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COMMUTATIVITY FOR A CERTAIN CLASS OF RINGS

HAMZA A. S. ABUJABAL

ABSTRACT. We discuss the commutativity of certain rings with unity
1 and one-sided s-unital rings under each of the following conditions:
2" [z%,y] = i[mﬂyt]xnv 2" [2®,y] = izn[zvyt]v 2" [z%,y] = i[x:yt]ym:
and z"[z%,y] = +y™[z,y'], where r, n, and m are non-negative in-
tegers and t > 1, s are positive integers such that either s, ¢ are
relatively prime or s[z,y] = 0 implies [z, y] = 0. Further, we improve
the result of [6, Theorem 3] and reprove several recent results.

Throughout the paper R will represent an associative ring (with or with-
out unity 1). Let C(R) denote the commutator ideal of R, Z(R) the center
of R, and H the heart of R. By (GF(q))2 we mean the ring of 2 x 2 ma-

trices over the Galois field GF(gq) with ¢ elements. Set e;; = <(1) 8)’

0 1 0 0 0 0. .
el = (0 O)’ €91 = <1 0), and egy = (O 1) in (GF(p))2 for a prime

p. Following [1], a ring R is said to be left (resp., right) s-unital, if © € Rx
(resp., * € xzR) for each element x in R. Further, R is called s-unital if
x € Rz NzR (see [2] and [3]). The symbol [z, y] stands for the commutator
axy — yx for any z, y € R. In some particular cases several authors [1-3, 5]
studied the commutativity of rings satisfying the following conditions:
(c1) For every z,y € R there holds z"[z%,y] = +[x,y']x" with integers
t>1,s>1,n>0,7r>0.
(c2) For every x,y € R there holds z"[x*,y] = +[z,y']y™ with integers
t>1,5s>1,m>0,r>0.
(c3) For every x,y € R there holds z"[x*,y] = +z"[z,y'] with integers
t>1,s>1,n>0,r>0.
(c4) For every x,y € R there holds z"[x*,y] = +y™[z,y'] with integers
t>1,s>1,m>0,r>0.
To develop the commutativity of a ring R satisfying one of the above
conditions, we need some extra condition such as
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Q(s): For any positive integer s s[z,y] = 0 implies [x,y] = 0 for all
z,y € R,

or
Q(s,t): s and t are relatively prime integers.

To prove our results we need a few preliminary lemmas. We begin with
the following well-known result [6, p. 221].

Lemma 1. Let 2,y € R and [[x,y],2] = 0. Then [z y] = ka*~ [z, ]
for any positive integer k.

Lemma 2 ([7]). Let R be a ring with unity 1, and let f : R — R be a
function such that f(x + 1) = f(x) for every x € R. If for some positive
integer n we have z™f(x) = f(z)x™ = 0 for all x € R, then necessarily

flx)=0.

Lemma 3 ([8]). Let f be a polynomial in the non-commuting indetermi-
nates x1, T, - .., Ty with integer coefficients. Then the following statements
are equivalent:

(i) C(R) is a nil ideal for any ring R satisfying f = 0.

(ii) (GF(p))2 fails to satisfy f = 0 for every prime p.

The main results of the paper are:

Theorem 1. Let R be a ring with 1 satisfying (c1) together with either
Q(s,t) or Q(s). Then R is commutative.

Theorem 2. Let R be a ring with 1 satisfying (co) together with either
Q(s,t) or Q(s). Then R is commutative.

Theorem 3. Let R be a ring with 1 satisfying (c3) together with either
Q(s,t) or Q(s). Then R is commutative.

Theorem 4. Let R be a ring with 1 satisfying (c4) such that either
Q(s,t) or Q(s) holds. Then R is commutative.

Remark 1. The well-known Grassmann algebra rules out the possibility
of t = 1 in the above theorems. Moreover, if we drop the restriction that
R has unity 1 in the above theorems, then the ring R may be poorly non-
commutative. Indeed, the following example demonstrates this constraint:
Let Dy be the ring of all £ x k matrices over a division ring D, and let
A = {(aij € Dgla;; = 0,5 > i}. Then Ay is a non-commutative ring for
any positive integer k£ > 2. But Aj satisfies (¢1), (¢2), (c3), and (cq) for all
positive integers s, t and non-negative integers m, n, and 7.
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According to [9], let f be a polynomial in two non-commuting indeter-
minates with integral coefficients. Now write f in the form

d r
f(x,y) = Zz.fri(xvy)a

r=1 =0
where f,; denotes the sum of all terms of f with degree ¢ in z and r — ¢ in
y. Let s,; denote the sum of the coefficients of f;;. Then we note that if
sp; =0 forall r and ¢, Q8]

then all commutative rings satisfy f = 0. The converse is also true as proved
by Kezlan [9]. For this we take a transcendental extension field of rationals
and use the fact that the polynomial

f()(d7 Xd+1) _ i i STiX(d+1)T7i

r=1i=0
in one indeterminate X vanishes on it.

Thus if f is to be equivalent with the commutativity it must at least
satisfy (I), and so we may write

d r—1

fla,y) =mlz,yl + > frilz,y)

r=3 =1

for some integer m. Moreover, if m is divisible by a prime p, then the ring
of strictly upper triangular 3 x 3 matrices over any field of characteristic p
satisfies the identity, and so we assume that

m = *1. (IT)
Let us consider the condition

fri=0 forall r. (III)
In [9] Kezlan proved the following

Theorem. If f satisfies (1), (II), and (III), then an arbitrary ring R is
commutative if and only if it satisfies the identity f = 0.

Also, it should be remarked that (I) in the theorem could be replaced by
frr—1 =0 forall r. (IV)

An example was given in [9] to show that we must assume either (III) or
(IV) or some other condition concerning the terms linear in z or in y. So
(I) and (II) alone are not enough.

Further, in [9] Kezlan proved that for a polynomial f(x,y) the identity
f(z,y) = 0 is equivalent with the commutativity for all rings if f(x,y) =
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+[z,y] + Zfzg Z:;ll fri(x,y), where f,; denotes the sum of all terms of
f(z,y) with degree ¢ in = and r — ¢ in y, where s, denotes the sum of
coefficients of f,;. It was also shown that under certain restrictions on the
terms linear in one variable or the other, the polynomial identity f(z,y) =0
is indeed equivalent with the commutativity.

The following fact plays an important role in the proof of our results.

Lemma 4 ([9]). Let R be a ring satisfying the polynomial identity f(x,y)
= +[xz,y|, where each homogeneous component of f(x,y) has integer coeffi-
cients whose sum is zero and where f(x,y) has no linear terms either in x
or iny. Then R is commutative.

Now we prove

Proposition 1. Let R be a ring with plx,y] = 0 for all z, y in R, p
a prime, and let s be a positive integer not divisible by p. Suppose that
R satisfies a polynomial identity of the form f(z,y) = £m|x,y], where m
is any non-negative integer and f(x,y) satisfies the same condition as in
Lemma 4. Then R is commutative.

Proof. Let gqp + mn = 1. By hypothesis, we have
f(z,y) = £m[z,y] forall z,y € R.

Multiply the above identity by n and use p[z,y] = 0 to get nf(z,y) =
+[x,y]. Hence by Lemma 4 R is commutative. [J

Lemma 5. Let R be a ring with 1 satisfying (c1) or (c2) or (c3) or (ca)
such that either Q(s,t) or Q(s) holds. Then C(R) is nil.

Proof. Let = egy and y = ea1 + €92 in (¢1) and (c2). Then by Lemma 3,
x and y fail to satisfy the polynomial identities (c3) and (c4) for any prime
p. Similarly, x = e;; and y = eg; fail to satisfy (c3) and (c4). Thus C(R) is
a nil ideal. O

Proof of Theorem 1. According to Lemma 5, C(R) is nil. Now let R
satisfy (c1). Then by contradiction we assume that there exists a non-
commutative ring with 1 satisfying (¢1). Another step is to pass to the
subdirectly irreducible case, and with Q(s, t) this reduction can be obtained
as in [9]. Therefore, without loss of generality, we assume that there is a
ring R such that

(o) R is a non-commutative ring with 1, satisfies (¢1), and R is subdi-
rectly irreducible with heart H = C(R) with H? = (0).
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Using the condition Q(s), we must slightly modify the arguments in
[8] because this condition is not preserved under homomorphism. Then
sssuming that we have a non-commutative ring A with unity satisfying (c;)
and that Q(s) holds, we have a,b € A with s[a,b] # 0. By Zorn’s lemma
we get an ideal M which is maximal with respect to the exclusion of s[a, b].
Then the ring A = A/M is not commutative, satisfies (c;), and is subdirectly
irreducible with the heart containing 3[@, b]. Hence the ring R = A may not
inherit Q(s). This shows that s does not annihilate all commutators of R.
To summarize these paragraphs, if Q(s,t) holds, then we have a ring R

satisfying (). If Q(s) holds, then, in addition to («), we have
(8) s does not annihilate all commutators of R.
Now we define a mapping F': R — R for fixed y,w € R by
F(z) = £z, (y + w)' —y' —w'] forall z€R.
Replace z by z + 1 in (1) to get
Flz+1) = [z, (y +w)' —y' —w'] = F(x).
Multiplying (1) by ™ on the right, we get
F(z)z" = £z, (y + w)' —y' — w']a™ =
= [z, (y +w)]2" F [2,y"]2" F [z, 0']2" =
o[z y + w] = {£[z,y]2"} — {£[z, 02"} =

= a'[z® y] + 2"[2%, w] — 2"[2®, y] — 2" [2%, w] = 0.

[z,
[z,

Using Lemma 2, we obtain F'(x) =0 for all z, y in R. Hence
£z, (y+w) -y —w'la" =0,
£z, (y + )] F 2,y F [2,0] =0
and
+[z, (y + w)'] = £[z,y"] £ [z,w'] = 0.
Substituting w = 1 in (2), we get

t—1

:t(t[x,y] +3 <Z> [z, yk]> —0.

k=2

By (3) we can write
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Replacing y in turn by 21y, 22y, ..., 2t—1y in (3), we get

th[xa y] + (é)zﬂxdﬁ] + (é)Z%[(E, yS} + 4+ (tjl)ziil[xaytil] = Oa
ZQt[‘ra y] + (;)Z%[Z‘,yQ] + (;)Zg[% y3] + o+ (tjl)zé_l[fﬂ, ytil] =0

zatlr oyl + (527 [2, 02 + (;)zf’fl[x, 4+ () gt =0

The above identities can be written in the matrix form:

Ap—nyxt—yWe-1yx1 =

21 22 2 szl tt[x, Y]
S
= | 23 23 S (3)[z,9°] =0.
w1 g A o 2T (tjl) [z, "]

Multiplying the above by adj(A), we have det(A). In particular, det(A)¢[x, y]
=0 for all z,y € R.

Let zf be the (4, 7)th entry in the matrix A. Since factoring z; out of the
ith row of A gives a Vandermonde matrix, (R, +) is torsion free. Therefore
[z,y] = 0 for all 2,y € R, and R is commutative. (In short, if (R, +) is
torsion free, then the standard Vandermonde determinant argument shows
that the homogeneous components must vanish on R (see [9]). So [z,y] = 0,
since R is torsion free. Thus R is commutative.)

As in [9], the subdirect irreducibility gives a unique prime p such that R
has elements of additive order p, from which it follows that pH = (0) (as a
special case p annihilates all commutators).

Let p not divide ¢t. Then (3) yields a polynomial identity of the type in
Proposition 1 and hence R is commutative. Thus p must divide ¢. Therefore
p cannot divide s, which is obvious if Q(s,t) holds, and is also true if Q(s)
holds, since s does not annihilate all commutators as p does. Hence in either
of the cases Q(s,t) and Q(s) we get

p divides t but does not divide s. (4)
By interchanging the roles of z and y in (2) we obtain
£y, (x +w)'] = £y, 2] £ [y, w']. (5)
Replace x by  + 1 in (¢1) to get the identities

(z+ 1)z +1)%,y] = £[z,y'](@ + 1)"
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3 () () (e o

J

Now we prove that H C Z(R). Let x € H and y € R. Thus using
H? = (0), from (6) we have

and

slz,y] = £[z,y'] forall € H, y€eR. (7)
Substitute w = y into (5) to get
Hy, oy Fyay' P+ +y 2] =0
and so
+[z,y'] =0 forall z€ H, y€eR. (8)

From (7), (8) and the fact that p does not divide s we have [z,y] = 0 for
xr € H, y € R. Hence

H C Z(R). (9)
Thus all commutators are central. By Lemma 5 we get
[z,y"] = ty" x,y] =0 forall z,y€ R. (10)

This condition shows that ¢ divisible by p annihilates all commutators.
Hence (6) can be rewritten as

b S5 () ()

which is the form of Proposition 1. Hence R is commutative. [J

Proof of Theorem 2. Let R satisfy (cz). As above, it is easy to observe that
the reduction to a subdirectly irreducible ring R satisfying («) with Q(s, )
holds and so do both conditions («) and (5) with Q(s). Replacing = + 1 by
x and y + 1 by y in ¢y gives the following identities:

sle,y] = £G(x,y),
tle,y] = +H(z,y),

where G and H satisfy the conditions of Lemma 4. As in the proof of The-
orem 1, we have a unique prime p such that pH = (0). Thus by Proposition
1, p must divide both ¢ and s, which is impossible if Q(s,t) holds. Other-
wise, since s is divisible by p, it must annihilate all commutators. Thus (3)
gives a contradiction if Q(s) holds. Hence R is commutative. []

Since Theorems 3 and 4 can be proved in the same way, we omit their
proofs.
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A recent commutativity study [10] deals with rings satisfying related
conditions of the form

[zy — p(yx), 2] =0
[zy — p(yx),y] = 0.

This becomes possible by interchanging the roles of z and y as

lyz —p(zy),y] =0
or
lyz — p(zy), 2] = 0.
The following result is proved in [10].

Theorem 5. Let R be a ring with 1 such that for each x,y € R, there
exist p(t), q(t) € t2Z[t] for which [vy —p(yx),x] = 0 and [zy —q(yz),y] = 0.
Then R is commutative.

Now we generalize Theorem 5.

Theorem 6. Let R be a ring with unity 1 such that for each x,y € R
there exists p(z) € x?Z[x] for which either [yx — p(yx),x] = 0 or [yz —
p(yx),y] = 0. Then R is commutative.

Proof. Suppose that p(z) = asx®+azz®+as2z*+- - +a,z", where a1, as, ..., a,
are integers. By hypothesis, we can write for all x,y € R

lyz, z] = [p(y=), ], W)
[z, yle = [p(yx), z].

Putting z + 1 for « in (1’) gives

[z,y](z + 1) = [p(y(z + 1)), 2],
[z, 9]z + [z,y] = [az(y(x +1))* + as(y(z + 1))* + -+ + an(y(z + 1))", ],
[z, y)z + [2,y] = [a2y(z + D)y + azy(z + Dy(z + Dy + - +
+any(e+ Dy(z+1)-y(z+ Dy, z](z+1) =
= [aa(yzy + v°) + as(yzyzy + yay® + oy +y°) + - +
+ apn(yzyx -y + (x + 1),:10} (z+1),
[z,yle + [x,y] = [agyzy + asgyzyzy + - - + apyryzys - - yz, z] +
+ a2y + azy® + - + any”, z] + H(z,y),
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where each homogeneous component of G has the sum of coefficients which
is equal to zero. Thus H has no terms linear in y, and each term of H has
a degree greater than 1 in z. Hence

[z,ylz + [, y] = [p(yz), 2] + [p(y), 2] + H(z,y). (2")

Using (1) and (2), we obtain

[2,y] = [z, p(y)] + G(z, ).

Thus R is commutative by Kezlan’s theorem [11] or Lemma 4. Similarly,
with the help of Lemma 4, R is commutative if R satisfies [yz — p(xy), y]
=0. O

Similarly to the proof of Theorem 6, we can reprove the next theorem
using Lemma 4.

Theorem 7 ([12]). Let R be a ring with unity 1 satisfying

[xy — p(yx),y] =0 for all z,y € R,

where p(z) € x?Z[z]. Then R is commutative.

Now let P be a ring property. If P is inherited by every subring and
every homomorphic image, then P is called an h-property. More weakly, if
P is inherited by every finitely generated subring and every natural homo-
morphic image modulo the annihilator of a central element, then P is called
an H-property.

A ring property P such that a ring R has the property P if and only if
all its finitely generated subrings have P is called an F-property.

Proposition 2 ([13, Proposition 1]). Let P be an H-property, and
P’ be an F-property. If every ring R with unity 1 having the property P has
the property P, then every s-unital ring having P has P'.

Finally, Theorems 1-4, 6, and 7 are automatically generalized from a
unital ring to s-unital ones due to Proposition 2. Indeed, we have

Theorem 8. Let R be a left (resp., right) s-unital ring satisfying (c1)
(resp., (c2)). Then R is commutative.

Theorem 9. Let R be a left s-unital (resp., right) ring satisfying (c3)
(resp., (cq)). Then R is commutative.
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