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EQUILIBRIUM FOR PERTURBATIONS OF
MULTIFUNCTIONS BY CONVEX PROCESSES

H. BEN-EL-MECHAIEKH AND W. KRYSZEWSKI

Abstract. We present a general equilibrium theorem for the sum of
an upper hemicontinuous convex valued multifunction and a closed
convex process defined on a noncompact subset of a normed space.
The lack of compactness is compensated by inwardness conditions re-
lated to the existence of viable solutions of some differential inclusion.

1. Introduction and Preliminaries

Equilibrium theorems provide sufficient conditions for the existence of an
equilibrium (or a zero) for a given multifunction Φ under certain constraints,
that is, a solution to the inclusion 0 ∈ Φ(x) required to belong to a certain
constraint set X.

Many important problems in nonlinear analysis can be reduced to equi-
librium problems (for example, the problem of existence of critical points for
smooth and non-smooth functions, the problem of existence of stationary
solutions to differential inclusions, etc.). In the mid-seventies B. Cornet [1]
derived an equilibrium theorem for multifunctions defined on compact con-
vex constraint sets from classical results of Ky Fan and F. Browder by using
the celebrated inf-sup inequality of Ky Fan [2] (see, for instance, Aubin [3]
and Aubin and Frankowska [4] and references therein).

The purpose of this paper is to present an equilibrium theorem for the
sum of an upper hemicontinuous multifunction with closed convex values
and a closed convex process defined on a closed convex subset of a normed
space (Theorem 3.1 below). The lack of compactness of the domain X is
compensated by tangency conditions of the Ky Fan-type on a compact sub-
set K of X and outside of it. These tangency conditions are necessary for the
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existence of viable solutions to a general differential inclusion. Our equilib-
rium theorem generalizes a classical result of G. Haddad [5] on the existence
of a stationary point of differential inclusions to noncompact viability do-
mains. It contains as particular cases results in [1], [4], Ben-El-Mechaiekh
[6], Bae and Park [7], Simons [8], and others.

All topological spaces in this paper are assumed to be Hausdorff spaces.
The closure and the boundary of a subspace A of a topological space are
denoted by A and ∂A respectively. The open ball of radius ε > 0 around a
subset A of a normed space E is denoted by BE(A, ε).

Locally convex real topological vector spaces are simply called locally
convex spaces. The topological dual of a topological vector space E is denoted
by E∗ and the convex hull of a subset K of E is denoted by co(K).

Given a subset X of a topological vector space E and an element x ∈ E,
SX(x) denotes the cone

⋃

t>0
1
t (X−x) spanned by X−x, and NX(x) denotes

the set {ϕ ∈ E∗ : 〈ϕ, x〉 ≥ supv∈X〈ϕ, v〉}. Observe that if E is a normed
space, X is convex in E, and x ∈ X, then SX(x) is precisely the tangent
cone to X at x and NX(x) is the negative polar cone of SX(x), called the
normal cone to X at x.

Given a subset K of a topological vector space E, the support function
of K is the function σ(K, .) : E∗ −→ R ∪ {+∞} defined as

σ(K, ϕ) := sup
y∈K

〈ϕ, x〉, ϕ ∈ E∗. (1)

We recall that the negative (respectively positive) polar cone of K is the
set

K− := {ϕ ∈ E∗ : σ(K, ϕ) ≤ 0} (K+ = −K− respectively). (2)

Observe that given two subsets K1,K2 of E and ϕ ∈ E∗,

σ(K1 + K2, ϕ) = σ(K1, ϕ) + σ(K2, ϕ). (3)

In particular, if K2 is a cone, then σ(K1 + K2, ϕ) = σ(K1, ϕ) if ϕ ∈ K−
2

and +∞ otherwise.
By the Hahn–Banach separation theorem, the closed convex hull of K is

characterized by

co(K) = {x ∈ E : 〈ϕ, x〉 ≤ σ(K, ϕ),∀ϕ ∈ E∗}. (4)

A multifunction Φ from a set X into a set F is a map from X into the
family P(F ) of all subsets of F. The multifunction Φ is said to be strict if all
of its values are nonempty. The domain of Φ is the set of all those elements
x ∈ X for which Φ(x) is nonempty. If F is a vector space, an element
x0 ∈ X is said to be an equilibrium for a multifunction Φ : X −→ P(F ) if
0 ∈ Φ(x0).
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This paper is particularily concerned with two types of multifunctions,
namely upper hemicontinuous multifunctions with convex values and closed
convex processes. Upper hemicontinuity is a weak form of upper semiconti-
nuity, and closed convex processes (introduced by Rockafellar [9]) are mul-
tivalued analogues of linear operators. For details concerning these two
concepts, we refer to [4].

Definition 1.1. A multifunction Φ : X −→ P(F ) from a topological
space X into a topological vector space F is said to be upper hemicontinuous
at x0 ∈ X if for any ψ ∈ F ∗, the function x 7−→ σ(Φ(x), ψ) is upper
semicontinuous at x0. It is said to be upper hemicontinuous on X, if and
only if it is upper hemicontinuous at each point of X.

Any upper semicontinuous multifunction from X into F supplied with
the weak topology is upper hemicontinuous. Conversely, if Φ is upper hemi-
continuous at a point x0 and if Φ(x0) is convex and weakly compact, then Φ
is also upper semicontinuous at x0. We recall that a finite sum and a finite
product of upper hemicontinuous multifunctions is upper hemicontinuous.

Definition 1.2. (i) A closed convex process Λ from a locally convex
space E into a locally convex space F is a multifunction Λ : E −→ P(F )
whose graph is a closed convex cone.

(ii) The transpose of a closed convex process Λ : E −→ P(F ) is the closed
convex process Λ∗ : F ∗ −→ P(E∗) defined by

ϕ ∈ Λ∗(ψ) ⇐⇒ 〈ϕ, x〉 ≤ 〈ψ, y〉, ∀x ∈ E, ∀y ∈ Λ(x). (5)

Important examples of closed convex processes are provided by contin-
gent derivatives of multifunctions.

If the domain of Λ is the whole space E, then the domain of Λ∗ is the
positive polar cone Λ(0)+.

A linear process is a multifunction whose graph is a vector subspace.
The support functions of a closed convex process Λ : E −→ P(F ) and of

its transpose Λ∗ are related by the following

Lemma 1.3 (see [4]). For every ψ0 in the interior of the domain of Λ∗

and for every x0 in the barrier cone b(Λ∗(ψ0)) := {x ∈ E : σ(Λ∗(ψ0), x) <
+∞} of Λ∗(ψ0), there exists y0 ∈ Λ(x0) such that

〈ψ0, y0〉 = σ(Λ∗(ψ0), x0) = −σ(Λ(x0),−ψ0). (6)

Let E and F be two normed spaces. Denote by Λ(E, F ) the normed
space of all closed convex processes from E into F equipped with the norm

‖Λ‖ := sup
u∈E\{0}

inf
v∈Λ(u)

‖v‖
‖u‖

.
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The uniform boundedness principle holds true for convex processes be-
tween normed spaces (again, see [4]); it implies the following crossed con-
vergence property.

Let us recall first that a mapping Λ : X −→ Λ(E, F ) is said to be
pointwise bounded if and only if

∀u ∈ E, ∃vx ∈ Λ(x)(u) with sup
x∈X

‖vx‖ < +∞. (7)

Lemma 1.4 ([10]). Let X be a topological space, E, F be normed spaces,
and Λ : X −→ Λ(E,F ) be pointwise bounded. Then the following conditions
are equivalent:

(a) the multifunction x 7−→ graph(Λ(x)) is lower semicontinuous;
(b) the multifunction (x, u) 7−→ Λ(x)(u) is lower semicontinuous.

2. Tangency in the sense of Ky Fan

Let E,F be two topological vector spaces, X be a subset of E, Φ : X −→
P(F ) be a multifunction with domain X, and Λ : X −→ Λ(E, F ) be a
mapping.

Definition 2.1. Given a subset X1 of X and a subset X2 of E, we say
that the multifunction Φ satisfies the condition of Ky Fan on (X1, X2) with
respect to Λ if and only if

Λ(x)(−SX2(x)) ∩ Φ(x) 6= ∅, ∀x ∈ X1. (8)

In other terms, the directions of Φ on X1 are controlled by a family of
cones depending on X1 and X2. Weaker forms of this tangency condition
were considered by various authors (e.g., [3], [6, [11], [8]). In the case where
E = F, Λ(x) ≡ −IdE , X1 = X2 = X, (8) reads as

Φ(x) ∩ SX(x) 6= ∅, ∀x ∈ X,

that is, the multifunction Φ is inward in the sense of Ky Fan [12].

Lemma 2.2. If the multifunction Φ satisfies the condition of Ky Fan on
(X1, X2) with respect to Λ, then

inf{σ(Φ(x), ψ) : ψ ∈ F ∗, Λ(x)∗(ψ) ∩NX2(x) 6= ∅} ≥ 0. (9)

The converse holds true whenever the values of Φ are compact.

Proof. Let x ∈ X1 be arbitrary and let ψ ∈ F ∗ be such that Λ(x)∗(ψ) ∩
NX2(x) 6= ∅. Choose an element y ∈ Φ(x) ∩ Λ(x)(−S(x)), that is, y is the
limit of a net {yi} with yi ∈ Λ(x)(vi),−vi = 1

ti
(xi − x) ∈ SX2(x), xi ∈

X2, ti > 0.
Clearly, ∀ϕ ∈ Λ(x)∗(ψ) ∩ NX2(x), 〈ϕ, x〉 ≥ 〈ϕ, xi〉 and thus 〈ϕ, vi〉 ≥ 0,

∀i. By (5) 〈ψ, yi〉 ≥ 〈ϕ, vi〉 ≥ 0, ∀i. Hence σ(Φ(x), ψ) ≥ 〈ψ, y〉 ≥ 0.
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Conversely, given x ∈ X1, if Φ(x) is compact, then the set Φ(x) −
Λ(x)(−SX2(x)) is closed and convex. Assume that (9) is satisfied and let
ψ ∈ F ∗ be such that Λ(x)∗(ψ) ∩ NX2(x) 6= ∅ and σ(Φ(x), ψ) ≥ 0. Ob-
serve that Λ(x)∗(ψ)∩NX2(x) 6= ∅ is equivalent to ψ ∈ Λ(x)∗−1(NX2(x)) =
Λ(x)∗−1(SX2(x)−) = Λ(x)∗−1(−SX2(x)+) which, by the bipolar theorem
(Theorem 2.5.7 in [4]), equals −[Λ(x)(−SX2(x))]− = −Λ(x)(−SX2(x))

−
.

By the remark following (3), σ(Φ(x) − Λ(x)(−SX2(x)), ψ) = σ(Φ(x), ψ).
The characterization (4) ends the proof.

Condition (8) is necessary for the solvability of the following differential
inclusion:

Λ(x′(t)) ⊂ Φ(x(t)), t ∈ [0, T ], (10)

where Λ : Rn −→ P(Rm) is a linear process, and Φ : Rn −→ P(Rm) is an
upper hemicontinuous multifunction with closed convex values. Let K be a
subset of Rn containing the initial point x(0) = x0.

Proposition 2.3. If x(.) is a solution of problem (10) satisfying the fol-
lowing condition:

∀T ′ ∈ (0, T ],∃t ∈ (0, T ′] such that x(t) ∈ K, (11)

then Λ(SK(x0)) ∩ Φ(x0) 6= ∅, that is, −Φ satisfies the condition of Ky Fan
on ({x0}, K) with respect to Λ.

Proof. By (11) there exists a sequence of positive reals {tk}k∈N converg-
ing to 0+ such that x(tk) ∈ K. Since ∀ψ ∈ Rm, the real function x 7−→
σ(Φ(x), ψ) is upper semicontinuous, then ∀ε > 0, ∃δψ > 0 such that

σ(Λ(x′(τ)), ψ) ≤ σ(Φ(x(τ)), ψ) < σ(Φ(x0), ψ) + ε‖ψ‖, ∀τ ∈ [0, δψ].

The definition of the transpose of a closed convex process (5) implies that

∀τ ∈ [0, δψ], 〈ϕ, x′(τ)〉 < σ(Φ(x0), ψ) + ε‖ψ‖, ∀ϕ ∈ Λ∗(ψ).

Hence,

∀k, ∀ϕ ∈ Λ∗(ψ),
1
tk

tk
∫

0

〈ϕ, x′(τ)〉dτ ≤ 1
tk

tk
∫

0

[σ(Φ(x0), ψ) + ε‖ψ‖]dτ

= σ(Φ(x0), ψ) + ε‖ψ‖.

We conclude that σ(Λ∗(ψ),vk〉 ≤ σ(Φ(x0), ψ) + ε‖ψ‖, vk = 1
tk

(x(tk) −
x0), ∀k. By Lemma 1.3 and since the domain of Λ∗ = Λ(0)+ = {0}+ =
Rm,∀k, ∃yk ∈ Λ(vk) such that 〈ψ, yk〉 = σ(Λ∗(ψ),vk〉. Being bounded by
the uniform boundedness principle, the sequence {yk}k∈N converges to some
y ∈ Λ(SK(x0)) satisfying the inequality 〈ψ, y〉 ≤ σ(Φ(x0), ψ) + ε‖ψ‖. Since
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ε and ψ are arbitrary, (4) implies that y ∈ Φ(x0). Finally, observe that
since Λ(0) = {0}, then Λ(SK(x0)) ∩ Φ(x0) 6= ∅ implies that Λ(−SK(x0)) ∩
−Φ(x0) 6= ∅.

Remark. If for all x0 ∈ K, there is a viable trajectory x(.) of the differ-
ential inclusion (10) in K (that is, x(t) ∈ K, ∀t ∈ [0, T ]) starting at x0,
then (11) is obviously satisfied and therefore −Φ satisfies the condition of
Ky Fan on (K, K) with respect to Λ.

We will see later (Corollary 3.2 below) that one of the consequences
of our main theorem is the existence of a stationary solution of (10) for
noncompact viability domains.

3. The Main Theorem

We state now our main theorem.

Theorem 3.1. Let X be a convex subset of a normed space E, F be a
normed space, Φ : X −→ P(F ) be a strict upper hemicontinuous multi-
function with closed convex values, and Λ : X −→ Λ(E, F ) be a continuous
mapping satisfying the boundedness condition:

(i) ∃M > 0 such that ∀x ∈ X, ∀u ∈ E with ‖u‖ = 1, ∃v ∈ Λ(x)(u) such
that ‖v‖ ≤ M.

Furthermore, assume that there exists a compact subset K of X such
that:

(ii) for each finite subset N of X, there exists a compact convex subset
CN of X containing N such that Φ satisfies the condition of Ky Fan on
(CN \K,CN ) with respect to Λ;

(iii) Φ satisfies the condition of Ky Fan on (K, X) with respect to Λ.
Then,
(A) Φ has an equilibrium;
(B) ∀x0 ∈ X, the multifunction Φ(.) + Λ(.)(.− x0) has an equilibrium.

Remarks. (1) This theorem remains valid in the context of spaces having
separating duals (e.g., locally convex spaces) or convex spaces in the sense
of [13].

(2) If ∀x ∈ X, Λ(x) is a linear process, then (B) is the coincidence
property:

∀x0 ∈ X, ∃x̂ ∈ X such that Λ(x̂)(x0) ∩ Φ(x̂) + Λ(x̂)(x̂) 6= ∅.

(3) In the case where X is compact, (i) follows from the continuity of
the operator Λ, and putting K = ∅ and CN = X for any N, (ii) and (iii)
reduce to:

(ii)′ Φ satisfies the condition of Ky Fan on (X,X) with respect to Λ;
that is the direction of the multifunction Φ is controlled by a family of
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convex cones. In this case, if for each interior point x ∈ X, Λ(x) is a
surjective process, (ii)′ is simply the tangency condition:

Φ satisfies the condition of Ky Fan on (∂X, X) with respect to Λ.

When X is compact and Λ(x) = `(x), x ∈ X, is a bounded linear operator
from E into F this result is precisely the solvability theorem in [4].

(4) In the case where ∀x ∈ X, Λ(x) ≡ ` is a bounded linear operator
from E into F, and CN = C is the same for all finite subsets N of X, this
result can be found in [6]. In this case (iii) is equivalent to:

Φ satisfies the condition of Ky Fan on (K ∩ ∂X,X) with respect to `,

and (B) guarantees the surjectivity of the perturbation Φ + ` onto `(X).
(5) In order to formulate our next result, we will consider a weaker form

of condition (ii) involving the concept of c-compactness of [13] in our main
theorem (for a particular case of this particular instance, see [7]). Recall
that a subset C of X is said to be c-compact in X if for each finite subset N
of X there exists a compact convex subset CN of X such that C∪N ⊂ CN .
Note that any bounded subset of a finite dimensional space is c-compact.
Condition (ii) in Theorem 8 may be replaced by

(ii)′′ ∃C c-compact ⊆ X such that Λ(−Sco({x}∪C)(x) ∩ Φ(x) 6= ∅,

∀x ∈ X \K.

As an immediate consequence of Remark 5 above, we obtain that exis-
tence of viable solutions in a noncompact domain implies the existence of a
stationary solution (or rest point) of the inclusion (10). More precisely, we
have

Corollary 3.2. Let X be a closed convex subset of Rn,K a compact
subset of X, C a c-compact subset of X, Λ : Rn −→ P(Rm) a strict linear
process, and Φ : X −→ P(Rm) a strict upper hemicontinuous multifunction
with closed convex values.

Assume that the following properties are satisfied:

(i) ∀x0 ∈ K, ∃x(.) solution of (10) starting at x0, such that ∀T ′ ∈ (0, T ],
∃t ∈ (0, T ′] with x(t) ∈ X;

(ii) ∀x0 ∈ X \ K, ∃x(.) solution of (10) starting at x0, such that ∀T ′ ∈
(0, T ], ∃t ∈ (0, T ′] with x(t) ∈ co({x0} ∪ C);

Then Φ has an equilibrium in X.

Remarks. (1) Conditions (i)–(ii) state that if a trajectory of (10) starts
in K then it must first enter X, and if it starts in X \ K then it is first
attracted by C in the sense that the trajectory must first enter the drop
with vertex at the initial point and base C.
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(2) When X is a compact convex viability domain of Φ, Rn = Rm and
Λ = IdRn , then (i) and (ii) are obviously satisfied with K = C = X and we
retrieve the equilibrium theorem of [4].

4. Proof of the Main Theorem

The starting point is the following generalization of the Browder–Ky
Fan fixed point theorem for convex-valued multifunctions with open fibers
defined on noncompact domains.

Theorem 4.1 ([14]). Let X be a convex subset of a topological vector
space and Φ : X −→ P(X) be a multifunction satisfying the following prop-
erties:

(i) ∀y ∈ Y, Φ−1(y) is open in X;
(ii) ∀x ∈ X, Φ(x) is convex nonempty;
(iii) there exists a compact subset K of X such that for any finite subset

N of X there exists a compact convex subset CN of X containing N such
that Φ(x) ∩ CN 6= ∅, ∀x ∈ CN \K.

Then, ∃x0 ∈ X with x0 ∈ Φ(x0).

Proof. Step 1. Assuming for simplicity that X is compact (this correponds
to the Browder–Ky Fan theorem), we can take K = ∅ and CN = X for
any finite subset N of X and show that Φ has a fixed point as in [15].
First observe that the multifunction Φ has a so-called Kuratowski selection,
that is: there exist a subset N = {y1, ..., yn} ⊂ X and a single-valued
continuous mapping s : X → co(N) such that s(x) ∈ Φ(x), ∀x ∈ X. Indeed,
observe that the family {Φ−1(y) : y ∈ X} forms an open cover of X. Since
X is compact, there exists a finite subset N = {y1, ..., yn} of X such that
X =

⋃n
i=1 Φ−1(yi). Let {λi : i = 1, ..., n} be a continuous partition of

unity subordinated to the open cover {Φ−1(yi); i = 1, ..., n} of X. Define
the continuous mapping s : X −→ co(N) by putting

s(x) :=
n

∑

i=1

λi(x)yi, x ∈ X.

Let x ∈ X be arbitrary. If λi(x) 6= 0, then x ∈ Φ−1(yi), hence yi ∈ Φ(x).
Since Φ(x) is convex, s(x) ∈ Φ(x). (Note here that the paracompactness
of X is sufficient for the existence of a continuous selection for Φ; without
compactness, however, the range of this selection is not necessarily finite-
dimensional.)

By the Brouwer fixed point theorem, the mapping s restricted to co(N),
s : co(N) −→ co(N) has a fixed point which is also a fixed point for Φ.

Step 2. Now by the same argument above, the restriction of Φ to the
compact set K has a Kuratowski selection s with values in a convex polytope
co(N) where N is a finite subset of X. Let CN be the compact convex subset
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of X provided by (iii) and containing the convex hull co(N) of N . Define
the “compression” of Φ to CN , ΦN : CN −→ P(CN ), as follows:

ΦN (x) := Φ(x) ∩ CN , x ∈ CN .

Let us first observe that ΦN has nonempty values. For, if x ∈ CN ∩K,
then s(x) ∈ Φ(x)∩co(N) ⊂ Φ(x)∩CN ; and if x ∈ CN \K, then ΦN (x) 6= ∅
by (iii). It is clear that ΦN has convex values and open fibers. Hence, it
has a fixed point by Step 1. This fixed point is also a fixed point for Φ.

It is well known that the celebrated inf-sup inequality of Ky Fan [2] is an
equivalent analytical formulation of the Browder–Ky Fan fixed point theo-
rem. The systematic formulation of coincidence and fixed point theorems
as nonlinear alternatives was presented in Ben-El-Mechaiekh, Deguire, and
Granas [14] and in [16]. Theorem 4.1 has the following convenient analytical
formulation.

Proposition 4.2. Let X be a convex subset in a topological vector space,
and f : X ×X −→ R∪ {+∞} be a function satisfying the following proper-
ties:

(i) ∀y ∈ X, x 7−→ f(x, y) is lower semicontinuous on X;
(ii) ∀x ∈ X, y 7−→ f(x, y) is quasiconcave on X.
Assume that there exists a compact subset K of X such that for every

finite subset N of X there exists a compact convex subset CN of X such
that:

(iv) ∀x ∈ CN \K, ∃y ∈ CN ∩X with f(x, y) > 0.
Then one of the following properties holds:
(a) ∃x0 ∈ K such that f(x0, y) ≤ 0, ∀y ∈ X; or
(b) ∃y0 ∈ X such that f(y0, y0) > 0.

Proof. Apply Theorem 4.1 to the multifunction Φ : X −→ P(X) defined as

Φ(x) := {y ∈ X : f(x, y) > 0}, x ∈ X.

The next result is a more general version of a remarkable theorem of Ky
Fan [12] and contains results of [17], [6], [18], and [8].

Theorem 4.3. Let X be a convex subset in a topological vector space, Y
a subset in {ϕ : X −→ R;ϕ is upper semicontinuous and quasiconcave}, and
Ψ : X −→ P(Y ) be a multifunction. Assume that the following properties
are satisfied:

(i) Ψ admits a continuous selection s;
(ii) there exists a compact subset K of X such that for each finite subset

N of X there exists a compact convex subset CN of X containing N such
that
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∀x ∈ CN \K, ∀ϕ ∈ Ψ(x), ϕ(x) < max
u∈CN

ϕ(u).

Then,

∃x0 ∈ K, ∃ϕ0 ∈ Ψ(x0) such that ϕ0(x0) = max
u∈X

ϕ0(u).

Proof. Define f : X ×X −→ R ∪ {+∞} by putting

f(x, y) := s(x)(y)− s(x)(x), (x, y) ∈ X ×X.

The function f satisfies hypotheses (i)–(ii) of Proposition 4.2. Moreover,
given any finite subset N of X, let x ∈ CN \ K and choose an y ∈ CN

satisfying s(x)(y) = maxu∈CN s(x)(u). By (ii), s(x)(x) < s(x)(y), that
is, f(x, y) > 0; hypothesis (iii) of Proposition 4.2 is thus satisfied. Since
f(y, y) = 0, ∀y ∈ X, it follows that property (a) of Proposition 4.2 holds,
that is, f(x0, y) ≤ 0 for some x0 ∈ X and all y ∈ X. The proof is complete
with ϕ0 = s(x0).

Corollary 4.4. Let X be a convex subset of a normed space E, F be a
normed space, Λ : X −→ Λ(E, F ) be a continuous mapping, and f : X ×
F ∗ −→ R ∪ {+∞} be two real functions satisfying the following conditions:

(i) ∃M > 0 such that ∀x ∈ X, ∀u ∈ E with ‖u‖ = 1, ∃v ∈ Λ(x)(u) such
that ‖v‖ ≤ M ;

(ii) ∀ψ ∈ F ∗, x 7−→ f(x, ψ) is upper semicontinuous on X;
(iii) ∀x ∈ X, ψ 7−→ f(x, ψ) is quasiconvex on F ∗.
Assume that there exists a compact subset K of X such that for each finite

subset N of X there exists a compact convex subset CN of X containing N
such that

(iv) ∀x ∈ CN \ K, ∀ψ ∈ F ∗, f(x, ψ) ≥ 0 provided that Λ(x)∗(ψ) ∩
NCN (x) 6= ∅.

Then one of the following conditions is satisfied:
(1) ∃x̂ ∈ X such that f(x̂, ψ) ≥ 0, ∀ψ ∈ F ∗; or
(2) ∃(x0, ψ0) ∈ K × F ∗ such that Λ(x0)∗(ψ0) ∩ NX(x0) 6= ∅ and

f(x0, ψ0) < 0.

Proof. Note first that being a subset of a normed space, X is paracompact.
Assume that conclusion (1) fails and define the multifunction Θ : X −→
P(F ∗) with domain X by putting

Θ(x) := {ψ ∈ F ∗ : f(x, ψ) < 0}, x ∈ X.

We claim that the multifunction Ψ : X −→ P(E∗) defined as

Ψ(x) := Λ(x)∗(Θ(x)) , x ∈ X,

admits a continuous selection.
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The multifunction Ψ can be viewed as the composition product X 1X×Θ−→
X × P(F ∗) Ω−→ P(E∗), where (1X × Θ)(x) = {x} × Θ(x) and Ω(x, ψ) =
Λ(x)∗(ψ), x ∈ X,ψ ∈ F ∗.

Hypotheses (ii)–(iii) imply that the multifunction Θ has convex values
and open fibers. Hence it admits a continuous selection t (see Step 1 in the
proof of Theorem 4.1). Clearly, 1X × t is a continuous selection of 1X ×Θ.

Note that ∀x ∈ X, ∀ψ ∈ F ∗, Ω(x, ψ) is closed and convex. If we show
that the multifunction Ω is lower semicontinuous, since X is paracompact
and P(E∗) is a Banach space, then Michael’s selection theorem would imply
the existence of a continuous selection s of the multifunction Ω(1X×t). This
selection s would clearly be a selection of Ψ.

In order to show that Ω is lower semicontinuous, according to Lemma
1.4 it suffices to show that the mapping x 7−→ Λ(x)∗ is pointwise bounded
and that the multifunction x 7−→ graph(Λ(x)∗) is lower semicontinuous.

Note first that the definition (5) of the transpose of a closed convex
process implies that

∀x ∈ X, ∀ψ ∈ F ∗, sup
ξ∈Λ(x)∗(ψ)

‖ξ‖ ≤ ‖Λ(x)‖ ‖ψ‖. (12)

By (i), ‖Λ(x)‖ = supu∈BE(0,1) infv∈Λ(x)(u) ‖v‖ ≤ M, x ∈ X; hence, (12)
implies that x 7−→ Λ(x)∗ is pointwise bounded.

In order to prove now that x 7−→ graph(Λ(x)∗) is lower semicontinuous,
let us first note that

∀x, x′ ∈ X, (Λ(x)− Λ(x′))∗ = Λ(x)∗ − Λ(x′)∗. (13)

Let x ∈ X and ε > 0 be arbitrary but fixed and let (ψ, ϕ) ∈ graph(Λ(x)∗).
By continuity of x 7−→ Λ(x), ∃δ > 0 such that

‖Λ(x)− Λ(x′)‖ <
ε
‖ψ‖

, ∀x′ ∈ BX(x, δ).

By (13), given any ϕ′ ∈ Λ(x′)∗(ψ), the linear functional ϕ−ϕ′ belongs to
(Λ(x)∗ − Λ(x′)∗)(ψ) = (Λ(x)− Λ(x′))∗(ψ). Hence,

‖ϕ− ϕ′‖ ≤ sup
ξ∈(Λ(x)∗−Λ(x′)∗)(ψ)

‖ξ‖ ≤ ‖Λ(x)− Λ(x′)‖ ‖ψ‖ < ε.

Thus, (ψ, ϕ) ∈ BF∗×E∗(graph(Λ(x′)∗), ε), ∀x′ ∈ BX(x, δ). We have proved
that, given any x ∈ X, the following containment is verified:

graph(Λ(x)∗) ⊂
⋂

ε>0

⋃

δ>0

⋂

x′∈BX(x,δ)

BF∗×E∗(graph(Λ(x′)∗), ε) =

= lim inf
x′→x

graph(Λ(x′)∗),

that is the multifunction x 7−→ graph(Λ(x)∗) is lower semicontinuous.
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All hypothesis of the Theorem 4.3 with Y = F ∗ are now satisfied; hence,
∃x0 ∈ K, ∃ϕ0 ∈ Ψ(x0) = Λ(x0)∗(ψ0) for some ψ0 ∈ Θ(x0), with ϕ0 ∈
NX(x0).

Remark. If X is compact, hypothesis (i) directly follows from the conti-
nuity of Λ.

We end this section with the proof of our main theorem.

Proof of Theorem 3.1. (A) We apply Corollary 4.4 to f(x, ψ) = σ(Φ(x), ψ).
Since Φ satisfies the condition of Ky Fan on (K, X) with respect to Λ,
Lemma 2.2 implies that σ(Φ(x), ψ) ≥ 0 for all x ∈ K and all ψ ∈ F ∗ such
that Λ(x)∗(ψ) ∩ NX(x) 6= ∅. Thus conclusion (2) of Corollary 4.4 fails.
Therefore, there exists x̂ ∈ X such that σ(Φ(x̂), ψ) ≥ 0 for all ψ ∈ F ∗. The
fact that x̂ is an equilbrium for Φ follows from the characterization (4) of
the closed convex hull in terms of the support function.

(B) Given any x0 ∈ X, define the multifunction Ψ : X → P(F ) by
putting

Ψ(x) := Φ(x) + Λ(x)(x− x0), x ∈ X.

The multifunction Ψ is upper hemicontinuous with closed convex values.
Given any finite subset N of X, Ψ satisfies the condition of Ky Fan on
(CN \K, co({x0} ∪ CN )) and on (K, X) with respect to Λ.

Let us prove that for any x ∈ CN \K,Λ(x)(−Sco({x0}∪CN )(x)∩Ψ(x) 6= ∅.
By hypothesis, there exists a net {yi}i∈I in Λ(−SCN (x)) converging to some
y ∈ Φ(x). For each i ∈ I, yi ∈ Λ(x)(− ci−x

ti
) for some ci ∈ CN , ti > 0. Let y′

be any element in Λ(x)(x− x0). For each i ∈ I, tḣe following containments
are satisfied:

yi + y′ ∈ Λ(x)
(

− ci − x
ti

)

+ Λ(x)(x− x0) ⊆

⊆ Λ(x)
(

−
(ci − x

ti
− x + x0

))

=

= Λ(x)
(

−
(1 + ti

ti

[ ci

1 + ti
+

ti
1 + ti

x0 − x
]))

⊆

⊆ Λ(x)
(

− Sco({x0}∪CN )(x)
)

.

Thus y + y′ ∈ Λ(x)(−Sco({x0}∪CN )(x) ∩Ψ(x). The proof of the fact that
Ψ satisfies the condition of Ky Fan on (K, X) with respect to Λ is similar.

The conclusion follows from part (A) applied to the multifunction Ψ.

5. Some Related Results

An immediate consequence of Corollary 4.4 is the following coincidence
property that generalizes a result of Ky Fan [12]:
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Proposition 5.1. Let X be a convex subset of a normed space E, F be
a normed space, Φ, Ψ : X −→ P(F ) be two upper hemicontinuous multi-
function with closed convex values, and Λ : X −→ Λ(E, F ) be a continuous
mapping satisfying the boundedness condition:

(i) ∃M > 0 such that ∀x ∈ X, ∀u ∈ E with ‖u‖ = 1,∃v ∈ Λ(x)(u) such
that ‖v‖ ≤ M.

Assume that there exist a compact subset K of X such that for each finite
subset N of X, there exists a compact convex subset CN of X containing N
such that:

(ii) ∀x ∈ CN \ K, ∀ψ ∈ F ∗, σ(Φ(x), ψ) ≥ infy∈Ψ(x)〈ψ, y〉 provided that
Λ(x)∗(ψ) ∩NCN (x) 6= ∅;

(iii) ∀x ∈ K, ∀ψ ∈ F ∗, σ(Φ(x), ψ) ≥ infy∈Ψ(x)〈ψ, y〉 provided that
Λ(x)∗(ψ) ∩NX(x) 6= ∅;

(A) If ∀x ∈ X one of the sets Φ(x) or Ψ(x) is weakly compact, then
∃x̂ ∈ X such that Φ(x̂) ∩Ψ(x̂) 6= ∅.

(B) If ∀x ∈ X both sets Φ(x) and Ψ(x) are weakly compact, then ∀x0 ∈ X,
∃x̂ ∈ X such that Ψ(x̂) ∩ [Φ(x̂) + Λ(x̂)(x̂− x0)] 6= ∅.

Proof. We only prove (A), the proof of (B) being an immediate conse-
quence of Theorem 3.1 (B). Since ∀x ∈ X, one of the sets Φ(x) or Ψ(x) is
weakly compact, then the set Φ(x)−Ψ(x) is closed and convex. Moreover,
infy∈Ψ(x)〈ψ, y〉 = −σ(−Ψ(x), ψ) and by (3), σ(Φ(x), ψ) + σ(−Ψ(x), ψ) =
σ(Φ(x)−Ψ(x), ψ), ∀x ∈ X, ∀ψ ∈ F ∗. Corollary 4.4 applied to the function
f(x, ψ) = σ(Φ(x) − Ψ(x), ψ) implies that the multifunction Φ − Ψ has an
equilibrium which is clearly a coincidence for Φ and Ψ.

Remarks. (1) According to Lemma 2.2, sufficient conditions for (ii) and
(iii) to hold true are:

(ii)′ Φ−Ψ satisfies the condition of Ky Fan on (CN \K, CN ) with respect
to Λ, that is,

[Ψ(x) + Λ(x)(−SCN (x))] ∩ Φ(x) 6= ∅, ∀x ∈ CN \K;

(iii)′ Φ − Ψ satisfies the condition of Ky Fan on (K,X) with respect to
Λ, that is,

[Ψ(x) + Λ(x)(−SX(x))] ∩ Φ(x) 6= ∅, ∀x ∈ K.

(2) Again, Proposition 5.1 is true in topological spaces having sufficiently
many linear functionals. It is a refinement (with tangency conditions involv-
ing a parametrized family of convex processes) of a coincidence theorem
of Ky Fan [12]. Ky Fan’s result corresponds to the case where E = F,
Λ(x) = IdE for all x, CN = K for all N.

(3) When Λ(x) ≡ ` is a bounded linear operator, this result can be found
in [6]. Particular forms of this result can be found in [3], [4], [7], [8] and
others.
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In the case where E = F and Ψ is the inclusion X ↪→ E, we obtain a
fixed point theorem for inward or outward multifunctions that generalizes
Ky Fan fixed point theorem. By way of illustration, we state this fixed point
property in the case where X is compact. We will say that the multifunction
Φ : X −→ P(E) is inward with respect to a continuous family of closed
convex processes Λ : X −→ Λ(E,E) if the following property is verified:

Φ(x) ∩ [x− Λ(x)(−SX(x))] 6= ∅, ∀x ∈ X.

The multifunction Φ is said to be outward with respect to Λ if

Φ(x) ∩ [x + Λ(x)(−SX(x))] 6= ∅, ∀x ∈ X.

Corollary 5.2. Assume that X is a compact convex subset of a normed
space E and that the multifunction Φ : X −→ P(E) is upper hemicontinuous
with nonempty closed convex values. If Φ is inward or outward with respect
to Λ, then it has a fixed point.
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