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CRITERIA OF UNITARY EQUIVALENCE OF HERMITIAN
OPERATORS WITH A DEGENERATE SPECTRUM

I. LOMIDZE

Abstract. Nonimprovable, in general, estimates of the number of
necessary and sufficient conditions for two Hermitian operators to
be unitarily equaivalent in a unitary space are obtained when the
multiplicities of eigenvalues of operators can be more than 1. The
explicit form of these conditions is given. In the Appendix the concept
of conditionally functionally independent functions is given and the
corresponding necessary and sufficient conditions are presented.

Let P, Q be the operators from a unitary n-dimensional space Un in Un,
and P , Q be the matrices of these operators in some orthonormal basis.
Description of a system of invariants of these matrices which enables one to
find out whether the given operators are unitarily equivalent is the classical
problem of the theory of invariants (see, e.g., [1, §2.2], [2] and the references
cited therein). In the author’s paper [3] it is shown that two matricess P,Q ∈
Mn(C) are unitarily equivalent iff the following conditions are fulfilled:

tr
{

P l
+P−Pm

+ P 2
−

}

= tr
{

Ql
+Q−Qm

+Q2
−

}

, 0 ≤ l ≤ m ≤ n− 1,

tr
{

P l
+

}

= tr
{

Ql
+

}

, 1 ≤ l ≤ n,
(1)

where A+ (A−) denotes the Hermitian (skew-Hermitian) part of the matrix
A ∈ Mn(C):

A± = (A±A∗)/2.

Formulas (1) contain n(n + 3)/2 of complex (but only n2 + 1 of real)
conditions, and all these conditions are independent if no additional restric-
tions are imposed on the entries of the matrices P±, Q±. However, if such
restrictions are imposed, in particular, if some eigenvalues of the operator
P+ have multiplicity ≥ 2, then not all of conditions (1) are independent [3].
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142 I. LOMIDZE

There arises a problem of finding a minimal number of necessary and suffi-
cient conditions of type (1) for the matrices P, Q ∈ Mn(C) to be unitarily
equivalent.

Let the operators P,Q : Un → Un be Hermitian and have eigenvalues
whose multiplicities can be more than 1. In this paper we derive an estimate
(not improvable in the general case) of the number of necessary and sufficient
conditions for unitary equivalence of the Hermitian matrices P,Q ∈ Mn(C)
corresponding to these operators and state these conditions in explicit form.
It is shown that the number of independent conditions n ≤ n and all cases
are found when the equality n = n is fulfilled.

Let n eigenvalues of the Hermitian operator P : Un → Un form the
multiset [4, §3.4]

P = {pri
i |i = 1,m},

m
∑

i=1

ri = n, pi 6= pj for i 6= j, ri ∈ N.

Let us denote

tk(P ) = tr P k =
m

∑

i=1

ripk
i , k = 0, 1, 2, . . . , (2)

and let

Tk(P ) = [Tij(P )]1≤i,j≤k = [ti+j−2(P )] ∈ Mk(R),

Dk(P ) = det Tk(P ), k ∈ N,
(3)

stand for Hankel matrices and their determinants. It is obvious that D1(P ) =
t0(P ) = n.

Since all eigenvalues of the operator P : Un → Un are real, the rank of
matrix Tk(P ) for sufficiently large k is equal to the signature of this matrix
and to the number m of various eigenvalues [5, Ch. 16, §9]:

rank Tk(P ) = m, k ≥ m. (4)

Lemma. The following formulas hold for the determinants (3):

Dk(P ) =

=
∑

1≤i1<···<ik≤m

{

ri1 · · · rik

∏

1≤j<l≤k

(

pij − pil

)2
}

> 0, 1 ≤ k ≤ m. (5)

Proof. By (2) we have

Dk(P ) = det AB = det
[

m
∑

j=1

aij(P )bjl(P )
]

, (6)
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where A ∈ Mk,m, B ∈ Mm,k stand for

A = [aij(P )] = [rjpi−1
j ], B = [bjl(P )] = [pi−1

j ], 1 ≤ j ≤ m, 1 ≤ i, l ≤ k.

(As usual, Mk,l = Mk,l(R) denotes the set of real matrices of dimension
k × l, k, l ∈ N, and Mk = Mk,k.)

Applying the Cauchy–Binet formula to (6), we obtain (5).

Corollary. The power series (Newtonian sums) tk(P ) for k ≥ 2m are
rational sums of the variables t0(P ), . . . , t2m−1(P ).

Proof. It follows from (4) that

D
(

1, · · · , m, m + 1
1, · · · , m, m + k

)

= 0, k ∈ N,

for all minors surrounding the minor Dm(P ) > 0, which implies

t2m+k−1(P )Dm(P ) =

=
m

∑

i,j=1

tm+k+j−1(P )tm+i−1(P )Am

(

j
i

)

(P ), k ∈ N, (7)

where Am
(j

i

)

(P ) is the algebraic complement of the element tj+i−2(P ) in
Dm(P ) depending evidently only on tk(P ), k = 0, 2m− 2. By the induction
with respect to k we obtain the desired result from (8).

Theorem 1. The mapping
{

tk(P )|k = 0, 2m− 1} 7→ {pri
i |i = 1,m} (8)

is bijective.

Proof. The injectivity of mapping (8) follows from (2). Let us prove the
surjectivity. It is obvious that the Hermitian operator P : Un → Un having
m ≤ n various eigenvalues p1, . . . , pm satisfies the operator identity

Pm −
m

∑

k=1

ckPm−k = 0 (9)

with ck = (−1)k ∑

1≤i1<···<ik≤m pi1pi2 · · · pik , k = 1,m.
By multiplying (9) by P0, . . . ,Pm−1 and calculating traces we obtain the

following system of equations for coefficients ck:

m
∑

k=1

cktm−k+i(P ) = tm+i(P ), i = 0,m− 1, (10)
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whose determinant is (−1)m(m−1)/2Dm(P ) 6= 0. After calculating the un-
knowns ck, k = 1,m, from (10) we find p1, p2, . . . , pm (pi 6= pj for i 6= j) as
roots of the polynomial zm −

∑m
k=1 ckzm−k = 0.

By substituting the found values of pi in the first m equations of sys-
tem (2) and recalling that the determinant of this system (with respect to
unknowns ri) is

det
[

pk−1
i

]m
1 =

∏

1≤k<j≤m

(pj − pk) 6= 0,

we obtain r1, r2, . . . , rm.

Note that to calculate the Jacobian of mapping (8) it is sufficient to know
the determinant of the Vandermonde 2-multiple matrix [6]

J =
∂(t0, t1, . . . , t2m−1)
∂(p1, r1, . . . , pm, rm)

=
(

m
∏

i=1

ri

)

det(p1, . . . , pm; 2) =

= m!
(

m
∏

i=1

ri

)
∏

1≤k<j≤m

(pj − pk)2
2
6= 0.

Since all ri ≥ 1, we can define the diagonal matrix R = diag{r−1
1 , . . . , r−1

m }.
Following (2) and (3), we use the notation

tk(R) = tr Rk, Dk(R) = det Tk(R), k ∈ N (t0(R) = m). (11)

Theorem 2. The mapping
{

tr P k|k = 0, 2m− 1
}

7→
{

tr Rk|k ∈ N}

is injective and all tr Rk, k ∈ N, are the rational functions of the arguments
t0(P ), . . . , t2m−1(P ).

Proof. For the sake of brevity we denote tk = tr P k, Tk = Tk(P ), ˜tk = tr Rk.
From the first m equations of (2) we find

ri =
det R(i)

det[pk−1
i ]m1

, i = 1,m, (12)

where R(i) = [R(i)
kl ] ∈ Mm is the matrix whose kth row has the form

[

pk−1
1 , . . . , pk−1

i−1 , tk−1, pk−1
i+1 , . . . , pk−1

m

]

, k = 1,m.

Due to (12) we obtain

r2
i =

det[rlR
(i)
kl ] det[R(i)

kl ]
det[rjpk−1

j ] det[pk−1
j ]

, i = 1,m.



UNITARY EQUIVALENCE OF HERMITIAN OPERATORS 145

If we cancel ri in both sides and multiply the determinants in the right-hand
side according to the “row by row” rule, we obtain

ri =
det[tk+j−2 + tk−1tj−1 − rip

k+j−2
i ]m1

det[tk+j−2]m1
, i = 1, m. (13)

To simplify (13) let us introduce one-column matrices 0 = [0] ∈ Mm,1,
t = [tk−1] ∈ Mm,1, pi ∈ [pk−1

i ] ∈ Mm,1 (i = 1, m). Use the following matrix
identity for (m + 2)× (m + 2) block-matrices (i = 1, m):




Tm t −ripi

−t′ +1 0
−p′i 0 +1









Em 0 0
t′ +1 0
p′i 0 +1



 =





Tm + tt′ − ripip′i t −ripi
0′ +1 0
0′ 0 +1





(here Em ∈ Mm is the identity matrix and ′ denotes transposition), which
implies

det
[

Tm + tt′ − ripip′i
]

=

= det





Tm t −ripi

−t′ +1 0
−p′i 0 +1



 = det





Tm 0 −ripi
0′ 1 + t0 −ri

−p′i +1 +1



 .

The latter matrix is obtained from the previous one by adding the first and
the (m+1)th rows and then subtracting the first colum from the (m+1)th
one. Expanding the result with respect to the elements of the (m + 1)th
row we get for each i = 1,m that

det
[

Tm + tt′ − ripip′i
]

= (1 + t0 + ri)Dm + (1 + t0) det
[

Tm −ripi

−p′i 0

]

.

Substitution into (13) and simplification give

ri det
[

Tm pi

−p′i 0

]

= Dm, i = 1,m.

Hence we obtain

r−1
i =

2m−2
∑

j=0

pj
i cj , (14)

where the coefficients cj , j = 0, 2m− 2, are expressed rationally through
t0, . . . , t2m−1 as follows:

cj = D−1
m

j
∑

l=0

Am

(

j − l + 1
l + 1

)

(P ), j = 0, 2m− 2. (15)



146 I. LOMIDZE

By virtue of (2), (7), (11), and (15) we find from (14) that

˜tk−1 =
m

∑

i=1

r−k+1
i =

2k(m−1)
∑

j=0

tj
∑

j1+···+jk=j

cj1 · · · cjk = fk(t0, . . . , t2m−1),

where fk(t0, . . . , t2m−1) is a rational function of its arguments, k ∈ N.

Let the primary specification (see [7]) of multiset P be also the multiset
{

ri| i = 1, m
}

=
{

qsi
i | i = 1, l

}

, qi 6= qj for i 6= j, qi, si ∈ N, (16)

where

l
∑

i=1

qisi = n,
l

∑

i=1

si = m. (17)

Denote by pij , j = 1, si, the eigenvalues of operator P : Un → Un each
having the multiplicity equal to qi, i = 1, l. Without loss of generality,
multiset P will be assumed to be ordered so that

pij < pi,j+1, j = 1, si, qi < qi+1, i = 1, l − 1. (18)

In these notation we have

tk(P ) =
l

∑

i=1

(

qi

si
∑

j=1

pk
ij

)

, tk(R) =
l

∑

i=1

siq−k
i , k = 0, 1, 2, . . . .

Following the lemma, the determinants in (11) satisfy the conditions Dk(R) >
0 for k ≤ l and Dk(R) = 0 for k ≥ l+1. Hence on account of Theorem 2 we
obtain m − l conditions satisfied by values t0(P ), . . . , t2m−1(P ). Thus the
set {tk(P )| k = 0, 2m− 1} contains at most m + l − 1 = n(P ) independent
elements.

Remark. In terms of the partition theory formulas (17) imply that mul-
tiset (16) is the partitioning of the number n, which is a dimension of the
space Un, and the rank of this partitioning is m. By the notation of [4] we
have

(

qs1
1 , . . . , qsl

l

)

` n, (s1, . . . , sl) ` m.

Following the Ramsay theorem (see [7]), n(P ) is the greatest number each
of whose partitioning into l parts

(n1, . . . , nl) ` n(P )

contains at least one part having the property

ni ≤ si, 1 ≤ i ≤ l.
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Proposition. For n(P ) we have the estimate

n(P ) = l +
l

∑

i=1

si − 1 ≤ n,

the equality being fulfilled if either all eigenvalues of the operator P : Un →
Un are simple:

l = 1; q1 = 1, s1 = n; (1n) ` n,

or if one eigenvalue has multiplicity 2 while the rest of the eigenvalues are
simple:

l = 2; q1 = 1, s1 = n− 2; q2 = 2, s2 = 1; (1n−2, 2) ` n.

Proof. Formulas (17) imply

n =
l

∑

i=1

(qi − 1)(si − 1) +
l

∑

i=1

si +
l

∑

i=1

(qi − 1) =

=
l

∑

i=1

(qi − 1)(si − 1) +
l

∑

i=1

si +
l

∑

i=1

(qi − i) + l(l − 1)/2.

Hence on account of the inequalities si ≥ 1, qi ≥ i we have the estimate

n ≥
l

∑

i=1

si + l(l − 1)/2,

in which the equality holds if qi = i, i = 1, l, and s2 = · · · = sl = 1. Note
that l(l − 1)/2 ≥ l − 1 with equality for l = 1, 2.

Example. Let the multiset of eigenvalues of the operator P have the
form:

(a) {p1j , p
qi
i | j = 1, s1, i = 2, l}, i.e., the operator P has s1 simple eigen-

values; then (17) implies l(l + 1)/2 ≤ n− s1 + 1 and

n(P ) = s1 + 2l − 2, s1 ≤ n(P ) ≤
√

9 + 8(n− s1) + s1 − 3;

(b) {p1, pn−1
2 }; then l = 2; q1 = 1, s1 = 1, q2 = n−1, s2 = 1; n(P ) = 3;

(c) {pn
1}; then l = 1; s1 = 1, q1 = n, n(P ) = 1.

Let us construct an ordered set of invariants of an operator P (of a matrix
P ) of the form

I(P ) =
{

tk(P )| k = 1, n(P ), n(P ) = l +
l

∑

i=1

si − 1
}

. (19)
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Theorem 3. For the Hermitian operator P : Un → Un the set of invari-
ants (19) is complete and all elements of this set are functionally indepen-
dent as functions of the independent variables (18).

Proof. We introduce the notation

φij = ri,j+1 − ri1, j = 1, si − 1, i = 1, l,

where rij is the multiplicity of the eigenvalues pij , j = 1, si, i = 1, l. By
virtue of the theorem on conditional functional independence (see the Ap-
pendix) it is sufficient to show that the functions {tk(P )| k = 1, n(P )} are
conditionally functionally independent in the presence of constraints

φij = 0, j = 1, si − 1, i = 1, l, t0(P ) =
l

∑

i=1

qisi = n.

Calculate the Jacobian

˜J =
∂(t0, t1, . . . , tn(P ), φ11 . . . , φlsl)

∂(p11, r11 . . . , plsl , rlsl)
.

Taking (3) into account and performing some simple calculations, we find

˜J =
(

l
∏

i=1

qsi
i

)

det
[

ũ1| . . . |ũl
]

, (20)

where

ũi =
[

u(i)
kj

]

0≤k≤n(P )
1≤j≤si

=
[

si
∑

j=1

pk
ij , (p

k
i1)
′, . . . , (pk

isi
)′

]

0≤k≤n(P )
, i = 1, l.

Here (pk
ij)
′ = kpk−1

ij = (∂/∂pij)pk
ij .

Applying induction with respect to l, let us show that the determinant
in the right-hand side of (20) is not identically zero. Indeed, for l = 1 we
have

det[ũ1] = det
[

s1
∑

j=1

pk
1j , (p

k
11)

′, . . . , (pk
1s1

)′
]

0≤k≤s1

=

= s1(s1)!
∏

1≤l<j≤s1

(p1j − p1l) 6= 0.
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Assume that l ≥ 2 and det[ũ1| · · · |ũl−1] 6= 0. After expanding det[ũ1|
· · · |ũl] with respect to the last sl + 1 rows we obtain

det
[

ũ1| · · · |ũl
]

= det
[

ũ1| · · · |ũl−1
]

×

×det
[

sl
∑

j=1

pk−1
lj , (pk−1

l1 )′, . . . , (pk−1
lsl

)′
]

n(P )−sl≤k≤n(P )
+ · · · , (21)

where the points denote the terms of lower powers with respect to the vari-
ables {plj | j = 1, sl}. Treating det[

∑sl
j=1 pk−1

lj , pk−1′
l1 , . . . , pk−1′

lsl
] = P (pl1) as

the polynomial of the variable pl1, we obtain

P (pl1) = det
[

pk−1
l1 , (pk−1

l1 )′, . . . , (pk−1
lsl

)′
]

n(P )−sl≤k≤n(P ) + · · · =

= p2n(P )−4
l1 det

[

(pk−1
l2 )′, . . . , (pk−1

lsl
)′

]

n(P )−sl≤k≤n(P )−2 + · · · =

= p2n(P )−4
l1

(n(P )− 3)!
(n(P )− sl − 2)!

sl
∏

j=2

pn(P )−sl−2
lj

∏

2≤t<j≤sl

(plj − plt) + · · · .

After substituting this result into (21) and taking into account the as-
sumption of induction we find that det[ũ1| · · · |ũl] is the polynomial of pl1

of the power

2n(P )− 4 = 2
(

l +
l

∑

i=1

si − 1
)

− 4 ≥ 4l − 6 ≥ 2

with a higher coefficient which is not identically zero. Therefore ˜J 6= 0.

Corollary. Two given Hermitian matrices P, Q ∈ Mn(C) are unitarily
equivalent iff n(P ) real equalities

I(P ) = I(Q) (22)

are fulfilled, where I(P ) is determined by (19).

Proof. The necessity of conditions (22) is obvious. The sufficiency follows
from the fact that the mapping

I(P ) 7→
{

pij , qi| j = 1, si, i = 1, l
}

is injective by virtue of Theorem 3.

Example.
(a) The Hermitian matrix P ∈ Mn(C) is proportional with a coefficient

a ∈ R to En iff D2(P ) = t0t2 − t21 = 0, or, which is the same,

trP 2 = (tr P )2/n. (23)
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It is obvious that P = n−1(tr P )En.
(b) The Hermitian matrix P ∈ Mn(C) is equal to zero iff condition (23)

is fulfilled and tr P = 0.

Remark. If some additional restrictions are imposed on elements of the
Hermitian matrix P , i.e., if not all of these elements are independent (e.g.,
for tr P = 0), then the complete system of invariants of the operator P :
Un → Un contains less than n(P ) independent elements.

Appendix

Assume that n,m ∈ N, we are given n + m differentiable functions of
n + m variables x1, . . . , xn, y1 . . . , ym

fi : Rn+m → R, i = 1, n + m, (A.1)

such that the Jacobian J1 differs from zero:

J1 =
∂(f1, . . . , fn+m)

∂(x1, . . . , xn, y1, . . . , ym)
6= 0

and the variables x1, . . . , xn, y1, . . . , ym satisfy m constraints

φj(x1, . . . , xn, y1, . . . , ym) = 0, j = 1,m, (A.2)

where each of functions φj : Rn+m → R, j = 1,m, is differentiable with
respect to n + m arguments x1, . . . , xn, y1, . . . , ym and

J2 =
∂(φ1, . . . , φm)
∂(y1, . . . , ym)

6= 0.

As known, constraint equations (A.2) determine explicit functions

yj = yj(x1, . . . , xn), j = 1,m,

and functions (A.1) become composite functions of the variables x1, . . . , xn:

fi = fi
{

(x1, . . . , xn, y1(x1, . . . , xn), . . . , ym(x1, . . . , xn)
}

, (A.3)

i = 1, n + m.

Definition. The functions in (A.1) will be called conditionally function-
ally dependent (independent) in the presence of constraints (A.2) provided
that the corresponding composite functions (A.3) are functionally depen-
dent (independent), i.e., if the Jacobian det[fi,k] is equal to (different from)
zero, where

fi,k = ∂xkfi +
m

∑

l=1

(

∂ylfi
)(

∂xkyl
)

, i, k = 1, n, (A.4)
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and ∂xkyl are uniquely determined by the system of equations

0 = ∂xkφj +
m

∑

l=1

(

∂ylφj
)(

∂xkyl
)

, k = 1, n, j = 1, m. (A.5)

Theorem. In the presence of constraints (A.2), only those n functions
from the set {fi|i = 1, n + m} will be conditionally functionally dependent
for which the Jacobian

J =
∂(f1, . . . , fn, φ1, . . . , φm)
∂(x1, . . . , xn, y1, . . . , ym)

= det





∂xkfi | ∂ylfi

—— | ——
∂xkφi | ∂ylφj





is equal to zero.
For J 6= 0 the functions f1, . . . fn are conditionally functionally indepen-

dent.

Proof. For the sake of brevity we denote the Jacobi matrices by

F =
[

F11 F12
F21 F22

]

∈ Mn+m,

Φ =
[

Φ1 |Φ2
]

∈ Mm,n+m, Y =
[

∂xkyl
]

∈ Mn,m,

where

F11 =
[

∂xkfi
]

∈ Mn, F12 =
[

∂ylfi
]

∈ Mn,m, i = 1, n,

F21 =
[

∂xkfi
]

∈ Mm,n, F22 =
[

∂ylfi
]

∈ Mm, i = n + 1, n + m,

Φ1 =
[

∂xkφj
]

∈ Mm,n, Φ2 =
[

∂ylφj
]

∈ Mm, j = 1,m

(k = 1, n, l = 1,m).

In this notation formulas (A.4) and (A.5) have the form

[fi,k] = F11 + F12Y, −Φ1 = Φ2Y

and
J1 = det F 6= 0, J2 = det Φ2 6= 0.

Hence
det

[

fi,k
]

= det
[

F11 − F12Φ−1
2 Φ1

]

.

Applying now the known identity for a block matrix determinant (see, e.g.,
[5, Ch.2, §5]) we obtain

det
[

fi,k
]

= J−1
2 det

[

F11 F12
Φ1 Φ2

]

= J/J2.

Thus the condition det[fi,k] = 0 is equivalent to the condition J = 0.
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Corollary. If φj = fn+j, j = 1,m, and J1 6= 0 then

det
[

fi,k
]

= J1/J2 6= 0.
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