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ON THE CORRECTNESS OF NONLINEAR BOUNDARY
VALUE PROBLEMS FOR SYSTEMS OF GENERALIZED

ORDINARY DIFFERENTIAL EQUATIONS

M. ASHORDIA

Abstract. The concept of a strongly isolated solution of the nonlin-
ear boundary value problem

dx(t) = dA(t) · f(t, x(t)), h(x) = 0,

is introduced, where A : [a, b] → Rn×n is a matrix-function of bounded
variation, f : [a, b] × Rn → Rn is a vector-function belonging to a
Carathéodory class, and h is a continuous operator from the space of
n-dimensional vector-functions of bounded variation into Rn.

It is stated that the problems with strongly isolated solutions are
correct. Sufficient conditions for the correctness of these problems are
given.

1. Statement of the Problem and Formulation of the Results

Let A = (aij)n
i,j=1 : [a, b] → Rn×n be a matrix-function of bounded vari-

ation, f = (fi)n
i=1 : [a, b]× Rn → Rn be a vector-function belonging to the

Carathéodory class K([a, b] × Rn, Rn; A), and let h : BVs([a, b], Rn) → Rn

be a continuous operator such that the nonlinear boundary value problem

dx(t) = dA(t) · f(t, x(t)), (1.1)

h(x) = 0 (1.2)

has a solution x0.
Consider a sequence of matrix-functions of bounded variation Ak : [a, b] →

Rn×n (k = 1, 2, . . . ), a sequence of vector-functions fk : [a, b] × Rn → Rn,
fk ∈ K([a, b] × Rn, Rn; Ak) (k = 1, 2, . . . ) and a sequence of continuous
operators hk : BVs([a, b], Rn) → Rn (k = 1, 2, . . . ).
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In this paper sufficient conditions are given guaranteeing both the solv-
ability of the problem

dx(t) = dAk(t) · fk(t, x(t)), (1.1k)

hk(x) = 0 (1.2k)

for any sufficiently large k and the convergence of its solutions as k → +∞
to the solution of problem (1.1), (1.2).

An analogous question was studied in [1–4] for initial and boundary value
problems for nonlinear systems of ordinary differential equations.

The theory of generalized ordinary differential equations enables one
to investigate ordinary differential and difference equations from a unified
standpoint. Moreover, the convergence conditions for difference schemes
corresponding to the boundary value problems for systems of ordinary dif-
ferential equations can be obtained from the results concerning the correct-
ness of the boundary value problems for systems of generalized ordinary
differential equations [5–8].

Throughout the paper the following notation and definitions will be used:
R =]−∞, +∞[, R+ = [0, +∞[; Rn×m is a space of all real n×m matrices

X = (xij)
n,m
i,j=1 with the norm ‖X‖ = maxj=1,...,m

∑n
i=1 |xij |; Rn = Rn×1.

|X| =
(

|xij |
)n,m
i,j=1, [X]+ =

( |xij |+ xij

2

)n,m

i,j=1
.

Rn×m
+ =

{

(xij)
n,m
i,j=1 ∈ Rn×m : xij ≥ 0 (i = 1, . . . , n; j = 1, . . . ,m)

}

,

Rn
+ = Rn×1

+ .

If X ∈ Rn×n, then det(X) and X−1 are respectively the determinant of
X and the matrix inverse to X; I is the identity n× n matrix.

V b
a X is the total variation of the matrix-function X : [a, b] → Rn×m, i.e.,

the sum of total variations of the latter’s components; X(t−) and X(t+)
(X(a−) = X(a), X(b+) = X(b)) are the left and the right limit of the
matrix-function X at the point t ∈ [a, b],

d1X(t) = X(t)−X(t−), d2X(t) = X(t+)− x(t);

‖X‖s = sup
{

‖X(t)‖ : t ∈ [a, b]
}

.

BV([a, b], D) is a set of all X : [a, b] → D ⊂ Rn×m such that V b
a X < +∞.

BVs([a, b], Rn) is a normed space (BV([a, b], Rn); ‖ · ‖s).
If y ∈ BVs([a, b], Rn), then U(y; r) = {x ∈ BVs([a, b], Rn) : ‖x − y‖s <

r}; D(y; r) is a set of all x ∈ Rn such that inf{‖x− y(τ)‖ : τ ∈ [a, b]} < r.
If J ⊂ R and D1 ⊂ Rn, then C(J,D1) is a set of all continuous vector-

functions x : J → D1.
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If g ∈ BV([a, b], R), x : [a, b] → R and a ≤ s < t ≤ b, then v(g) : [a, b] →
R is defined by v(g)(a) = 0 and v(g)(t) = V t

a g for t ∈ (a, b];
∫ t

s
x(τ)dg(τ) =

∫

]s,t[
x(τ)dg(τ) + x(t)d1g(t) + x(s)d2g(s),

where
∫

]s,t[ x(τ)dg(τ) is the Lebesgue–Stieltjes integral over the open inter-

val ]s, t[ (if s = t, then
∫ t

s x(τ)dg(τ) = 0).
If G = (gij)

l,n
i,j=1 ∈ BV([a, b], Rl×n), X = (xjk)n,m

j,k=1 : [a, b] → D2 ⊂
Rn×m, and a ≤ s ≤ t ≤ b, then

V (X) =
(

v(xjk)
)n,m
j,k=1,

∫ t

s
dG(τ) ·X(τ) =

( n
∑

j=1

∫ t

s
xjk(τ)dgij(τ)

)l,m

i,k=1
.

L([a, b], D2; G) is a set of all matrix-functions (xjk)n,m
j,k=1 : [a, b] → D2

such that xjk is integrable with respect to gij (i = 1, . . . , l).
K([a, b]×D1, D2; G) is a Carathéodory class, i.e., the set of all mappings

F = (fjk)n,m
j,k=1 : [a, b]×D1 → D2 such that (a) fik(·, x) is measurable with

respect to the measures V (gij) and V (gij) − gij for x ∈ D1 (i = 1, . . . , l),
(b) F (t, ·) : D1 → D2 is continuous for t ∈ [a, b] and

sup
{

|F (·, x)| : x ∈ D0
}

∈ L([a, b], Rn×m;G)

for every compact D0 ⊂ D1.
K0([a, b] × D1, D2;G) is a set of all mappings F = (fjk)n,m

j,k=1 : [a, b] ×
D1 → D2 such that for every vector-function of bounded variation x :
[a, b] → D1 the function fjk(·, x(·)) is measurable with respect to the mea-
sures V (gij) and V (gij)− gij (i = 1, . . . , l).

If B ∈ BV([a, b], Rn), then M([a, b] × R+, Rn
+; B) is a set of all vector-

functions ω ∈ K([a, b] × R+, Rn
+; B) such that ω(t, ·) is nondecreasing and

ω(t, ·) = 0 for every t ∈ [a, b].
The inequalities between both the vectors and the matrices are under-

stood to be componentwise.
If B1 and B2 are normed spaces, then an operator g : B1 → B2 is called

positive homogeneous if g(λx) = λg(x) for every λ ∈ R+ and x ∈ B1.
A vector-function x ∈ BV([a, b], Rn) is said to be a solution of system

(1.1) if

x(t) = x(s) +
∫ t

s
dA(τ) · f(τ, x(τ)) for a ≤ s < t ≤ b.

By a solution of the system of generalized ordinary differential inequaliti-
es dx(t) ≤ dA(t)·f(t, x(t)) (≥) we mean a vector-function x ∈ BV([a, b], Rn)
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such that

x(t) ≤ x(s) +
∫ t

s
dA(τ) · f(τ, x(τ)) (≥) a ≤ s < t ≤ b.

Definition 1.1. Let l : BVs([a, b], Rn) → Rn be a linear continuous
operator and let l0 : BVs([a, b], Rn) → Rn

+ be a positive homogeneous conti-
nuous operator. We shall say that a matrix-function P : [a, b]×Rn → Rn×m

satisfies the Opial condition with respect to the triplet (l, l0; A) if:
(a) P ∈ K([a, b] × Rn, Rn×n; A) and there exists a matrix-function Φ ∈

L([a, b], Rn×n
+ ; A) such that

|P (t, x)| ≤ Φ(t) on [a, b]×Rn;

(b) for every B ∈ BV([a, b], Rn×n)

det
(

I + (−1)jdjB(t)
)

6= 0 for t ∈ [a, b] (j = 1, 2) (1.3)

and the problem

dx(t) = dB(t) · x(t), |l(x)| ≤ l0(x) (1.4)

has only the trivial solution provided there exists a sequence

yk ∈ BV([a, b], Rn) (k = 1, 2, . . . )

such that

lim
k→+∞

∫ t

a
dA(τ) · P (τ, yk(τ)) = B(t) uniformly on [a, b].

Let r be a positive number.

Definition 1.2. x0 is said to be strongly isolated in the radius r if there
exist P ∈ K([a, b]×Rn, Rn×n;A), q ∈ K([a, b]×Rn, Rn; A), a linear continu-
ous operator l : BVs([a, b], Rn) → Rn, and a positive homogeneous operator
˜l : BVs([a, b], Rn) → Rn such that:

(a) f(t, x) = P (t, x)x + q(t, x) for t ∈ [a, b], ‖x − x0(t)‖ < r and the
equality h(x) = l(x) + ˜l(x) is fulfilled on U(x0; r);

(b) the vector-functions α(t, ρ) = max{|q(t, x)| : ‖x‖ ≤ ρ} and β(ρ) =
sup{[|˜l(x)| − l0(x)]+ : ‖x‖s ≤ ρ} satisfy the conditions

lim
ρ→+∞

1
ρ

∫ b

a
dV (A)(t) · α(t, ρ) = 0, lim

ρ→+∞

β(ρ)
ρ

= 0 ;

(c) the problem

dx(t) = dA(t) ·
[

P (t, x(t))x(t) + q(t, x(t))
]

, (1.5)

l(x) + ˜l(x) = 0 (1.6)
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has no solution different from x0;
(d) the matrix-function P satisfies the Opial condition with respect to

the triplet (l, l0;A).

The notation
(

(Ak, fk, hk)
)+∞
k=1 ∈ Wr(A, f, h; x0)

means that:
(a) for every x ∈ D(x0; r)

lim
k→+∞

∫ t

a
dAk(τ) · fk(τ, x) =

∫ t

a
dA(τ) · f(τ, x) (1.7)

uniformly on [a, b];
(b)

lim
k→+∞

hk(x) = h(x) uniformly on U(x0; r); (1.8)

(c) there exists a sequence ωk ∈ M([a, b] × R+, Rn
+; Ak) (k = 1, 2, . . . )

such that

sup
{

∥

∥

∥

∫ b

a
dV (Ak)(τ) · ωk(τ, r)

∥

∥

∥ : k = 1, 2, . . .
}

< +∞, (1.9)

lim
s→0+

sup
{

∥

∥

∥

∫ b

a
dV (Ak)(τ) · ωk(τ, s)

∥

∥

∥ : k = 1, 2, . . .
}

= 0, (1.10)
∣

∣fk(t, x)− fk(t, y)
∣

∣ ≤ ωk(t, ‖x− y‖) (1.11)

on [a, b]×D(x0; r) (k = 1, 2, . . . ).

Remark 1.1. If for every natural m there exists a positive number µm
such that

ωk(t,mσ) ≤ µmωk(t, σ) for σ > 0, t ∈ [a, b] (k = 1, 2, . . . ),

then (1.9) follows from (1.10).
In particular, the sequence of functions

ωk(t, σ) = max
{

|fk(t, x)− fk(t, y)| : ‖x‖ ≤ ‖x0‖s + r,

‖y‖ ≤ ‖x0‖s + r, ‖x− y‖ ≤ σ
}

(k = 1, 2, . . . ) has the latter property.
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Definition 1.3. Problem (1.1), (1.2) is said to be (x0; r)-correct if for
every ε ∈ ]0, r[ and ((Ak, fk, hk))+∞k=1 ∈ Wr(A, f, h;x0) there exists a natural
number k0 such that problem (1.1k), (1.2k) has at least one solution con-
tained in U(x0; r), and any such solution belongs to the ball U(x0; r) for
any k ≥ k0.

Definition 1.4. Problem (1.1), (1.2) is said to be correct if it has the
unique solution x0 and for every r > 0 it is (x0; r)-correct.

Theorem 1.1. If problem (1.1), (1.2) has a solution x0 which is strongly
isolated in the radius r, then it is (x0; r)-correct.

Corollary 1.1. Let the inequality
∣

∣f(t, x)− P (t, x)x
∣

∣ ≤ α(t, ‖x‖) (1.12)

be fulfilled on [a, b]×Rn and

|h(x)− l(x)| ≤ l0(x) + l1(‖x‖s) for x ∈ BV([a, b], Rn), (1.13)

where l : BVs([a, b], Rn) → Rn and l0 : BVs([a, b], Rn) → Rn
+ are respec-

tively a linear continuous and a positive homogeneous continuous operator,
the matrix-function P satisfies the Opial condition with respect to the triplet
(l, l0; A), α ∈ K([a, b]×R+, Rn

+;A) is nondecreasing in the second variable,
l1 ∈ C(R+, Rn

+), and

lim
ρ→+∞

1
ρ

∫ b

a
dV (A)(t) · α(t, ρ) = lim

ρ→+∞

l1(ρ)
ρ

= 0. (1.14)

If problem (1.1), (1.2) has at most one solution, then it is correct.

Corollary 1.2. Let inequalities (1.12) and

P1(t) ≤ P1(t, x) ≤ P2(t) (1.15)

be fulfilled on [a, b]×Rn and let (1.13) hold, where l : BVs([a, b], Rn) → Rn

and l0 : BVs([a, b], Rn) → Rn are respectively a linear continuous and a
positive homogeneous continuous operator, P ∈ K0([a, b] × Rn, Rn×n; A),
Pk ∈ L([a, b], Rn×n; A) (k = 1, 2), α ∈ K([a, b] × R+, Rn

+;A) is non-
decreasing in the second variable, l1 ∈ C(R+, Rn

+) and (1.14) holds. Let,
moreover, (1.3) hold and let problem (1.4) have only a trivial solution for
every B ∈ BV([a, b], Rn×n) satisfying the inequality

∣

∣

∣

∣

B(t)−B(s)− 1
2

∫ t

s
dA(τ) ·

[

P1(τ) + P2(τ)
]

∣

∣

∣

∣

≤

≤ 1
2

∫ t

s
dV (A)(τ) ·

[

P2(τ)− P1(τ)
]

(1.16)
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for a ≤ s ≤ t ≤ b. If problem (1.1), (1.2) has at most one solution, then it
is correct.

Remark 1.2. Corollary 1.2 is of interest only in the case of P 6∈ K([a, b]×
Rn, Rn×n; A), since for P ∈ K([a, b]× Rn, Rn×n; A) it follows immediately
from Corollary 1.1.

Corollary 1.3. Let the conditions
∣

∣f(t, x)− P0(t)x
∣

∣ ≤ Q(t)|x|+ q(t, ‖x‖),
det

(

I + (−1)jdjA(t) · P0(t)
)

6= 0 (j = 1, 2) (1.17)

and
∥

∥|djA(t)| ·Q(t)
∥

∥

∥

∥

(

I + (−1)jdjA(t) · P0(t)
)−1∥

∥ < 1 (j = 1, 2) (1.18)

be fulfilled on [a, b]×Rn and let (1.13) hold, where l : BVs([a, b], Rn) → Rn

and l0 : BVs([a, b], Rn) → Rn
+ are respectively a linear continuous and a

positive homogeneous continuous operator, P0 ∈ L([a, b], Rn×n; A), Q ∈
L([a, b], Rn×n

+ ; A), q ∈ K([a, b]×R+, Rn
+; A) is nondecreasing in the second

variable, l1 ∈ C(R+, Rn
+), and

lim
ρ→+∞

1
ρ

∫ b

a
dV (A)(t) · q(t, ρ) = lim

ρ→+∞

l1(ρ)
ρ

= 0.

Moreover, let the problem
∣

∣dx(t)− dA(t) · P0(t)x(t)
∣

∣ ≤ dV (A)(t) ·Q(t)|x(t)|, |l(x)| ≤ l0(x) (1.19)

have only the trivial solution. If problem (1.1), (1.2) has at most one solu-
tion, then it is correct.

Corollary 1.4. Let the conditions
∣

∣f(t, x)− P (t)x
∣

∣ ≤ α(t, ‖x‖)

and

det
(

I + (−1)jdjA(t) · P (t)
)

6= 0 (j = 1, 2) (1.20)

be fulfilled on [a, b]×Rn and

|h(x)− l(x)| ≤ l1(‖x‖s) for x ∈ BV([a, b], Rn),

where l : BVs([a, b], Rn) → Rn is a linear continuous operator, P ∈ L([a, b],
Rn×n; A), α ∈ K([a, b]×R+, Rn

+; A) is nondecreasing in the second variable,
l1 ∈ C(R+, Rn

+), and (1.14) holds. Moreover, let the problem

dx(t) = dA(t) · P (t)x(t), l(x) = 0
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have only the trivial solution. If problem (1.1), (1.2) has at most one solu-
tion, then it is correct.

Corollary 1.5. Let conditions (1.17), (1.18) and
∣

∣f(t, x)− f(t, y)− P0(t)(x− y)
∣

∣ ≤ Q(t)|x− y|

be fulfilled on [a, b]×Rn and

|h(x)− h(y)− l(x− y)| ≤ l0(x− y) on BV([a, b], Rn),

where l : BVs([a, b], Rn) → Rn and l0 : BVs([a, b], Rn) → Rn
+ are respec-

tively a linear continuous and a positive homogeneous continuous operator,
P0 ∈ L([a, b], Rn×n; A), Q ∈ L([a, b], Rn×n

+ ; A), and problem (1.19) has only
the trivial solution. Then problem (1.1), (1.2) is correct.

Let t0 ∈ [a, b]. For every j ∈ {1, 2}, (−1)j(t − t0) < 0, c ∈ Rn and
ρ ≥ ‖c‖ by Xj(t, c, ρ) we denote a set of all solutions z of system (1.1) such
that z(t0) = c and ‖z(s)‖ < ρ for (t− s)(s− t0) > 0.

Corollary 1.6. Let h(x) = x(t0)− g(x), t0 ∈ [a, b], then the set

G =
{

g(x) : x ∈ BV([a, b], Rn)
}

is bounded and for any c ∈ G every local solution of system (1.1) satisfying
the condition

x(t0) = c (1.21)

can be continued to the whole segment [a, b]. Let, moreover, the matrix-
function A be continuous at the point t0, and for every j ∈ {1, 2}

lim
ρ→+∞

sup
(

inf
{

‖x + (−1)jdjA(t) · f(t, y)‖ − σ3−j(t, z) : ‖x‖ ≥ ρ,

‖y‖ = ρ, z ∈ Xj(t, c, ρ), c ∈ G
}

)

> 0 (1.22)

uniformly on {t ∈ [a, b] : (−1)j(t − t0) < 0}, where σj(t, z) = max{‖z(t)‖,
‖z(t) + (−1)jdjz(t)‖}. Then the unique solvability of problem (1.1), (1.2)
guarantees its correctness.

Corollary 1.7. Let t0 ∈ [a, b], c ∈ Rn, and let system (1.1) have the
unique solution x0 defined on the whole segment [a, b], satisfying the initial
condition (1.21). Moreover, let the matrix-function A be continuous at the
point t0 and for every j ∈ {1, 2}

lim
ρ→+∞

sup inf
{

‖x + (−1)jdjA(t) · f(t, y)‖ : |x‖ ≥ ρ,

‖y‖ = ρ
}

> ‖x0‖s (1.23)
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uniformly on {t ∈ [a, b] : (−1)j(t − t0) < 0}. Then problem (1.1), (1.2) is
correct.

Remark 1.3. If the matrix-function A is continuous on [a, b], then con-
dition (1.23) is fulfilled. In the case of discontinuous A in (1.23) the strict
inequality cannot be replaced by the nonstrict one. Below we shall give the
corresponding example.

Example 1.1. Let n = 1 and let m > 2 be a fixed natural number,
τi = a + i

m (b − a) (i = 0, . . . ,m); h(x) = x(t0) − c0, hk(x) = x(t0) − ck,
where c0 = 0, ck = 1

k (k = 1, 2, . . . ); A(t) = i for t ∈ [τi, τi+1[ (i =
0, . . . ,m− 1), A(b) = m, Ak(t) ≡ A(t) (k = 1, 2, . . . ); f(t, x) = fk(t, x) = 0
for t ∈ [a, τ1[∪ ]τ1, b], x ∈ Rn (k = 1, 2, . . . );

f(τ1, x) =











0 for x ∈]−∞, 0[ ,
(1 + cj+1 − cj)(x− j) + j + cj for x ∈ [j, j + 1[

(j = 0, 1, . . . );

fk(τ1, x) =































f(τ1, x) for x ∈]−∞, k − 1[∪]k + 1, +∞[ ,
(1− ck−1 − ck)(x− k)+
+k − ck for x ∈ [k − 1, k[ ,
(1 + ck+1 + ck)(x− k)+
+k − ck for x ∈ [k, k + 1[

(k = 1, 2, . . . ).

Then x0(t) ≡ 0, ((Ak, fk, hk))+∞k=1 ∈ Wr(A, f, h;x0) for every positive num-
ber r and for every natural k problem (1.1k), (1.2k) has the unique solution
xk(t) ≡ k. As for condition (1.23), it is transformed into the equality only
for t = τ1.

Corollary 1.8. Let there exist a solution x0 of problem (1.1), (1.2) and
a positive number r such that

∣

∣f(t, x)− f(t, x0(t))− P (t)(x− x0(t))
∣

∣ ≤ Q(t)|x− x0(t)|
for t ∈ [a, b], ‖x− x0(t)‖ ≤ r (1.24)

and
∣

∣h(x)− l(x− x0)
∣

∣ ≤ l∗
(

|x− x0|
)

for x ∈ U(x0; r), (1.25)

where l : BVs([a, b], Rn) → Rn and l∗ : BVs([a, b]; Rn
+) → Rn

+ are re-
spectively a linear continuous and a positive homogeneous nondecreasing
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continuous operator, P ∈ L([a, b], Rn×n;A), Q ∈ L([a, b], Rn×n
+ ; A). Let,

moreover, (1.20) be fulfilled on [a, b] and let the problem
∣

∣dx(t)− dA(t) · P (t)x(t)
∣

∣ ≤ dV (A)(t) ·Q(t)|x(t)|,
|l(x)| ≤ l∗(|x|)

(1.26)

have only the trivial solution. Then problem (1.1), (1.2) is (x0; r)-correct.

Corollary 1.9. Let every component fj (j = 1, . . . , n) of the vector-
function f have partial derivatives in the last n variables belonging to K([a, b]
×Rn, R; aij) (i = 1, . . . , n) and let there exist a solution x0 of problem (1.1),
(1.2) such that the operator h has the Frechet derivative l in x0. Let, more-
over,

det
(

I + (−1)jdjA(t) · F (t, x0(t))
)

6= 0 for t ∈ [a, b] (j = 1, 2)

and the problem

dx(t) = dA(t) · F (t, x0(t))x(t), l(x) = 0, (1.27)

where F (t, x) = ∂f(t,x)
∂x have only the trivial solution. Then problem (1.1),

(1.2) is (x0; r)-correct for any sufficiently small r.

2. Auxiliary Propositions

For every positive number ξ and a nondecreasing vector-function g :
[a, b] → Rn we put

Dj(a, b, ξ; g) =
{

t ∈ [a, b] : ‖djg(t)‖ ≥ ξ
}

(j = 1, 2).

Let R(a, b, ξ; g) be a set of all subdivisions {α0, τ1, α1, . . . , τm, αm} of the
segment [a, b] such that

(a) a = α0 < α1 < · · · < αm = b, α0 ≤ τ1 ≤ α1 ≤ · · · ≤ τm ≤ αm;
(b) if τi 6∈D1(a, b, ξ; g), then ‖g(τi)−g(αi−1)‖ < ξ, and if τi∈D1(a, b, ξ; g),

then αi−1 < τi and ‖g(τi−)− g(αi−1)‖ < ξ (i = 1, . . . , n);
(c) if τi 6∈ D2(a, b, ξ; g), then ‖g(αi)−g(τi)‖ < ξ, and if τi ∈ D2(a, b, ξ; g),

then τi < αi and ‖g(αi)− g(τi+)‖ < ξ (i = 1, . . . , n).

Lemma 2.1. The set R(a, b, ξ; g) is not empty.

We omit the proof of this lemma for it is analogous to that of Lemma 1.1.1
from [5].

Lemma 2.2. Let D ⊂ Rn and Ak ∈ BV([a, b], Rn×n) (k = 1, 2, . . . ),
fk ∈ K([a, b] × D, Rn;Ak) (k = 1, 2, . . . ), ωk ∈ M([a, b] × R+, Rn

+;Ak)
(k = 0, 1, . . . ), A0(t) ≡ A(t), and yk ∈ BV([a, b], D) (k = 1, 2, . . . ) be
sequences such that (1.7) is fulfilled uniformly on [a, b] × D and (1.11) is
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fulfilled on [a, b] × D for k ∈ {0, 1, . . . }, where f0(t, x) ≡ f(t, x). Let,
moreover, conditions (1.10) and

‖yk(t)− yk(s)‖ ≤ lk + ‖g(t)− g(s)‖
for a ≤ s < t ≤ b (k = 1, 2, . . . ) (2.1)

hold, where lk ≥ 0, lk → 0 as k → +∞ and g : [a, b] → Rn is a nondecrea-
sing vector-function. Then

lim
k→+∞

[ ∫ t

a
dAk(τ) · fk(τ, yk(τ))−

∫ t

a
dA(τ) · f(τ, yk(τ))

]

= 0

uniformly on [a, b]. (2.2)

Proof. Let for every natural k and t ∈ [a, b]

xk(t) =
∫ t

a
dAk(τ) · fk(τ, yk(τ))−

∫ t

a
dA(τ) · f(τ, yk(τ)).

We are to show that

lim
k→+∞

‖xk‖s = 0. (2.3)

Let ε be an arbitrary positive number. In view of (1.10) there exists a
positive number δ such that

∥

∥

∥

∥

∫ b

a
dV (Ak)(τ) · ωk(τ, 2δ)

∥

∥

∥

∥

< ε (k = 1, 2, . . . ). (2.4)

According to Lemma 2.1 the set R(a, b, δ; g) is not empty.
Let {α0, τ1, α1, . . . , τm, αm} ∈ R(a, b, δ; g) be fixed. For every natural k

we assume that

ỹk(t) =







































yk(t) for t ∈ {α0, τ1, α1, . . . , τm, αm};
yk(τi−) for t ∈]αi−1, τi[ , τi ∈ D1(a, b, δ; g);
yk(τi) for t ∈]αi−1, τi[ , τi 6∈ D1(a, b, δ; g);

or t ∈]τi, αi[ , τi 6∈ D2(a, b, δ; g);
yk(τi+) for t ∈]τi, αi[ , τi ∈ D2(a, b, δ; g);

(i = 1, . . . , m).

It is not difficult to see that
∥

∥yk(t)− ỹk(t)
∥

∥ < lk + δ for t ∈ [a, b] (k = 1, 2, . . . ).

Hence there exists a natural k0 such that
∥

∥yk(t)− ỹk(t)
∥

∥ < 2δ for t ∈ [a, b] (k ≥ k0).
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From this and (1.11) we have

‖xk‖s ≤
∥

∥

∥

∥

∫ b

a
dV (Ak)(τ) · ωk(τ, 2δ)

∥

∥

∥

∥

+
∥

∥

∥

∥

∫ b

a
dV (A)(τ) · ω0(τ, 2δ)

∥

∥

∥

∥

+

+ µ0k +
m

∑

i=1

(λik + 2µik + 2νik) for k ≥ k0, (2.5)

where

λik = sup
{

∥

∥

∥

∫

]s,t[
dAk(τ) · fk(τ, x)−

∫

]s,t[
dA(τ) · f(τ, x)

∥

∥

∥ : s, t ∈ [a, b],

x ∈
{

yk(τi−), yk(τi), yk(τi+)
}

}

(i = 1, . . . ,m),

µik = max
{

∥

∥djAk(αi) · fk(αi, yk(αi))−

− djA(αi) · f(αi, yk(αi))
∥

∥ : j ∈ {1, 2}
}

(i = 0, . . . ,m),

νik = max
{

∥

∥djAk(τi) · fk(τi, yk(τi))−

− djA(τi) · f(τi, yk(τi))
∥

∥ : j ∈ {1, 2}
}

(i = 1, . . . , m).

It follows from the conditions of the lemma and (1.7) that

lim
k→+∞

djAk(t) · fk(t, x) = djA(t) · f(t, x) (j = 1, 2)

and

lim
k→+∞

∫

]s,t[
dAk(τ) · fk(τ, x) =

∫

]s,t[
dA(τ) · f(τ, x)

uniformly on [a, b]×D. Therefore

lim
k→+∞

µ0k = 0 and

lim
k→+∞

(λik + 2µik + 2νik) = 0 (i = 1, . . . , m).
(2.6)

On the other hand, we may assume without loss of generality that
∥

∥

∥

∥

∫ b

a
dV (A)(τ) · ω0(τ, 2δ)

∥

∥

∥

∥

< ε.

Taking into account this fact, (2.4) and (2.6), it follows from (2.5) that
(2.3) is valid.

Remark 2.1. If the set D is bounded and continuous, (1.10) and (1.11)
hold, then condition (1.7) is fulfilled uniformly on [a, b] × D if and only if
for every x ∈ D it is fulfilled uniformly on [a, b].
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Lemma 2.3. Let y, yk ∈ BV([a, b], Rn) (k = 1, 2, . . . ) be vector-functions
such that

lim
k→+∞

yk(t) = y(t) for t ∈ [a, b].

Let condition (2.1) hold, where lk ≥ 0,lk → 0 as k → +∞, and let g :
[a, b] → Rn be a nondecreasing vector-function. Then

lim
k→+∞

‖yk − y‖s = 0.

Proof. Let ε be an arbitrary positive number, {α0, τ1, α1, . . . , τm, αm} ∈
R(a, b, ξ

5 ; g), and let nε be a natural number such that

li <
ε
5

and ‖yi(τ)− yk(τ)‖ <
ε
5

for τ ∈ {α0, τ1, α1, . . . , τm, αm} (i, k ≥ nε).

Assume that αj−1 < t < τj (j = 1, . . . , m). Then in view of (2.1) we
have

‖yi(t)− yk(t)‖ ≤
≤ ‖yi(t)− yi(τj)‖+ ‖yi(τj)− yk(τj)‖+ ‖yk(τj)− yk(t)‖ ≤

≤ li + lk + 2‖g(t)− g(τj)‖+ ‖yi(τj)− yk(τj)‖ <

<
3ε
5

+ 2‖g(τj)− g(αj−1)‖ < ε

for τj 6∈ D1

(

a, b,
ε
5
; g

)

(i, k ≥ nε) and

‖yi(t)− yk(t)‖ ≤
≤ ‖yi(t)− yi(αj−1)‖+ ‖yi(αj−1)− yk(αj−1)‖+ ‖yk(αj−1)− yk(t)‖ ≤

≤ li + lk + 2‖g(t)− g(αj−1)‖+ ‖yi(αj−1)− yk(αj−1)‖ <

<
3ε
5

+ 2‖g(τj−)− g(αj−1)‖ < ε

for τj ∈ D1

(

a, b,
ε
5
; g

)

(i, k ≥ nε).

The case τj < t < αj (j = 1, . . . , m) is considered analogously.

Lemma 2.4. Let condition (1.13) hold and inequality (1.12) be fulfilled
on [a, b]×Rn, where l : BVs([a, b], Rn) → Rn and l0 : BVs([a, b], Rn) → Rn

+
are respectively a linear continuous and a positive homogeneous continuous
operator, let the matrix-function P satisfy the Opial condition with respect
to the triplet (l, l0; A), α ∈ K([a, b] × R+, Rn

+;A) be nondecreasing in the
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second variable, l1 ∈ C(R+, Rn
+), and let (1.14) hold. Moreover, let g ∈

K([a, b]×Rn, Rn; G) be a vector-function such that

lim
ρ→+∞

1
ρ

∫ b

a
dV (G)(t) · γ(t, ρ) = 0,

where γ(t, ρ) = max{|g(t, x)| : ‖x‖ ≤ ρ}. Then the boundary value problem

dx(t) = dA(t) · f(t, x(t)) + dG(t) · g(t, x(t)), 1, h(x) = 0 (2.7)

is solvable.

Proof. Let problem (2.7) have a solution x. Put

z(t) =
∫ t

a
dG(τ) · g(τ, x(τ)) and y(t) = x(t)− z(t) for t ∈ [a, b].

Then the vector-function x̃ =
(y

z

)

will be a solution of the problem

dx(t) = d ˜A(t) · ˜f(t, x(t)), ˜h(x) = 0, (2.8)

where

˜A(t) =
(

A(t), 0
0, G(t)

)

,

˜f(t, x) =
(

f(t, x1 + xn+1, . . . , xn + x2n)
g(t, x1 + xn+1, . . . , xn + x2n)

)

on [a, b]×R2n,

and

˜h(x) =
(

h(x1 + xn+1, . . . , xn + x2n)
(xn+i(a))n

i=1

)

for x = (xi)2n
i=1 ∈ BV([a, b], R2n).

Conversely, if x̃ = (xi)2n
i=1 is a solution of problem (2.8), then x = (xi +

xn+i)n
i=1 will be a solution of problem (2.7). It is not difficult to show that

the conditions of the existence theorem (see [9, Theorem 1]) are fulfilled for
problem (2.8). Hence it is solvable as problem (2.7).

1A vector-function x ∈ BV([a, b], Rn) is said to be a solution of this system if it
satisfies the corresponding integral equality.
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3. Proof of the Main Results

Proof of Theorem 1.1. Let us assume that the theorem does not hold. Then
there exist ε ∈ ]0, r[ and ((Ak, fk, hk))+∞k=1 ∈ Wr(A, f, h; x0) such that for ev-
ery natural number k problem (1.1k), (1.2k) has either no solution belonging
to the ball U(x0; r) or at least one solution belonging to U(x0; r)\U(x0; ε).

Put

χ(t, x) =

{

x for ‖x− x0(t)‖ ≤ r,
x0(t) + r

‖x−x0(t)‖ (x− x0(t)) for ‖x− x0(t)‖ > r;
(3.1)

χ̃(x)(t) = χ(t, x(t)),

˜fk(t, x) = fk
(

t, χ(t, x)
)

(k = 1, 2, . . . )

and
˜hk(x) = hk(χ̃(x)) (k = 1, 2 . . . ).

By virtue of Lemma 2.4 the problem

dx(t) = dA(t) ·
[

P (t, x(t))x(t) + q(t, x(t))
]

+ dηk(χ̃(x))(t),

l(x) + ˜l(x) + γk(χ̃(x)) = 0,

where
γk(y) = hk(y)− h(y) for y ∈ BV([a, b], Rn)

and

ηk(y)(t) =
∫ t

a
dAk(τ) · fk(τ, y(τ))−

∫ t

a
dA(τ) · f(τ, y(τ))

for y ∈ BV([a, b], Rn),

is solvable for every natural k. From the above it is evident that it has a
solution xk satisfying the inequality

‖xk − x0‖s ≥ ε. (3.2)

It is clear that

xk(t) = xk(a) + zk(t) + ηk(x0)(t) for t ∈ [a, b] (k = 1, 2, . . . ), (3.3)

where

zk(t) =
∫ t

a
dA(τ) ·

[

P (τ, xk(τ))xk(τ) + q(τ, xk(τ))
]

+

+
∫ t

a
dAk(τ) ·

[

fk(τ, yk(τ))− fk(τ, x0(τ))
]

+

+
∫ t

a
dA(τ) ·

[

f(τ, x0(τ))− f(τ, yk(τ))
]
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and
yk(t) = χ(t, xk(t)).

In view of (1.11), (3.1) and Lemma 2.2

∣

∣ηk(yk)(t)− ηk(yk)(s)
∣

∣ ≤
∣

∣

∣

∣

∫ t

s
dV (Ak)(τ) · ωk(τ, r)

∣

∣

∣

∣

+

+
∣

∣

∣

∣

∫ t

s
dV (A)(τ) · ω0(τ, r)

∣

∣

∣

∣

+ δk for a ≤ s ≤ t ≤ b (k = 1, 2, . . . ) (3.4)

and

lim
k→+∞

δk = 0, (3.5)

where

ω0(τ, σ) =

= max
{

|f(τ, x)− f(τ, y)| : ‖x‖≤‖x0‖s + r, ‖y‖≤‖x0‖s + r, ‖x− y‖≤σ
}

and
δk = sup

{

|ηk(x0)(t)− ηk(x0)(s)| : a ≤ s ≤ t ≤ b
}

.

On the other hand, according to Lemma 1 from [9], there exists a positive
number ρ0 such that

‖xk‖s < ρ0

[

∥

∥β(‖xk‖s
)∥

∥ +
∥

∥

∥

∫ b

a
dV (A)(t) · α

(

t, ‖xk‖s
)

∥

∥

∥ + ζk

]

(k = 1, 2, . . . ),

where
ζk = sup

{

‖ηk(yk)(t)‖ : t ∈ [a, b]
}

+ ‖γk(yk)‖.

From this in view of (1.9), (3.4), (3.5) and the condition (b) of Definition
1.2 we have

ρ1 = sup
{

‖xk‖s : k = 1, 2, . . .
}

< +∞ (3.6)

and

|zk(t)− zk(s)| ≤ g(t)− g(s) for a ≤ s ≤ t ≤ b (k = 1, 2, . . . ), (3.7)

where

g(t) =
∫ t

a
dV (A)(τ) · ψ(τ)+sup

{∫ t

a
dV (Ak)(τ) · ωk(τ, r) : k = 1, 2, . . .

}

,

ψ(τ) = ρ1 max
{

|P (τ, x)| : ‖x‖ ≤ ρ1

}

+ α1(τ, ρ1) + ω0(τ, r).
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Hence the sequence (zk)+∞k=1 satisfies the conditions of Helly’s choice theo-
rem and condition (2.1), where lk = 0 (k = 1, 2, . . . ). Therefore with regard
to Lemma 2.3 and (3.6) we may assume without loss of generality that

lim
k→+∞

‖zk − z∗‖s = 0 and lim
k→+∞

xk(a) = c∗,

where z∗ ∈ BV([a, b], Rn), c∗ ∈ Rn. By this, (3.5) and (3.7) we have from
(3.3) that

|xk(t)− xk(s)| ≤ δk + g(t)− g(s)

for a ≤ s ≤ t ≤ b (k = 1, 2, . . . ) (3.8)

and

lim
k→+∞

‖xk − x∗‖s = 0, (3.9)

where x∗(t) ≡ c∗ + z∗(t). Using (3.8), it is not difficult to show that

‖yk(t)− yk(s)‖ ≤ ρ2
(

‖δk‖+ ‖V (x0)(t) + g(t)− V (x0)(s)− g(s)‖
)

for a ≤ s ≤ t ≤ b (k = 1, 2, . . . ), where ρ2 = 2 + r−1(ρ1 + ‖x0‖s).
Consequently, by virtue of Lemma 2.2 condition (2.2) is fulfilled. On the

other hand, in view of (1.8)

lim
k→+∞

γk(yk) = 0. (3.10)

By (2.2), (3.9) and (3.10), passing to the limit as k → +∞ in equalities
(3.3) and

l(xk) + ˜l(xk) + γk(yk) = 0,

we find that x∗ is the solution of the problem (1.5), (1.6).
Further, from (3.2) we have

‖x∗ − x0‖ ≥ ε.

But this is impossible, since according to the condition (c) of Definition
1.2 the latter problem has no solution differing from x0.

Proof of Corollary 1.1. According to Theorem 1 from [9] problem (1.1),
(1.2) has the unique solution x0 which, in view of conditions (1.12)–(1.14),
is strongly isolated in every radius r > 0. Hence, the corollary follows from
Theorem 1.1.

Proof of Corollary 1.2. According to Theorem 2 from [9], problem (1.1),
(1.2) has the unique solution x0. Let r be an arbitrary positive number. It
suffices to show that x0 is strongly isolated in the radius r.
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Let S be a set of all matrix-functions B ∈ BV([a, b], Rn×n), B(a) = 0,
satisfying (1.16) for a ≤ s ≤ t ≤ b. Then by Lemma 1 from [9] there exists
a positive number ρ0 such that

‖x‖s ≤ ρ0

[

∥

∥

[

|l(x)| − l0(x)
]

+

∥

∥ +

+ sup
{∥

∥

∥x(t)− x(a)−
∫ t

a
dB(τ) · x(τ)

∥

∥

∥ : t ∈ [a, b]
}]

for x ∈ BV([a, b], Rn), B ∈ S. (3.11)

Moreover, in view of (1.14) there exists a number ρ1 > ‖x0‖s + r such that

ρ0

[

‖l1(ρ)‖+
∥

∥

∥

∫ b

a
dV (A)(t) · α(t, ρ)

∥

∥

∥

]

< ρ for ρ ≥ ρ1. (3.12)

It is evident that

f(t, x) = ˜P (t)x + q̃(t, x) for t ∈ [a, b], ‖x− x0(t)‖ < r,

where

˜P (t) =
1
2
[

P1(t) + P2(t)
]

,

q̃(t, x) =
[

f(t, x)− ˜P (t)x
]

χ(‖x‖) on [a, b]×Rn

and

χ(s) =











1 for 0 ≤ s < ρ1,
2− τ

ρ1
for ρ1 ≤ s < 2ρ1,

0 for s ≥ 2ρ1.

(3.13)

It follows from (1.13) and (1.14) that the conditions (a), (b), and (d) of
Definition 1.2 are fulfilled for P = ˜P , q = q̃, l, l0, ˜l = h− l and A.

Let us show that the problem

dx(t) = dA(t) ·
[

˜P (t)x + q̃(t, x)
]

(3.14)

has no solution differing from x0 and satisfying (1.6). Let y0 be an arbitrary
solution of problem (3.14), (1.6). Then y0 will be the solution of the system

dx(t) = dB(t) · x(t) + dA(t) ·
[

f(t, y0(t))− P (t, y0(t))y0(t)
]

χ
(

‖y0(t)‖
)

,

where

B(t) =
∫ b

a
dA(τ) ·

[

˜P (τ) +
(

P (τ, y0(τ))− ˜P (τ)
)

χ
(

‖y0(τ)‖
)]

.
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On the other hand, it follows from (1.15) and (3.13) that B ∈ S. Hence,
using (1.12), (1.13), (3.11) and (3.12), we obtain

‖y0‖s < ρ1.

But by (3.13) it is clear that every solution of system (3.14), admitting such
an estimate, is the solution of problem (1.1), (1.2). Therefore x0(t) ≡ y0(t),
and the condition (c) of Definition 1.2 is fulfilled, i.e., x0 is strongly isolated
in every radius r.

Proof of Corollary 1.3. Let

f(t, x) =
(

fi(t, x)
)n
i=1, q(t, ρ) =

(

qi(t, ρ)
)n
i=1,

P0(t) =
(

p0ij(t)
)n
i,j=1, Q(t) =

(

qij(t)
)n
i,j=1,

ηi(t, x) =
[

n
∑

j=1

qij(t)|xj |+ qi(t, ‖x‖) + 1
]−1

×

×
[

fi(t, x)−
n

∑

j=1

p0ij(t)xj

]

(i = 1, . . . , n)

and
pij(t, x) = p0ij(t) + qij(t)ηi(t, x) sign xj (i, j = 1, . . . , n)

for t ∈ [a, b], x = (xi)n
i=1 ∈ Rn, ρ ∈ R+. It is not difficult to verify that the

matrix-functions

P (t, x) =
(

pij(t, x)
)n
i,j=1, P1(t) = P0(t)−Q(t), P2(t) = P0(t) + Q(t)

and the vector-function

α(t, ρ) =
(

qi(t, ρ) + 1
)n
i=1

satisfy the condition of Corollary 1.2. Hence Corollary 1.3 follows from
Corollary 1.2.

Corollary 1.4 is a special case of Corollary 1.3, when Q(t) ≡ 0 and
l0(x) ≡ 0.

Corollary 1.5 follows from Corollary 1.3 and Theorem 4 from [9].

Proof of Corollary 1.6. By (1.22) there exist sequences of positive numbers
(ρk)+∞k=0 and (µk)+∞k=1 such that ρk → +∞ as k → +∞,

sup
{

‖g(x)‖ : x ∈ BV([a, b], Rn)
}

< ρk (k = 1, 2, . . . ) (3.15)

and
∥

∥x + (−1)jdjA(t) · f(t, y)
∥

∥ > µk > σ3−j(t, z) + ρ0

for ‖x‖ ≥ ρk, ‖y‖ = ρk, (−1)j(t− t0) < 0,
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z ∈ Xj(t, c, ρk), c ∈ G (j = 1, 2; k = 1, 2, . . . ). (3.16)

Let x0 be the unique solution of problem (1.1), (1.2). According to
Theorem 1.1 it is sufficient to establish that x0 is strongly isolated in the
radius rk = ρk − ‖x0‖s for every natural k.

Put
P (t, x) = 0, q(t, x) = f(t, χk(x)) on [a, b]×Rn

and

l(x) = x(t0), l0(x) = 0, ˜l(x) = −g(x) for x ∈ BV([a, b], Rn),

where

χk(x) =

{

x for ‖x‖ ≤ ρk,
r
‖x‖x for ‖x‖ > ρk.

It is obvious that the conditions (a), (b), and (d) of Definition 1.2 are
fulfilled. Let now y be an arbitrary solution of problem (1.5), (1.6), and let
c = g(y). By (3.15) and the fact that the matrix-function A is continuous
at the point t0, we have

t∗ > t0,

where
t∗ = sup

{

t : ‖y(s)‖ < ρk for t0 ≤ s ≤ t
}

.

Obviously, y ∈ X1(t∗, c, ρk), there exists y(t∗−), and

‖y(t∗−)‖ ≤ ρk.

From the above argument, due to (3.16) and the equality

y(t∗−) = y(t∗)− d1A(t∗) · f
(

t∗, χk(y(t∗))
)

we obtain
‖y(t∗)‖ < ρk.

Assume t∗ < b. If there exists a sequence τm > t∗ (m = 1, 2, . . . ) such
that τm → t∗ as m → +∞ and

‖y(τm)‖ ≥ ρk (m = 1, 2, . . . ),

then by the first inequality of (3.16)

‖y(τm−)‖ =
∥

∥y(τm)− d1A(τm) · f(τm, χk(y(τm)))‖ > µk (m = 1, 2, . . . ).

Hence,
‖y(t∗+)‖ = lim

m→+∞
‖y(τm−)‖ ≥ µk.

On the other hand, by the second inequality of (3.16) and the definition
of σ2(t, z) we have

µk > ‖y(t∗+)‖.
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The obtained contradiction shows that there exists a positive number δ
such that

‖y(t)‖ < ρk for t ∈ [t∗, t∗ + δ].

But this contradicts the definition of the point t∗. Therefore t∗ = b, and y
is the solution of system (1.1) on [a, b].

Analogously, we can show that y is the solution of system (1.1) on [a, t0].
It is now clear that y is the solution of problem (1.1), (1.2), and y(t) ≡ x0(t).
Thus the condition (c) of Definition 1.2 is likewise fulfilled.

Corollary 1.7 follows from Corollary 1.6 for g(x) = const.

Proof of Corollary 1.8. Put

P (t, x) = P (t), q(t, x) = f(t, χ(t, x))− P (t)χ(t, x),

˜l(x) = h(χ̃(x))− l(χ̃(x)), l0(x) = 0,

where χ is the function defined by (3.1), and χ̃(x)(t) = χ(t, x(t)). Then
the conditions (a), (b), and (d) of Definition 1.2 are fulfilled. According to
Theorem 1.1 it remains to show that the condition (c) is fulfilled. Let x̃ be
an arbitrary solution of problem (1.5), (1.6). Assume

x(t) = x̃(t)− x0(t).

As |χ(t, x̃(t)) − x0(t)| ≤ |x(t)| for t ∈ [a, b] and the operator l∗ is non-
decreasing, it follows from (1.24) and (1.25) that x is the solution of the
problem (1.26). But the latter problem has only the trivial solution. Thus
problem (1.5), (1.6) has no solution differing from x0.

Proof of Corollary 1.9. Let

P (t) = F (t, x0(t)).

By Theorem 1 from [7] the unique solvability of problem (1.27) guaran-
tees the existence of a positive number r such that problem (1.26) has no
nontrivial solution if

l∗(|x|) = α‖x‖s, (3.17)

α ∈ Rn
+, Q ∈ L([a, b], Rn×n

+ ;A), ‖α‖ ≤ δ,
∥

∥

∥

∥

∫ b

a
dV (A)(t) ·Q(t)

∥

∥

∥

∥

≤ δ. (3.18)

Choosing a number r > 0 such that

‖h(x)− l(x− x0)‖ ≤ δ
n
‖x− x0‖s for x ∈ U(x0; r) (3.19)
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inequality (3.18) will be fulfilled, where

Q(t) = max
{

|F (t, x)− P (t)| : ‖x− x0(t)‖ ≤ r
}

.

From the representation

f(t, x)− f(t, x0(t)) =
∫ 1

0
F (t, sx + (1− s)x0(t))ds · (x− x0(t))

and condition (3.19) follow inequalities (1.24) and (1.25), where l∗ is the
operator defined by (3.17), and α is the n-dimensional vector all of whose
components are equal to δ

n . On the other hand, by our choice of Q and
l∗ problem (1.26) has only the trivial solution. Thus, all conditions of
Corollary 1.8 that guarantee the (x0; r)-correctness of the problem (1.1),
(1.2) are fulfilled.

4. Application

Let En
k and ˜En

k be the spaces of all vector-function x : Nk → Rn and
x : ˜Nk → Rn with the norms ‖x‖k = max{‖x(i)‖ : i ∈ Nk} and ‖x‖

k̃
=

max{‖x(i)‖ : i ∈ ˜Nk}, respectively, where Nk = {1, . . . , k}, ˜Nk = {0, . . . , k}
(k = 1, 2, . . . ); let ∆ be the first order difference operator, i.e., ∆x(i− 1) =
x(i)− x(i− 1) for x ∈ ˜En

k and i ∈ Nk (k = 1, 2, . . . ).
By M(Nn×R+, Rn

+) we denote a set of all vector-functions ω : Nn×R+ →
Rn

+ such that ω(i, ·) is continuous and nondecreasing, and ω(i, 0) = 0 for
i ∈ Nn.

For the system of ordinary differential equations

dx(t)
dt

= f(t, x(t)) (4.1)

consider the boundary value problem

h(x) = 0, (4.2)

where f ∈ K([a, b]×Rn; Rn), and h : BVs([a, b], Rn) → Rn is a continuous
operator.

Along with problem (4.1), (4.2) let us consider its difference analogue

∆y(i− 1) =
1
k

fk(i, y(i)) (i = 1, . . . , k), (4.1k)

hk(y) = 0 (4.2k)

(k = 2, 3, . . . ), where fk(i, ·) : Rn → Rn is a continuous function for every
i ∈ Nk, and hk : ˜En

k → Rn is a continuous operator.
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Let νk : [a, b] → R (k = 1, 2, . . . ) be the functions defined by equations
νk(t) = i for t ∈ Iik ∩ [a, b] (i = 0, . . . , k), where Iik = [a + 2i−1

2k (b− a), a +
2i+1
2k (b− a)[ (i = 0, . . . , k).

Theorem 4.1. Let x0 be a solution of problem (4.1), (4.2), strongly iso-
lated in the radius r > 0, and let

lim
k→+∞

∥

∥

∥

∥

1
k

νk(t)
∑

i=1

fk(i, x)−
∫ t

0
f(τ, x)dτ

∥

∥

∥

∥

= 0

uniformly on [a, b] for every x ∈ D(x0; r). Moreover, let there exist a se-
quence ωrk ∈ M(Nn ×R+, Rn

+) (k = 1, 2, . . . ) such that

sup
{

∥

∥

∥

1
k

k
∑

i=1

ωrk(i, r)
∥

∥

∥ : k = 1, 2, . . .
}

< +∞,

lim
s→0+

sup
{

∥

∥

∥

1
k

k
∑

i=1

ωrk(i, s)
∥

∥

∥ : k = 1, 2, . . .
}

= 0

and
|fk(i, x)− fk(i, y)| ≤ ωrk(i, ‖x− y‖)

on Nk × D(x0; r) (k = 1, 2, . . . ). Then for every ε > 0 there exists a
natural number k0 such that a set Yrk of solutions of problem (4.1k), (4.2k),
satisfying the inequality

max
{

∥

∥

∥y(i)− x0
(

a +
i
k

(b− a)
)∥

∥

∥ : i ∈ ˜Nk

}

< r

is not empty, and

max
{

∥

∥

∥y(i)− x0
(

a +
i
k

(b− a)
)∥

∥

∥ : i ∈ ˜Nk

}

< ε for y ∈ Yrk (k > k0).

This theorem follows from Theorem 1.1, since problem (4.1k), (4.2k) can
be written in the form of problem (1.1k), (1.2k) for every k ∈ {2, 3, . . . }.
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