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TEST FOR DISCONJUGACY OF A DIFFERENTIAL
INCLUSION OF NEUTRAL TYPE

A. HAŠČÁK

Abstract. Generalizations of the disconjugacy for a differential in-
clusion of neutral type are given. The relation between these general-
izations and the existence of solutions of multipoint boundary value
problems is discussed and the tests for disconjugacy are established.
These tests are applicable to the linear differential equations of neu-
tral type, too.

In [1], the author has introduced the notions of disconjugate and strictly
disconjugate linear differential equations of neutral type. They are genera-
lizations of similar notions for ordinary differential equations without delay
and are closely related to the existence and uniqueness of the solution of mul-
tipoint boundary value problems for linear differential equations of neutral
type. The purpose of this paper is to generalize these notions for differen-
tial inclusions, to prove a relation between them and the existence of the
solution of multipoint boundary value problems for differential inclusions of
neutral type, and to give the tests for disconjugacy and strict disconjugacy
of differential inclusions of neutral type. These tests will be applicable to
the linear differential equations of neutral type also.

Consider the following nth order differential inclusion with delays of neut-
ral type

x(n)(t)∈A(t)x(n)(t−∆0(t))+
n

∑

i=1

m
∑

j=1

Bij(t)x(n−i)(t−∆ij(t)), n ≥ 1, (DI)

where

(i) A(t), Bij(t) (i = 1, . . . , n, j = 1, . . . , m) are lower semicontinuous
multivalued maps (see [2, p. 12]) of the interval I = [T0, T ), T ≤ ∞,
the values of which are convex closed subsets of R,
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(ii) the delays ∆0(t), ∆ij(t) (i = 1, . . . , n, j = 1, . . . ,m) are continuous
on I,

(iii) A + λB = {a + λb : a ∈ A, b ∈ B} for A,B ⊂ R and λ ∈ R.

The initial value problem (IVP) for (DI) is defined as follows. Let t0 ∈
[T0, T ) and let a continuous initial vector function Φ(t) = (φ0(t), . . . , φn(t))
be given on the initial set

Et0 :=
n
⋃

i=1

m
⋃

j=1

Eij
t0 ∪ E0

t0 ,

where

Eij
t0 :=

{

t−∆ij(t) : t−∆ij(t) < t0, t ∈ [t0, T )
}

∪ {t0}

for i = 1, . . . , n, j = 1, . . . , m and

E0
t0 :=

{

t−∆0(t) : t−∆0(t) < t0, t ∈ [t0, T )
}

∪ {t0}.

We have to find a solution x ∈ C(n)([t0, T )) of (DI) satisfying the initial
value conditions

x(k)(t0) = φk(t0),

x(k)(t−∆ij(t)) = φk(t−∆ij(t)) if t−∆ij(t) < t0,

k = 0, 1, . . . , n− 1, i = n− k, j = 1, . . . ,m,

(IV1)

x(n)(t0) = φn(t0),

x(n)(t−∆0(t)) = φn(t−∆0(t)) if t−∆0(t) < t0.
(IV2)

Remark 1. The set of all solutions of (DI) is not a linear space in general.
Now we shall define some notions and give preliminary results which will

be needed in the sequel:
Let A ⊂ R. Then |A| := sup{|a| : a ∈ A}. Let 2R denote the family of

all nonempty subsets of R and, let cf(R) be the set of all nonempty convex
closed subsets of R. For F : I → 2R, we let graph(F ) := {(t, x) ∈ I × R :
t ∈ I, x ∈ F (t)}. A function f : I → R such that f(t) ∈ F (t) for each t ∈ I
will be called a selection of F .

Lemma 1 (K. Deimling [2]). Let F : I → cf(R) be lower semiconti-
nuous. Then, given (t0, x0) ∈ graph(F ), F has a continuous selection f
such that f(t0) = x0.

In the sequel we shall assume that for A(t) from (DI) the inequality
|A(t)| ≤ A < 1 holds.

Theorem 1. Let the initial vector function Φ(t) be continuous and
bounded on Et0 , t0 ∈ [T0, T ). Then the initial value problem (DI), (IV1),
(IV2) has at least one solution on [t0, T ).
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Proof. By Lemma 1, we can associate to the initial value problem (DI),
(IV1), (IV2) the problem of finding a solution x(t) of the differential equation

x(n)(t) + a(t)x(n)(t−∆0(t)) +
n

∑

i=1

m
∑

j=1

bij(t)x(n−i)(t−∆ij(t)) = 0, n ≥ 1 (En)

(where a(t) (bij(t)) is a continuous selection of A(t) (Bij(t))) which satisfies
the initial value conditions (IV1), (IV2). But this problem, by Theorem 1
from [1], has exactly one solution on [t0, T ) which is also a solution of the
initial value problem (DI), (IV1) and (IV2).

Now for t0 ∈ I let us denote by B′(DI,t0) the set of all solutions of (DI)
with constant initial vector function

Φ(t) =
(

φ0(t), . . . , φn(t)
)

= (c0, . . . , cn) 6= (0, . . . , 0), t ∈ Et0 ,

and by B(DI,t0) the set of all x ∈ B′(DI,t0) with φ0(t) = 0, t ∈ Et0 .

Definition 1. A point ξ ∈ [t0, T ) is called a zero-point of order p of a
solution x ∈ B′(DI,t0) iff x(ξ) = · · · = x(p−1)(ξ) = 0 and x(p)(ξ) 6= 0. If
x(ξ) = 0 and also x(p)(ξ) = 0 for each p ∈ N , then we shall say that ξ is a
zero-point of order infinity.

The first zero-point of x ∈ B′(DI,t0) to the right of t0 which is at least
(n+1)th consecutive zero (counting also eventual zero ξ = t0 and including
multiplicity of zeros), will be denoted by η(x, t0). If such a point does not
exist, we put η(x, t0) = T .

Definition 2. By the first adjoint point to the point a ∈ [T0, T ) with
respect to (DI) we mean the point α1(a) := inf{η(x, a) : x ∈ B′(DI,a)}.

Definition 3. The differential inclusion (DI) is said to be strictly dis-
conjugate on an interval J ⊂ I, iff a ∈ J ⇒ α1(a) 6∈ J .

Notation 1. Let a continuous vector function Φ(t) = (φ0(t), . . . , φn(t))
be defined on Et0 and let r0 ∈ {0, 1, . . . , n}. Then

H(t0,Φ, r0) :=
{

(

φ0(t), . . . , φr0−1(t), c0+φr0(t), . . . , cn−r0 +φn(t)
)

: ci ∈ R,

i = 0, 1, . . . , n− r0

}

.

Notation 2. Let Φ(t) = (φ0(t), . . . , φn(t)) be a continuous and bounded
vector function defined on Et0 . Let x(t) be a solution of (DI). Then we shall
write x ∈ ˜H(t0, Φ, r0), iff x(t) is determined by an initial vector function
from H(t0,Φ, r0).
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In the sequel, we shall consider the following boundary value problem
(BVP) for (DI) (see [1]): Let

τ0, τ1, . . . , τp ∈ J ⊂ I, τ0 < τ1 ≤ · · · ≤ τp, p ≤ n,

r0 ∈ {0, 1, . . . , n}; r1, . . . , rp ∈ N, r0 + r1 + · · ·+ rp = n + 1,

β(1)
0 , . . . , β(r0)

0 , β(1)
1 , . . . , β(rp)

p ∈ R,

and Φ(t) = (φ0(t), . . . , φn(t)) be a continuous and bounded vector function
defined on Eτ0 such that φi−1(τ0) = β(i)

0 , i = 1, . . . , r0. The problem is to
find a solution x(t) of (DI) which satisfies the conditions

x(νk−1)(τk) = β(νk)
k , νk = 1, . . . , rk; k = 1, . . . , p, x ∈ ˜H(τ0, Φ, r0).

Theorem 2. Let (DI) be strictly disconjugate on an interval J . Then
each (BVP) for (DI) has at least one solution.

Proof. If (DI) is strictly disconjugate on J , then every associate differential
equation (En) is also strictly disconjugate on J (see [1]) and thus (BVP) for
(En) has exactly one solution (see Theorem 6 of [1]), which is also a solution
of (BVP) for (DI).

To prove a test for strict disconjugacy of (DI), we shall need the following
lemmas.

Lemma 2 (Levin [3]). Suppose y ∈ C(n)([a, b]) and

|y(n)(t)| ≤ µ, t ∈ [a, b],

y(a0) = y′(a1) = · · · = y(n−1)(an−1) = 0,

where a ≤ a0 ≤ a1 ≤ · · · ≤ an−1 ≤ b or a ≤ an−1 ≤ · · · ≤ a1 ≤ a0 ≤ b.
Then

|y(n−k)(t)| ≤ µ(b− a)k

k[k−1
2 ]![k

2 ]!

for a ≤ t ≤ b, k = 1, . . . , n.

As a consequence of this lemma, we have

Lemma 3. Suppose x ∈ B′(DI,t0), t0 ∈ [a, b) and

|x(n)(t)| ≤ µ for t0 ≤ t ≤ b,

x(a0) = x′(a1) = · · · = x(n−1)(an−1) = 0 (1)

where

t0 ≤ a0 ≤ a1 ≤ · · · ≤ an−1 ≤ b (2)



DIFFERENTIAL INCLUSION OF NEUTRAL TYPE: DISCONJUGACY 105

or

t0 ≤ an−1 ≤ · · · ≤ a1 ≤ a0 ≤ b. (3)

Then

|x(n−k)(t)| ≤ µ(b− a)k

k[k−1
2 ]![k

2 ]!
for t0 ≤ t ≤ b, k = 1, . . . , n,

and
∣

∣x(n−i)(t−∆ij(t))
∣

∣ ≤ µ(b− a)i

i[ i−1
2 ]![ i

2 ]!

for t0 ≤ t ≤ b, i = 1, . . . , n, j = 1, . . . , m.

Theorem 3. Suppose

|A(t)| ≤ A < 1, |Bij(t)| ≤ Bij (4)

for all t in a compact interval J = [a, b] (i = 1, . . . , n, j = 1, . . . , n). Then
the differential inclusion (DI) is strictly disconjugate on J if

χ(b− a) < 1−A, (5)

where

χ(h) :=
n

∑

i=1

∑m
j=1 Bij

i[ i−1
2 ]![ i

2 ]!
hi.

Proof. Suppose on the contrary that (DI) is not strictly disconjugate on J .
Then there is a point t0 ∈ [a, b) such that (DI) has a solution x ∈ B′(DI,t0)
with at least n + 1 zeros (including multiplicity) in [t0, b]. From this fact
and Rolle’s theorem, there are points a0, a1, . . . , an−1 such that inequalities
(2) or (3) and the equalities (1) are fulfilled. The interval [t0, an−1] is non-
degenerate, since x(t) cannot have a zero of multiplicity n + 1 at t0 (since
x ∈ B′(DI,t0)).

Let us denote an−1 = c. Applying Lemma 3 to the interval [t0, c], we
obtain

max
t0≤t≤c

∣

∣x(n−i)(t−∆ij(t))
∣

∣ ≤ µ(b− a)i

i[ i−1
2 ]![ i

2 ]!
, (6)

i = 1, . . . , n, j = 1, . . . ,m,

where µ := maxt0≤t≤c |x(n)(t)|. However, for some τ ∈ [t0, c] we have

max
t0≤t≤c

|x(n)(t)| = |x(n)(τ)| = µ. (7)
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From (7), (DI) and (6), we get

µ = |x(n)(τ)| ≤ Aµ +
n

∑

i=1

m
∑

j=1

Bij
∣

∣x(n−i)(τ −∆ij(τ))
∣

∣ ≤

≤ Aµ +
n

∑

i=1

m
∑

j=1

Bij
µ(b− a)i

i[ i−1
2 ]![ i

2 ]!
= µ

(

A +
n

∑

i=1

∑m
j=1 Bij

i[ i−1
2 ]![ i

2 ]!
(b− a)i

)

.

Evidently µ > 0 since otherwise x(t) would coincide on [t0, c] with a polyno-
mial of degree m < n and x(m)(t) would not vanish on [t0, c] (but x(m)(am) =
0). Hence χ(b− a) ≥ 1−A which is a contradiction with (5).

Definition 4. Let a ∈ I. By the adjoint point to the point a with respect
to (DI) we shall mean the point α(a) := inf{η(x, a) : x ∈ B(DI,a)}.

Definition 5. The differential inclusion (DI) is said to be disconjugate
on an interval J ⊂ I iff the implication a ∈ J ⇒ α(a) 6∈ J holds for each
a ∈ J .

Corollary 1. If the differential inclusion (DI) is strictly disconjugate on
an interval J , then it is disconjugate on J .

Remark 2. As we shall see, the evaluated length of the interval on which
(DI) is strictly disconjugate is less then the evaluated length of the interval
on which (DI) is disconjugate.

Theorem 4. Let the differential inclusion (DI) be disconjugate on an
interval J . Then each boudary value problem for (DI) with r0 ∈ {1, . . . , n}
has at least one solution.

Proof. If (DI) is disconjugate on J , then on this interval the associate dif-
ferential equation (En) is also disconjugate (see [1]). Thus the boundary
value problem for (En) with r0 ∈ {1, . . . , n} has exactly one solution which
is also a solution of BVP for (DI).

Lemma 4. Suppose x ∈ B(DI,t0), t0 ∈ [a, b) has at least n + 1 zeros on
[t0, b]. Then

(i) there are points a0, a1, . . . , a2n such that

t0 ≤ a0 ≤ a1 ≤ · · · ≤ a2n ≤ b, (8)

0 = x(a0) = x′(a1) = · · · = x(n−1)(an−1) = x(n)(an) =

= x(n−1)(an+1) = · · · = x′(a2n−1) = x(a2n) (9)

and

(ii) the subintervals [t0, an], [an, b] are nondegenerate.
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Proof. Let a(0)
1 , . . . , a(0)

n+1 be n + 1 zeros of x(t) such that

t0 ≤ a(0)
1 ≤ · · · ≤ a(0)

n+1 ≤ b.

Since x ∈ B(DI,t0), we have that t0 is a zero of x(t) of multiplicity less than
n + 1. Hence x(t) has at least two distinct zeros in [t0, b], i.e.,

t0 = a(0)
1 < a(0)

n+1 ≤ b.

By Rolle’s theorem there are n zeros a(1)
1 , . . . , a(1)

n of x′(t) such that

a(0)
i ≤ a(1)

i ≤ a(0)
i+1, i = 1, . . . , n, and t0 ≤ a(1)

1 < a(1)
n ≤ b.

Repeating this process we eventually obtain a zero a(n)
1 of x(n)(t) between

two zeros a(n−1)
1 , a(n−1)

2 of x(n−1)(t). The points

a(0)
0 , a(1)

1 , . . . , a(n−1)
1 , a(n)

1 , a(n−1)
2 , . . . , a(1)

n , a(0)
n+1

satisfy (8), (9) and since t0 ≤ a(n−1)
1 < a(n−1)

2 ≤ b we have t0 6= a(n)
1 6= b.

Remark 3. Statement (i) of Lemma 4 is in fact a consequence of Lemma
2 of [3].

Theorem 5. Suppose that the estimates (4) are valid. Then the inclu-
sion (DI) is disconjugate on [a, b] if

χ
(b− a

2

)

< 1−A. (10)

Proof. Suppose on the contrary that (DI) is not disconjugate on [a, b]. Then
there is a point t0 ∈ [a, b) such that (DI) has a solution x ∈ B(DI,t0) with
at least n+1 zeros (including multiplicity) in [t0, b]. By Lemma 4, there are
points a0, a1, . . . , a2n such that (8), (9) hold and the subintervals [t0, an],
[an, b] are not degenerate. Let us denote an = c. One of this subintervals,
say [t0, c], has length at most 1

2 (b− a). Applying Lemma 3 to this interval,
we obtain

max
t0≤t≤c

∣

∣x(n−i)(t−∆ij(t))
∣

∣ ≤ µ(b− a)i

2ii[ i−1
2 ]![ i

2 ]!
, i = 1, . . . , n, j = 1, . . . , m,

where
µ = max

t0≤t≤c
|x(n)(t)|.

However, for some τ ∈ [t0, c] we have

µ = |x(n)(τ)| ≤ Aµ +
n

∑

i=1

m
∑

j=1

Bij
∣

∣x(n−i)(τ −∆ij(τ))
∣

∣ ≤
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≤ Aµ +
n

∑

i=1

m
∑

j=1

Bij
µ(b− a)i

2ii[ i−1
2 ]![ i

2 ]!
= µ

(

A +
n

∑

i=1

∑m
j=1 Bij

2ii[ i−1
2 ]![ i

2 ]!
(b− a)i

)

.

Evidently µ > 0 since otherwise x(t) would coincide on [t0, c] with a polyno-
mial of degree m < n and x(m)(t) would not vanish on [t0, c] (but x(m)(am)
= 0).

Hence χ
(

b−a
2

)

≥ 1−A which is a contradiction with (10).
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