
GEORGIAN MATHEMATICAL JOURNAL: Vol. 3, No. 1, 1996, 1-10

COMMUTATIVITY FOR A CERTAIN CLASS OF RINGS

HAMZA A. S. ABUJABAL

Abstract. We discuss the commutativity of certain rings with unity
1 and one-sided s-unital rings under each of the following conditions:
xr[xs, y] = ±[x, yt]xn, xr[xs, y] = ±xn[x, yt], xr[xs, y] = ±[x, yt]ym,
and xr[xs, y] = ±ym[x, yt], where r, n, and m are non-negative in-
tegers and t > 1, s are positive integers such that either s, t are
relatively prime or s[x, y] = 0 implies [x, y] = 0. Further, we improve
the result of [6, Theorem 3] and reprove several recent results.

Throughout the paper R will represent an associative ring (with or with-
out unity 1). Let C(R) denote the commutator ideal of R, Z(R) the center
of R, and H the heart of R. By (GF (q))2 we mean the ring of 2 × 2 ma-

trices over the Galois field GF (q) with q elements. Set e11 =
(

1 0
0 0

)

,

e12 =
(

0 1
0 0

)

, e21 =
(

0 0
1 0

)

, and e22 =
(

0 0
0 1

)

in (GF (p))2 for a prime

p. Following [1], a ring R is said to be left (resp., right) s-unital, if x ∈ Rx
(resp., x ∈ xR) for each element x in R. Further, R is called s-unital if
x ∈ Rx∩ xR (see [2] and [3]). The symbol [x, y] stands for the commutator
xy − yx for any x, y ∈ R. In some particular cases several authors [1–3, 5]
studied the commutativity of rings satisfying the following conditions:

(c1) For every x, y ∈ R there holds xr[xs, y] = ±[x, yt]xn with integers
t > 1, s ≥ 1, n ≥ 0, r ≥ 0.

(c2) For every x, y ∈ R there holds xr[xs, y] = ±[x, yt]ym with integers
t > 1, s ≥ 1, m ≥ 0, r ≥ 0.

(c3) For every x, y ∈ R there holds xr[xs, y] = ±xn[x, yt] with integers
t > 1, s ≥ 1, n ≥ 0, r ≥ 0.

(c4) For every x, y ∈ R there holds xr[xs, y] = ±ym[x, yt] with integers
t > 1, s ≥ 1, m ≥ 0, r ≥ 0.

To develop the commutativity of a ring R satisfying one of the above
conditions, we need some extra condition such as
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Q(s): For any positive integer s s[x, y] = 0 implies [x, y] = 0 for all
x, y ∈ R,

or

Q(s,t): s and t are relatively prime integers.

To prove our results we need a few preliminary lemmas. We begin with
the following well-known result [6, p. 221].

Lemma 1. Let x, y ∈ R and [[x, y], x] = 0. Then [xk, y] = kxk−1[x, y]
for any positive integer k.

Lemma 2 ([7]). Let R be a ring with unity 1, and let f : R → R be a
function such that f(x + 1) = f(x) for every x ∈ R. If for some positive
integer n we have xnf(x) = f(x)xn = 0 for all x ∈ R, then necessarily
f(x) = 0.

Lemma 3 ([8]). Let f be a polynomial in the non-commuting indetermi-
nates x1, x2, . . . , xn with integer coefficients. Then the following statements
are equivalent:

(i) C(R) is a nil ideal for any ring R satisfying f = 0.
(ii) (GF (p))2 fails to satisfy f = 0 for every prime p.

The main results of the paper are:

Theorem 1. Let R be a ring with 1 satisfying (c1) together with either
Q(s, t) or Q(s). Then R is commutative.

Theorem 2. Let R be a ring with 1 satisfying (c2) together with either
Q(s, t) or Q(s). Then R is commutative.

Theorem 3. Let R be a ring with 1 satisfying (c3) together with either
Q(s, t) or Q(s). Then R is commutative.

Theorem 4. Let R be a ring with 1 satisfying (c4) such that either
Q(s, t) or Q(s) holds. Then R is commutative.

Remark 1. The well-known Grassmann algebra rules out the possibility
of t = 1 in the above theorems. Moreover, if we drop the restriction that
R has unity 1 in the above theorems, then the ring R may be poorly non-
commutative. Indeed, the following example demonstrates this constraint:
Let Dk be the ring of all k × k matrices over a division ring D, and let
Ak = {(aij ∈ Dk|aij = 0, j ≥ i}. Then Ak is a non-commutative ring for
any positive integer k > 2. But A3 satisfies (c1), (c2), (c3), and (c4) for all
positive integers s, t and non-negative integers m, n, and r.
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According to [9], let f be a polynomial in two non-commuting indeter-
minates with integral coefficients. Now write f in the form

f(x, y) =
d

∑

r=1

r
∑

i=0

fri(x, y),

where fri denotes the sum of all terms of f with degree i in x and r − i in
y. Let sri denote the sum of the coefficients of fti. Then we note that if

sri = 0 for all r and i, (I)

then all commutative rings satisfy f = 0. The converse is also true as proved
by Kezlan [9]. For this we take a transcendental extension field of rationals
and use the fact that the polynomial

f(Xd, Xd+1) =
d

∑

r=1

r
∑

i=0

sriX(d+1)r−i

in one indeterminate X vanishes on it.
Thus if f is to be equivalent with the commutativity it must at least

satisfy (I), and so we may write

f(x, y) = m[x, y] +
d

∑

r=3

r−1
∑

i=1

fri(x, y)

for some integer m. Moreover, if m is divisible by a prime p, then the ring
of strictly upper triangular 3× 3 matrices over any field of characteristic p
satisfies the identity, and so we assume that

m = ±1. (II)

Let us consider the condition

fr1 = 0 for all r. (III)

In [9] Kezlan proved the following

Theorem. If f satisfies (I), (II), and (III), then an arbitrary ring R is
commutative if and only if it satisfies the identity f = 0.

Also, it should be remarked that (I) in the theorem could be replaced by

fr,r−1 = 0 for all r. (IV)

An example was given in [9] to show that we must assume either (III) or
(IV) or some other condition concerning the terms linear in x or in y. So
(I) and (II) alone are not enough.

Further, in [9] Kezlan proved that for a polynomial f(x, y) the identity
f(x, y) = 0 is equivalent with the commutativity for all rings if f(x, y) =
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±[x, y] +
∑d

r=3

∑r−1
i=1 fri(x, y), where fri denotes the sum of all terms of

f(x, y) with degree i in x and r − i in y, where ssi denotes the sum of
coefficients of fri. It was also shown that under certain restrictions on the
terms linear in one variable or the other, the polynomial identity f(x, y) = 0
is indeed equivalent with the commutativity.

The following fact plays an important role in the proof of our results.

Lemma 4 ([9]). Let R be a ring satisfying the polynomial identity f(x, y)
= ±[x, y], where each homogeneous component of f(x, y) has integer coeffi-
cients whose sum is zero and where f(x, y) has no linear terms either in x
or in y. Then R is commutative.

Now we prove

Proposition 1. Let R be a ring with p[x, y] = 0 for all x, y in R, p
a prime, and let s be a positive integer not divisible by p. Suppose that
R satisfies a polynomial identity of the form f(x, y) = ±m[x, y], where m
is any non-negative integer and f(x, y) satisfies the same condition as in
Lemma 4. Then R is commutative.

Proof. Let qp + mn = 1. By hypothesis, we have

f(x, y) = ±m[x, y] for all x, y ∈ R.

Multiply the above identity by n and use p[x, y] = 0 to get nf(x, y) =
±[x, y]. Hence by Lemma 4 R is commutative.

Lemma 5. Let R be a ring with 1 satisfying (c1) or (c2) or (c3) or (c4)
such that either Q(s, t) or Q(s) holds. Then C(R) is nil.

Proof. Let x = e22 and y = e21 + e22 in (c1) and (c2). Then by Lemma 3,
x and y fail to satisfy the polynomial identities (c3) and (c4) for any prime
p. Similarly, x = e11 and y = e21 fail to satisfy (c3) and (c4). Thus C(R) is
a nil ideal.

Proof of Theorem 1. According to Lemma 5, C(R) is nil. Now let R
satisfy (c1). Then by contradiction we assume that there exists a non-
commutative ring with 1 satisfying (c1). Another step is to pass to the
subdirectly irreducible case, and with Q(s, t) this reduction can be obtained
as in [9]. Therefore, without loss of generality, we assume that there is a
ring R such that

(α) R is a non-commutative ring with 1, satisfies (c1), and R is subdi-
rectly irreducible with heart H = C(R) with H2 = (0).
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Using the condition Q(s), we must slightly modify the arguments in
[8] because this condition is not preserved under homomorphism. Then
sssuming that we have a non-commutative ring A with unity satisfying (c1)
and that Q(s) holds, we have a, b ∈ A with s[a, b] 6= 0. By Zorn’s lemma
we get an ideal M which is maximal with respect to the exclusion of s[a, b].
Then the ring A = A/M is not commutative, satisfies (c1), and is subdirectly
irreducible with the heart containing s[a, b]. Hence the ring R = A may not
inherit Q(s). This shows that s does not annihilate all commutators of R.
To summarize these paragraphs, if Q(s, t) holds, then we have a ring R
satisfying (α). If Q(s) holds, then, in addition to (α), we have

(β) s does not annihilate all commutators of R.

Now we define a mapping F : R → R for fixed y, w ∈ R by

F (x) = ±[x, (y + w)t − yt − wt] for all x ∈ R. (1)

Replace x by x + 1 in (1) to get

F (x + 1) = ±[x, (y + w)t − yt − wt] = F (x).

Multiplying (1) by xn on the right, we get

F (x)xn = ±[x, (y + w)t − yt − wt]xn =

= ±[x, (y + w)t]xn ∓ [x, yt]xn ∓ [x,wt]xn =

= xr[xs, y + w]− {±[x, yt]xn} − {±[x,wt]xn} =

= xr[xs, y] + xr[xs, w]− xr[xs, y]− xr[xs, w] = 0.

Using Lemma 2, we obtain F (x) = 0 for all x, y in R. Hence

± [x, (y + w)t − yt − wt]xn = 0,

± [x, (y + w)t]∓ [x, yt]∓ [x, wt] = 0

and

±[x, (y + w)t] = ±[x, yt]± [x,wt] = 0. (2)

Substituting w = 1 in (2), we get

±
(

t[x, y] +
t−1
∑

k=2

(

t
k

)

[x, yk]
)

= 0. (3)

By (3) we can write

t[x, y] +
t−1
∑

k=2

(

t
k

)

[x, yk] = 0. (3′)



6 HAMZA A. S. ABUJABAL

Replacing y in turn by z1y, z2y, . . . , zt−1y in (3′), we get

z1t[x, y] +
(t
2

)

z2
1 [x, y2] +

(t
3

)

z3
1 [x, y3] + · · ·+

( t
t−1

)

zt−1
1 [x, yt−1] = 0,

z2t[x, y] +
(t
2

)

z2
2 [x, y2] +

(t
3

)

z3
2 [x, y3] + · · ·+

( t
t−1

)

zt−1
2 [x, yt−1] = 0,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
zt−1t[x, y] +

(t
2

)

z2
t−1[x, y2] +

(t
3

)

z3
t−1[x, y3] + · · ·+

( t
t−1

)

zt−1
t−1 [x, yt−1] = 0.

The above identities can be written in the matrix form:

A(t−1)×(t−1)W(t−1)×1 =

=















z1 z2
1 z3

1 · · · zt−1
1

z2 z2
2 z3

2 · · · zt−1
2

z3 z2
3 z3

3 · · · zt−1
3

...
...

...
. . .

...
zt−1 z2

t−1 z3
t−1 · · · zt−1

t−1





























t[x, y]
(t
2

)

[x, y2]
(t
3

)

[x, y3]
...

( t
t−1

)

[x, yt−1]















= 0.

Multiplying the above by adj(A), we have det(A). In particular, det(A)t[x, y]
= 0 for all x, y ∈ R.

Let zj
i be the (i, j)th entry in the matrix A. Since factoring zi out of the

ith row of A gives a Vandermonde matrix, 〈R, +〉 is torsion free. Therefore
[x, y] = 0 for all x, y ∈ R, and R is commutative. (In short, if 〈R, +〉 is
torsion free, then the standard Vandermonde determinant argument shows
that the homogeneous components must vanish on R (see [9]). So [x, y] = 0,
since R is torsion free. Thus R is commutative.)

As in [9], the subdirect irreducibility gives a unique prime p such that R
has elements of additive order p, from which it follows that pH = (0) (as a
special case p annihilates all commutators).

Let p not divide t. Then (3) yields a polynomial identity of the type in
Proposition 1 and hence R is commutative. Thus p must divide t. Therefore
p cannot divide s, which is obvious if Q(s, t) holds, and is also true if Q(s)
holds, since s does not annihilate all commutators as p does. Hence in either
of the cases Q(s, t) and Q(s) we get

p divides t but does not divide s. (4)

By interchanging the roles of x and y in (2) we obtain

±[y, (x + w)t] = ±[y, xt]± [y, wt]. (5)

Replace x by x + 1 in (c1) to get the identities

(x + 1)r[(x + 1)s, y] = ±[x, yt](x + 1)n
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and
r

∑

j=0

s
∑

k=1

(

r
j

)(

s
k

)

xj [xk, y] = ±
n

∑

j=1

(

n
j

)

[x, yt]xs. (6)

Now we prove that H ⊆ Z(R). Let x ∈ H and y ∈ R. Thus using
H2 = (0), from (6) we have

s[x, y] = ±[x, yt] for all x ∈ H, y ∈ R. (7)

Substitute w = y into (5) to get

±[y, xyt−1 + yxyt−2 + · · ·+ yt−1x] = 0

and so

±[x, yt] = 0 for all x ∈ H, y ∈ R. (8)

From (7), (8) and the fact that p does not divide s we have [x, y] = 0 for
x ∈ H, y ∈ R. Hence

H ⊆ Z(R). (9)

Thus all commutators are central. By Lemma 5 we get

[x, yt] = tyt−1[x, y] = 0 for all x, y ∈ R. (10)

This condition shows that t divisible by p annihilates all commutators.
Hence (6) can be rewritten as

s[x, y] +
s

∑

k=2

(

s
k

)

[xk, y] = ±
r

∑

j=1

s
∑

k=1

(

r
j

)(

s
k

)

xj [xk, y]

which is the form of Proposition 1. Hence R is commutative.
Proof of Theorem 2. Let R satisfy (c2). As above, it is easy to observe that
the reduction to a subdirectly irreducible ring R satisfying (α) with Q(s, t)
holds and so do both conditions (α) and (β) with Q(s). Replacing x + 1 by
x and y + 1 by y in c2 gives the following identities:

s[x, y] = ±G(x, y),

t[x, y] = ±H(x, y),

where G and H satisfy the conditions of Lemma 4. As in the proof of The-
orem 1, we have a unique prime p such that pH = (0). Thus by Proposition
1, p must divide both t and s, which is impossible if Q(s, t) holds. Other-
wise, since s is divisible by p, it must annihilate all commutators. Thus (β)
gives a contradiction if Q(s) holds. Hence R is commutative.

Since Theorems 3 and 4 can be proved in the same way, we omit their
proofs.
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A recent commutativity study [10] deals with rings satisfying related
conditions of the form

[xy − p(yx), x] = 0

or

[xy − p(yx), y] = 0.

This becomes possible by interchanging the roles of x and y as

[yx− p(xy), y] = 0

or

[yx− p(xy), x] = 0.

The following result is proved in [10].

Theorem 5. Let R be a ring with 1 such that for each x, y ∈ R, there
exist p(t), q(t) ∈ t2Z[t] for which [xy−p(yx), x] = 0 and [xy−q(yx), y] = 0.
Then R is commutative.

Now we generalize Theorem 5.

Theorem 6. Let R be a ring with unity 1 such that for each x, y ∈ R
there exists p(x) ∈ x2Z[x] for which either [yx − p(yx), x] = 0 or [yx −
p(yx), y] = 0. Then R is commutative.

Proof. Suppose that p(x) = a2x2+a3x3+a4x4+· · ·+anxn, where a1, a2, ..., an

are integers. By hypothesis, we can write for all x, y ∈ R

[yx, x] = [p(yx), x],

[x, y]x = [p(yx), x].
(1′)

Putting x + 1 for x in (1′) gives

[x, y](x + 1) = [p(y(x + 1)), x],

[x, y]x + [x, y] =
[

a2(y(x + 1))2 + a3(y(x + 1))3 + · · ·+ an(y(x + 1))n, x
]

,

[x, y]x + [x, y] =
[

a2y(x + 1)y + a3y(x + 1)y(x + 1)y + · · ·+
+ any(x + 1)y(x + 1) · · · y(x + 1)y, x

]

(x + 1) =

=
[

a2(yxy + y2) + a3(yxyxy + yxy2 + y2xy + y3) + · · ·+
+ an(yxyx · · · y + (x + 1), x

]

(x + 1),

[x, y]x + [x, y] =
[

a2yxy + a3yxyxy + · · ·+ anyxyxyx · · · yx, x
]

+

+
[

a2y2 + a3y3 + · · ·+ anyn, x
]

+ H(x, y),
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where each homogeneous component of G has the sum of coefficients which
is equal to zero. Thus H has no terms linear in y, and each term of H has
a degree greater than 1 in x. Hence

[x, y]x + [x, y] = [p(yx), x] + [p(y), x] + H(x, y). (2′)

Using (1′) and (2′), we obtain

[x, y] = [x, p(y)] + G(x, y).

Thus R is commutative by Kezlan’s theorem [11] or Lemma 4. Similarly,
with the help of Lemma 4, R is commutative if R satisfies [yx − p(xy), y]
= 0.

Similarly to the proof of Theorem 6, we can reprove the next theorem
using Lemma 4.

Theorem 7 ([12]). Let R be a ring with unity 1 satisfying

[xy − p(yx), y] = 0 for all x, y ∈ R,

where p(x) ∈ x2Z[x]. Then R is commutative.

Now let P be a ring property. If P is inherited by every subring and
every homomorphic image, then P is called an h-property. More weakly, if
P is inherited by every finitely generated subring and every natural homo-
morphic image modulo the annihilator of a central element, then P is called
an H-property.

A ring property P such that a ring R has the property P if and only if
all its finitely generated subrings have P is called an F -property.

Proposition 2 ([13, Proposition 1]). Let P be an H-property, and
P ′ be an F -property. If every ring R with unity 1 having the property P has
the property P ′, then every s-unital ring having P has P ′.

Finally, Theorems 1–4, 6, and 7 are automatically generalized from a
unital ring to s-unital ones due to Proposition 2. Indeed, we have

Theorem 8. Let R be a left (resp., right) s-unital ring satisfying (c1)
(resp., (c2)). Then R is commutative.

Theorem 9. Let R be a left s-unital (resp., right) ring satisfying (c3)
(resp., (c4)). Then R is commutative.
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