C(X) IN THE WEAK TOPOLOGY

N. V. VELIČKO

ABSTRACT. Some relations between cardinal invariants of X and C(X) are established in the weak topology, where C(X) is the space of continuous real-valued functions on X in the compact-open topology.

Let X be a compact space. Denote by C(X) the space of continuous realvalued functions on X in the compact-open topology, by $C'(X) \equiv (C(X))'$ the vector space dual to C(X), i.e. the space of continuous linear forms on C(X), by $C_{\omega}(X)$ $(C'_{\omega}(X))$ the space C(X) (C'(X)) in C'(X)-topology (C(X)-topology), and by $C_p(X)$ the space C(X) in the topology of pointwise convergence.

Symbols $|X|, \omega, \chi, d, \pi\omega, \pi\chi, p\omega, n\omega$ denote the cardinality, weight, character, density, π -weight, π -character, pseudo-weight, and network weight, respectively (see, e.g., [1]).

In this paper we shall establish some relationship between cardinal invariants of X and $C_{\omega}(X)$.

Proposition 1. $\omega(C_{\omega}(X)) \leq \exp \omega(X).$

Proof. Let $\omega(X) = \tau$. As is well known, $\omega(C(X)) = \tau$ and $|C(C(X))| \leq \exp \tau$. Since $C'(X) \subseteq C_p(C(X))$, we have $|C'(X)| \leq \exp \tau$. Since $C_{\omega}(X)$ is a subspace of $C_p(C'(X))$, it follows that $\omega(C_{\omega}(X)) \leq \omega(C_p(C'(X))) \leq |C'(X)|$. And finally, $\omega(C_{\omega}(X)) \leq \exp \omega(X)$, which completes the proof. \Box

To get further estimates we need the following general proposition ($\sigma(\cdot, \cdot)$ stands below for weak topology [2]).

Proposition 2. Let E be a Banach space, $E_{\omega} = (E, \sigma(E, E'))$, and S_{ω} be the unit closed ball in E_{ω} . Then $d(E') \leq \pi \chi(S_{\omega}) \leq \pi \chi(E_{\omega}) \leq \chi(E)$.

1072-947X/95/1100-0653\$07.50/0 © 1995 Plenum Publishing Corporation

¹⁹⁹¹ Mathematics Subject Classification. 54C35.

Key words and phrases. Compact space, continuous real-valued functions, weak to-pology, cardinal invariants.

⁶⁵³

Proof. Let $\pi = \{V_{\alpha} : \alpha \in A\}$ be a π -base at the point $0 \in S_{\omega}$. One may assume that $|A| = \pi\chi(S_{\omega})$ and $V_{\alpha} = S_{\omega} \cap \{x \in E : |f_{\alpha i}(x)| < \varepsilon_{\alpha}, i \leq n(\alpha), f_{\alpha i} \in E'\}$. Let Z' be the linear hull of the set $\{f_{\alpha i} : \alpha \in A, i \leq n(\alpha)\}$. Prove that Z' is dense in E'. Assume the contrary: there exists a form $f \in E' \setminus [Z']$. By the Hahn–Banach theorem there exists a linear form $g \in E''$ such that g(f) = 1 and g(Z') = 0. There is no loss of generality in assuming that $g \in S''$. Let $V = \{x \in E : f(x) < 2^{-1}\}$. There exists $\alpha \in A$ such that $S_{\omega} \cap V \subseteq V_{\alpha}$. The neighborhood

$$V(f_{\alpha i}, f, \varepsilon_{\alpha}, 2^{-1}, i \le n(\alpha)) = \left\{ g' \in E'' : |g'(f_{\alpha i})| < \varepsilon_{\alpha}, |g'(f) - 1| < 2^{-1} \right\}$$

of the point g in $\sigma(E'', E')$ -topology of the space E'' contains some element k(x), where $x \in S_{\omega}$ and $k : E \to E'$ is a canonical embedding (this follows from Goldstine's theorem [3]). But then $x \in V_{\alpha} \setminus V$, which contradicts the choice of V_{α} . We have proved that [Z'] = E'; it follows that $\alpha(E') \leq |Z'| = |A| \leq \pi \chi(S_{\omega})$. \Box

Corollary 1. For E = C(X) the following is valid:

$$|X| \le d(C'(X)) \le \pi \chi(S_{\omega})$$

Indeed, the canonical mapping q: q(t)(x) = x(t) transfers the set X onto a discrete subset of the space C'(X) (since |q(t) - q(t')| = 2 for any points t, t' from X). It follows that $|X| \leq d(C'(X))$, and we can apply Proposition 2.

Question 1. Is it true that |X| = d(C'(X))?

One more assertion. Let $F \subseteq E'$. Set $E_F = (E, \sigma(E, F))$.

Proposition 3. $\chi(E_F) = \omega(E_F)$.

Proof. Let $\{V_{\alpha} : \alpha \in A\}$ be a fundamental family of $\sigma(E, F)$ -neighborhoods of zero in E_F such that $|A| \leq \chi(E_F)$. We can suppose that $V_{\alpha} = \{x \in E : |f_{\alpha i}(x)| < \varepsilon_{\alpha}, f_{\alpha i} \in F, i \leq n(\alpha)\}$. Fix some countable base π in \mathbb{R} . Put $\gamma = \{f_{\alpha i}^{-1}(V) : \alpha \in A, i \leq n(\alpha), V \in \pi\}$. Then $|\gamma| = |A|$ and it suffices to show that γ is a subbase for the topology $\sigma(E, F)$. Let x_0 be an arbitrary point of E and let V be a $\sigma(E, F)$ -neighborhood of x_0 . The set $V - x_0$ is $\sigma(E, F)$ -neighborhood of zero, so that there exists $\alpha \in A$ such that $V_{\alpha} \subseteq V - x_0$. Choose the sets $W_{\alpha i} \in \pi$ such that $f_{\alpha i}(x_0) \in W_{\alpha i} \subseteq (f_{\alpha i}(x_0) - \varepsilon_{\alpha}, f_{\alpha i}(x_0) + \varepsilon_{\alpha}), i \leq n(\alpha)$. Set $\Gamma = \cap\{f_{\alpha i}^{-1}(W_{\alpha i}) : i \leq n(\alpha)\}$ and prove that $\Gamma \subseteq V$. Let $x \in \Gamma$. Then $f_{\alpha i} \in W_{\alpha i}$. Hence either $|f_{\alpha i}(x) - f_{\alpha i}(x_0)| < \varepsilon_{\alpha}$ or $|f_{\alpha i}(x - x_0)| < \varepsilon_{\alpha}$ for $i \leq n(\alpha)$, and $x - x_0 \in V_{\alpha} \subseteq V - x_0$ or $x \in V$. We have proved that γ is a subbase and so $\omega(E_F) \leq |\gamma| = |A| \leq \chi(E_F)$. \Box

Summing up the above arguments, we arrive at the following

654

Theorem 1.

$$\omega(X) = d(C(X)) \le \pi \chi(C_{\omega}(X)) = \pi \omega(C_{\omega}(X)) =$$
$$= \chi(C_{\omega}(X)) = \omega(C_o m(X)) \le \exp \omega(X).$$

Proof. It is necessary here to employ Proposition 1, Corollary 1, Proposition 3, and the well-known fact that $\pi \chi = \chi$ and $\pi \omega = \omega$ for every topological group. \Box

Theorem 2.

$$|X| \le \pi \chi(S_{\omega}) = \pi \omega(S_{\omega}) = \chi(S_{\omega}) = \omega(S_{\omega}) = d(C'(X)) \le \exp \omega(X).$$

Proof. Since $d(C'(X)) \leq \omega(C'(X))$ and $n\omega(C_p(C'(X))) \leq \omega(C'(X))$, we have $n\omega(S''_{\omega}) \leq d(C'(X))$, where $C''_{\omega} = ((C'_{\omega}(X))', \sigma(C''(X), C'(X))) =$ $(C''(X), \sigma(C''(X), C'(X)))$. As S'_{ω} is compact, $\omega(S''_{\omega}) = n\omega(S''_{\omega})$. Since S_{ω} is embedded topologically in $S''_{\omega}, \omega(S_{\omega}) \leq \omega(S''_{\omega}) = n\omega(S''_{\omega}) \leq d(C'(X))$. By Corollary 1, $\pi\chi(S_{\omega}) \geq d(C'(X))$, so that $\pi\chi(S_{\omega}) = \pi\omega(S_{\omega}) = \chi(S_{\omega}) =$ $\omega(S_{\omega}) = d(C'(X))$. \Box

Question 2. Is it true that $\omega(E_{\omega}) \geq \omega(E)$?

Question 3. Is it true that $\omega(E') \ge \omega(E'_{\omega})$?

Note that the weight of $C_{\omega}(X)$ does not necessarily coincide with the weight of S_{ω} . Indeed, let X be a convergent sequence of real numbers. Then C(X) is isomorphic to the space C of all convergent sequences of real numbers. $C' = \ell_1$ is separable, hence its unit closed ball is metrizable in C(X)-topology, i.e., $\chi(S_{\omega}) = \omega(S_{\omega}) = \omega_0$. But $C_{\omega}(X)$ is nonmetrizable, so that $\chi(C_{\omega}(X)) > \omega(S_{\omega})$.

The problem of ψ -characters for $C_p(X)$ was solved in [4]:

$$\psi(C_p(X)) \le d(X). \tag{1}$$

Since $C_{\omega}(X)$ maps onto $C_p(X)$ one-to-one, from (1), it follows that

$$\psi(C_{\omega}(X)) \le d(X). \tag{2}$$

Moreover, the following proposition is true.

Proposition 4. $\psi(C_{\omega}(X)) = p\omega(C_{\omega}(X)) = d(C'_{\omega}(X)).$

Proof. Let $\{V_{\alpha} : \alpha \in A\}$ be a subbase of $C_{\omega}(X)$ in zero having the least cardinality and consisting of standard sets $V_{\alpha} = \{x \in C(X) : f_{\alpha i}(x) < \varepsilon_{\alpha}, i \leq n(\alpha)\}$. Let T be the C(X)-closure of the linear hull of the set $\{f_{\alpha i} : \alpha \in A, i \leq n(\alpha)\}$. Prove that T = C'(X). Suppose the contrary: there exists a point $g \in C'(X) \setminus T$. By the theorem on separation of convex sets there exists a C(X)-continuous linear form f such that f(T) = 0 and f(y) > 0. By virtue of the C(X)-continuity, $f \in C(X)$. For all αi we have $f_{\alpha i}(f) = 0$. Hence $f \in V_{\alpha}$ for all α , but $\cap \{V_{\alpha} : \alpha \in A\} = \{0\}$. We have a contradiction. Consequently, T = C'(X) and $\psi(C_{\omega}(X)) \ge d(C'_{\omega})$.

Now let $M = \{g_{\alpha} : \alpha \in A\}$ be a C'(X)-dense set of cardinality d(C'(X)). Then M is C(X)-separating family and the diagonal of mappings g_{α} produces a condensation of $C_{\omega}(X)$ in the product space $\prod \{R_{\alpha} : \alpha \in A\}$. From this it follows that $p\omega(C_{\omega}(X)) \leq \omega(\prod \{R_{\alpha} : \alpha \in A\}) = |A|$. \Box

Proposition 4 underlies the following assertion.

Theorem 3. If X is an Eberline compactum, then $\psi(C_{\omega}(X)) = d(X)$.

Proof. Let $Y \subseteq C_p(X)$ be an X-separating compactum. Then $\omega(Y) = d(Y) = d(X) = \omega(X)$. One may suppose that Y lies in S_{ω} . By the Grothendieck theorem [5], Y is compact in $C_{\omega}(X)$. Then $\omega(\gamma) = p\omega(Y) \leq p\omega(C_{\omega}(X)) = \psi(C_{\omega}(X))$ or $d(X) \leq \psi(C_{\omega}(X))$. Reference to Proposition 4 completes the proof. \Box

Proposition 5. The following statements are equivalent:

(1) $C_{\omega}(X)$ is a k-space; (2) $C_{\omega}(X)$ is sequential; (3) $C_{\omega}(X)$ is a Frechet–Urysohn space; (4) $C_{\omega}(X)$ is metrizable;

(5) $C_{\omega}(X)$ is finite.

Proof. It suffices to show that $(1) \Rightarrow (5)$.

Suppose that X is infinite. Then dim $C(X) = \infty$ and there exists a set A in C(X) such that $0 \in [A]_{\omega}$, where $[A]_{\omega}$ is the weak closure of A, but the intersection of A with any bounded set is finite (see, e.g., [6]).

Let K be an arbitrary compact set in $C_{\omega}(X)$. Then K is a Frechet– Urysohn space. Hence, if $x \in [K \cap A]_{\omega}$, there exists a sequence $\{x_n\}$ of elements of A which converges to x. Any weak convergent sequence is always bounded. For the definition of A it follows that the set $\cup \{x_n : n \in \omega\}$ is finite, i.e., the sequence $\{x_n\}$ is stationary: $x_n \equiv x$ beginning with some n. Hence $x \in A$ and $K \cap A$ is weakly closed. But this means that $C_{\omega}(X)$ is not a k-space. \Box

The situation with S_{ω} is somehow different. Here there are other criteria for metrizability.

Proposition 6. S_{ω} is metrizable iff X is countable.

Proof. If S_{ω} is metrizable, then X is countable by Theorem 2. If S_{ω} is countable, then $C_p(X)$ is metrizable. As X is compact, X is scattered. By the theorem from [7], S_{ω} is homeomorphic to S_p , hence S_{ω} is metrizable. \Box

Then the following proposition is valid.

656

Proposition 7. If X is a scattered compactum, then S_{ω} has the Frechet-Urysohn (FU) property.

Proof. If X is scattered, then $C_p(X)$ satisfies the FU-property. S_{ω} is homeomorphic to S_p , hence S_{ω} has the FU-property. \Box

Consequently, if X is an uncountable scattered compactum, then S_{ω} is a nonmetrizable Frechet–Urysohn space.

In conclusion we shall prove the formula

$$d(C_{\omega}(X)) = hd(C_{\omega}(X)) = n\omega(C_{\omega}(X)) = \omega(X).$$
(3)

Proof. Obviously, $d(Z) \leq hd(Z) \leq n\omega(Z)$ for any Z. But $d(C_p(X)) = d(C(X)) = \omega(X)$ [8], from which it follows that $d(C_{\omega}(X)) = \omega(X)$. But $n\omega(C_{\omega}(X)) = \omega(X)$, which completes the proof. \Box

AKNOWLEDGMENT

This research was supported by the Russian Fund for Fundamental Research, Grant 93-011-1401.

References

1. R. Engelking, General topology. *PWN – Polish Scientific Publishers*, *Warsaw*, 1977.

2. H. R. Schaefer, Topological vector spaces. Macmillan, N. Y., Collier-Macmillan, London, 1966.

3. N. Dunford and J. L. Schwartz, Linear operators. Part I: General theory. *Interscience Publishers, N. Y., London*, 1958.

4. J. Guthrie, Ascoly theorems and pseudocharacter of mapping spaces. Bull. Austral. Math. 10(1974), 403–408.

5. A. Grothendieck, Critères generaux de compaticité dans les espaces fonctionels généraux. Amer. J. Math. **74**(1952), 165–186.

6. M. M. Day, Normed linear spaces. Springer-Verlag, Berlin-Göttingen-Heidelberg, 1958.

7. Z. Semadeni, Banach spaces of continuous functions. *PWN – Polish Scientific Publishers, Warsaw*, 1971.

8. N. Noble, The density character of function spaces. *Proc. Amer. Math. Soc.* **42**(1974), 228–233.

(Received 18.10.1993)

Author's address:

Institute of Mathematics and Mechanics Ural Branch of the Russian Academy of Sciences ul. Kovalevskoi 16, Ekaterinburg 620066 Russia