
∫

s

f(x)(ξ)dξ for x ∈ X, a < s < t ≤ b∗

we have

x∗(t) < x∗(s) +

t
∫

s

f(x∗)(ξ)dξ for a < s < t ≤ b∗,

that is,

1
t− s

(x∗(t)− x∗(s)) ≤ 1
t− s

t
∫

s

f(x∗)(ξ)dξ for a < s < t ≤ b∗.

From the above it is clear that the inequality dx∗(t)
dt ≤ f(x∗)(t) is fulfilled

a.e. on ]a, b∗[. On the other hand, by (2.4) and (3.2),

lim
t→a

‖x∗(t)− c0‖
h0(t)

= 0.
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Hence z(t) = x∗(t) is a solution of problem (1.3), (1.4) in [a, b∗]. Therefore,
as follows from Lemma 2.3, problem (1.1), (1.2) has on the interval [a, b∗] a
solution x such that x∗(t) ≤ x(t) for a ≤ t ≤ b∗. However, by the definition
of x∗, x(t) ≤ x∗(t) for a ≤ t ≤ b∗. Clearly, x∗(t) ≡ x(t), and x∗ is the upper
solution of problem (1.1), (1.2).

Proof of Corollary 1.2. By Theorem 1.2, it suffices to establish that the in-
terval of definition of every noncontinuable solution of problem (1.1), (1.21)
contains the segment [a, b∗].

Let x be an arbitrary noncontinuable solution of problem (1.1), (1.21)
defined on the interval I. Suppose y(t) = x(t) − c0. Then the inequality
y′(t) sgn(y(t)) ≤ f∗(t; c0, ν(y)(a, t)) is fulfilled a.e. on I, and ν(y)(a, a) = 0.
This, by Lemma 3.1 from [4] and inequality (1.12), implies that ‖y(t)‖ < ρ
for t ∈ [a, b∗] ∩ I. From this estimate, by virtue of Corollary 3.1 from [4],
we have I ⊃ [a, b∗].

Proof of Corollary 1.3. By Lemma 1.2 and Theorem 1.2, the set I∗(f ; c0, h)
is non-empty and for arbitrary fixed b0 ∈ I∗(f ; c0, h) problem (1.1), (1.2)
has in the interval [a, b0] the upper solution x∗0. Assume ρ0 = max{‖x∗0(t)‖ :
a ≤ t ≤ b0}.

Let γ be the function given by equality (2.12) and let (tk)∞k=1 be a se-
quence satisfying b0 < tk < tk+1 < b (k = 1, 2, . . . ), limk→∞ tk = b.

If
∫ t1

b0
γ(t, ρ0+2)dt ≤ 1, then we assume b1 = t1. If, however,

∫ t1
b0

γ(t, ρ0+

2)dt > 1, then we choose b1 ∈ ]b0, t1[ such that
∫ b1

b0
γ(t, ρ0 + 2)dt = 1. By

virtue of Lemma 2.4, equation (1.1) has in the interval [a, b1] a solution
x∗1 such that x∗1(t) = x∗0(t) for a ≤ t ≤ b0 and for any b ∈ ]b0, b1] an
arbitrary solution x : [a, b] → Rn of equation (1.1) satisfying the condition
x(t) ≤ x∗0(t) admits for a ≤ t ≤ b0 the estimate x(t) ≤ x∗1(t) for a ≤ t ≤ b.

Since x∗0 is the upper solution of problem (1.1), (1.2) on the interval [a, b0],
it is clear that x∗1 is the upper solution of this problem on the interval [a, b1].

Proceeding from the above-said, we prove by induction the existence of
an increasing sequence bk ∈]b0, b[ (k = 1, 2, . . . ) and of a sequence of vector
functions x∗k : [a, bk] → Rn (k = 1, 2, . . . ) such that for every natural k:

(i) x∗k is the upper solution of problem (1.1), (1.2) on the interval [a, bk];
(ii) either bk=tk or

∫ bk

bk−1
γ(t, ρk−1 +2)dt=1, where ρk−1=max{‖x∗k−1(t)‖ :

a ≤ t ≤ bk−1}.
Assume b∗ = limk→∞ bk, x∗(t) = x∗0(t) for a ≤ t < b0, x∗(t) = x∗k(t) for

bk−1 < t < bk (k = 1, 2, . . . ). Clearly, x∗ is the upper solution of problem
(1.1), (1.2) on [a, b∗[ . If b∗ < b, then owing to (ii), x∗ is a noncontinuable
solution.1 The solution x∗ is noncontinuable as well when b∗ = b and
sup{‖x∗(t)‖ : a ≤ t < b} = +∞. If, however, sup{‖x∗(t)‖ : a ≤ t <

1See the proof of Theorem 3.2 in [4].
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b} < +∞, then x∗ has at the point b the left-hand limit x∗(b−). Assume
x(t) = x∗(t) for a ≤ t < b, x(b) = x∗(b−) for t = b. Then x is the
noncontinuable upper solution of problem (1.1), (1.2).

When

f(x)(t) ≡ f0
(

t, x(t), x(τ1(t)), . . . , x(τm(t))
)

, (3.3)

from Theorem 1.1 and Corollary 1.3 follow respectively Corollaries 1.4 and
1.6, while from Corollary 1.2 follows Corollary 1.5.

Proof of Theorem 1.3. Let z be a solution of problem (1.3), (1.4) on the
interval I. Prove that in I0 ∩ I the inequality

z(t) ≤ x∗(t) (3.4)

is fulfilled. Assume the contrary. Then there exists b ∈ (I0 ∩ I)∩ ]a, b] such
that for t = b inequality (3.4) does not hold.

By Lemmas 2.2, 2.3 and Theorem 1.2, the set I∗(f ; c0, h) is non-empty
and for any t0 ∈ ]a, b[∩I∗(f ; c0, h) inequality (3.4) is fulfilled on [a, t0]. De-
note by b0 the exact upper bound of the set of t0 ∈ ]a, b[ for which inequality
(3.4) is fulfilled on the segment [a, t0]. Then according to our assumption,
b0 < b.

By Lemma 2.4, there exist b1 ∈ ]b0, b] and a solution x : [a, b1] → Rn of
equation (1.1) such that x(t) = x∗(t) for a ≤ t ≤ b0 and z(t) ≤ x(t) for
a ≤ t ≤ b1. Obviously, x is a solution of problem (1.1), (1.2). Therefore,
x(t) ≤ x∗(t) for a ≤ t ≤ b1. Consequently, inequality (3.4) is also fulfilled
on the segment [a, b1], which contradicts the definition of b0. The obtained
contradiction proves that inequality (3.4) is fulfilled on I0 ∩ I.

It can be proved analogously that if z is a solution of problem (1.5), (1.6)
on the interval I, then inequality z(t) ≥ x∗(t) is fulfilled on I0 ∩ I.

When h(t) ≡ 1, from the above proved theorem we obtain Corollary 1.7,
while when identity (3.3) is fulfilled, from Theorem 1.3 and Corollary 1.7
follow Corollaries 1.8 and 1.9.

Proof of Theorem 1.4. Let z be a solution of problem (1.3), (1.42) on the
interval I. Then in a right-hand neighborhood of the point a the inequality

z(t) < x∗(t) (3.5)

is fulfilled.
Let us show that it is fulfilled on the whole interval I ∩ I0. Assume the

contrary. Then there exists b0 ∈ I ∩ I0∩ ]a, b] such that inequality (3.5)
is fulfilled on ]a, b0[, but for t = b0 it does not hold. On the other hand,
since the operator f is nondecreasing, we have (x∗(t)− z(t))′ ≥ f(x∗)(t)−
f(z)(t) ≥ 0 a.e. on ]a, b0[ . Therefore x∗(b0) − z(b0) ≥ x∗(a) − z(a) > 0,
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which contradicts our assumption that (3.5) does not hold for t = b0. Thus
we have established that (3.5) is fulfilled on the whole I ∩ I0. It can be
proved analogously that an arbitrary solution z : I → Rn of problem (1.5),
(1.62) admits the estimate z(t) > x∗(t) for t ∈ I ∩ I0.

If identity (3.3) is fulfilled, then from Theorem 1.9 we obtain Corollary
1.10.
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