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ON STRONG DIFFERENTIABILITY OF INTEGRALS
ALONG DIFFERENT DIRECTIONS

G. LEPSVERIDZE

Abstract. Theorems are proved as regards strong differentiability of
integrals in different directions.

§ 1. Introduction

The well-known negative result in the theory of strong differentiability of
integrals reads: there exists a summable function whose integral is differen-
tiated in a strong sense in none of the directions.

Below we shall prove the theorems which in particular imply: for each
pair of directions γ1 and γ2 differing from each other there exists a non-
negative summable function whose integral is strongly differentiated in the
directions γ1 and is not strongly differentiated in the direction γ2.

§ 2. Definitions and Formulation of the Problem

Let B(x) be a differentiation basis at the point x ∈ Rn, i.e., a family of
bounded measurable sets with positive measure containing x and such that
there is at least a sequence {Bk} ⊂ B(x) with diam(Bk) → 0 as k → ∞,
(see, [1,Ch. II, Section 2]). A collection B = {B(x) : x ∈ Rn} is called a
differentiation basis in Rn.

For f ∈ Lloc(Rn) and x ∈ Rn by MBf(x), DB(
∫

f, x), and DB(
∫

f, x) are
denoted, respectively, the maximal Hardy–Littlewood function with respect
to B, and the upper and the lower derivatives of the integral

∫

f with respect
to B at x. If DB(

∫

f, x) = DB(
∫

f, x), then this number will be denoted
by DB(

∫

f, x); the basis B will be said to differentiate
∫

f if the equality
DB(

∫

f, x) = f(x) holds for almost all x ∈ Rn. If the differentiation basis
differentiates the integrals of all functions from some class M , then it is said
to differentiate M [1, Ch. II and Ch. III].
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Let γ denote the set of n mutually orthogonal straight lines in Rn which
intersect at the origin. The union of such sets will be denoted by Γ(Rn).
Elements of Γ(Rn) will be called directions. If γ ∈ Γ(Rn), then Bγ

2 will
denote the differentiation basis consisting of all n-dimensional rectangles
whose sides are parallel to straight lines from γ.

The standard direction in Rn will be denoted by γ0 and, for simplicity,
the basis Bγ0

2 will be written as B2.
We shall denote by B3 the differentiation basis in Rn (n ≥ 2) consisting

of all n-dimensional rectangles and by B1 the differentiation basis in Rn

consisting of all n-dimensional cubic intervals whose sides are parallel to
the coordinate axes.

The fact that B2 differentiates L(1 + log+ L)n−1(Rn) is well known [2],
but in a class wider than L(1+log+ L)n−1(Rn) there exists a function whose
integral is not differentiated almost everywhere by the basis B2 ([3], [4]). On
the other hand, the basis B3 with “freely” rotating constituent rectangles
does not differentiate L∞(Rn) [1,Ch. V, Section 2]. The dependence of
differentiation properties on the orientation of the sides of rectangles leads
to the problem proposed by A. Zygmund ([1, Ch. IV, Section 2]): given a
function f ∈ L(R2), is it possible to choose a direction of γ ∈ Γ(R2) such
that Bγ

2 would differentiate
∫

f?
A negative answer to A. Zygmund’s question was given by D. Marstrand

[5] who constructed an example of an integrable function whose integral is
not differentiated almost everywhere by the basis Bγ

2 for any fixed direction
γ. Some generalizations of this result were later given in [6] and [7]. Hence
we face the question whether the following hypothesis holds: if f ∈ L(R2)
and B2 does not differentiate

∫

f , then Bγ
2 will not differentiate

∫

f either
whatever γ is.

We shall show that there exists a function f ∈ L(R2) for which this
hypothesis does not hold.

In connection with this we have to answer the following questions: what
is a set of those directions from Γ(R2) that differentiate

∫

f? What are
optimal conditions for such functions being integrable?

§ 3. Statement of the Main Results

Note that Γ(R2) corresponds in a one-to-one manner to the interval [0, π
2 ).

To each direction γ we put into correspondence a number α(γ), 0 ≤ α(γ) <
π
2 , which is defined as the angle between the positive direction of the axis
ox and the straight direction from γ lying in the first quadrant of the plane.
Elements of the set Γ(R2) will be identified with points from [0, π

2 ). By the
neighborhood of the point 0 will be meant the union of intervals [0, ε)∪(π

2 −
ε, π

2 ), 0 < ε < π
4 .

Denote S = [0, 1]2, and [T ] the closure of a set T .
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Theorem 1. Let Φ(t) be a nondecreasing continuous function on the
interval [0,∞) and Φ(t) = o(t log+ t) for t → ∞. Then there exists a
nonnegative summable function f ∈ Φ(L)(S) such that

(a) DB2(
∫

f, x) = +∞ a.e. on S;
(b) DBγ

2
(
∫

f, x) = f(x) a.e. on S for each γ from Γ(R2)\γ0 and, more-
over,

sup
γ:ε<α(γ)< π

2−ε

{

MBγ
2
f(x)

}

< ∞ a.e. on S

for each number ε, 0 < ε < π
2 .

Theorem 2. Let Φ(t) be a nondecreasing continuous function on the in-
terval [0,∞) and Φ(t) = o(t log+ t) as t → ∞. Let, moreover, a sequence
(γn)∞n=1 ⊂ Γ(R2) be given. Then there exists a nonnegative summable func-
tion f ∈ Φ(L)(S) such that

(a) for every n = 1, 2, . . .

DBγn
2

(
∫

f, x) = +∞ a.e. on S; (1)

(b) for almost every γ ∈ Γ(R2)

DBγ
2
(
∫

f, x) = f(x) a.e. on S (2)

and, moreover, for every set T for which [T ] ⊂ Γ(R2)\(γn)∞n=1 a function f
can bu chosen such that in addition to (1) and (2) the following relaton will
be fullfiled:

sup
γ:γ∈T

{

MBγ
2
f(x)

}

< ∞ a.e. on S.

§ 4. Auxiliary Statements

To prove Theorem 1 we shall make use of the following two lemmas in
which I = [0, l1]× [0, l2]; χA and |A| will stand below for the characteristic
function and Lebesgue measure of a set A, respectively.

Lemma 1. Let γ ∈ Γ(R2)\γ0. There exists a constant c(γ), 1 < c(γ) <
∞, such that the inequality

∣

∣

∣

{

x ∈ R2 : MBγ
2
(χI )(x) > λ

}∣

∣

∣ < 9c(γ)λ−1|I|

holds for any λ, 0 < λ < 1, satisfying the condition

c(γ)λ−1l1 ≤ l2.

Lemma 2. The inequality
∣

∣

{

x ∈ R2 : MB2(χI )(x) > λ
}∣

∣ >
1
λ

log
( 1

λ

)

|I|

holds for any number λ, 0 < λ < 1.
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One can easily verify Lemma 2.
Proof of Lemma 1. Let x 6∈ I. It is easy to show that the maximal function
MBγ

2
(χI ) at the point x can be estimated from above as follows:

MBγ
2
(χI )(x) ≤ c(γ)

l1
ρ(x, I)

, (3)

where

c(γ) = 2 max
{ 1

cos(α(γ))
;

1
sin(α(γ))

}

(4)

and ρ(x, I) denotes the distance between x and the interval I.
Hence it is obvious that

{

x ∈ R2 : MBγ
2
(χI (x) > λ

}

⊂

⊂
{

x ∈ R2 : c(γ)
l1

ρ(x, I)
> λ

}

⊂ Q(I, λ−1, γ), (5)

where

Q(I, λ−1, γ) =
[

− c(γ)λ−1l1, 2c(γ)λ−1l1
]

×
[

− l2, 2l2
]

. (6)

Clearly,
∣

∣Q(I, λ−1, γ)
∣

∣ = 9c(γ)λ−1|I|.
We eventualy obtain

∣

∣

∣

{

x ∈ R2 : MBγ
2
(χI (x) > λ

}∣

∣

∣ ≤
∣

∣Q(I, λ−1, γ),
∣

∣ = 9c(γ)λ−1|I|.

§ 5. Proof of the Main Results

Proof of Theorem 1. Let (cn)∞n=1 be an increasing sequence of natural
numbers and the constants c(γ) be defined by equality (4). Obviously,
1 < c < ∞, where

c = sup
{

c(γ) : γ ∈ Γ(R2), ε < α(γ) <
π
2
− ε

}

.

Let us construct a sequence of natural numbers (βn)∞n=1 so as to satisfy
the conditions

βn log(βn) ≥ max
{

cnβn22n; 2nΦ(βn)
}

. (7)

The intervals In = [0, ln1 ]× [0, ln2 ] for n = 1, 2, . . . will be constructed so
as to satisfy the equality

cnβn2nln1 = ln2 . (8)
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In what follows, for g ∈ L(R2), 0 < λ < ∞, γ ∈ Γ(R2)\γ0, we shall use
the following notation:

H2(g, λ) =
{

x ∈ R2 : MB2g(x) ≥ λ
}

,

Hγ
2 (g, λ) =

{

x ∈ R2 : MBγ
2
g(x) > λ

}

.

Using (7) and Lemma 2 we obtain
∣

∣H2(βnχI , 1)
∣

∣ =
∣

∣H2(χIn , β−1
n )

∣

∣ > βn log(βn)|In| > 2n(

cnβn2n|In|
)

. (9)

Consider the interval

Qn =
[

− cnβn2nln1 , cnβn2n+1ln1
]

×
[

− ln2 , 2ln2
]

.

Note that if γ satisfies the condition c(γ) < cn, then (see (5), (6), (8))
then we have the inclusions

Hγ
2 (βnχIn , 2−n) ⊂ Q(In, βn2n, γ) ⊂ Qn. (10)

Since Qn is the cubic interval (see (8)), it is easy to ascertain that for
each direction γ there exists an interval En,γ such that En,γ ∈ Bγ

2 and the
conditions

Qn ⊂ En,γ ⊂ 2Qn (11)

are fulfilled (see Figure 1).
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Figure 1

We have

|2Qn| ≤ 36cnβn2n|In|. (12)

From (9) and (12) it follows that

∣

∣H2(βnχIn , 1)
∣

∣ >
2n

36
(

36cnβn2n|In|
)

≥ 2n

36
|2Qn|. (13)
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For each n ∈ N consider the set

Hn
2 ≡ H2(βnχIn , 1) ∪ 2Qn.

Since the set Hn
2 is compact, almost the whole interval S can be repre-

sented as the union of nonintersecting sets that are homothetic to the set
Hn

2 and have a diameter not exceeding n−1 (see Lemma 1.3 from [1, Ch.
III, Section 1]). Assuming that Hn,k

2 (k = 1, 2, . . . ) are such sets, we obtain

diam
(

Hn,k
2

)

≤ n−1, (14)
∣

∣

∣S\
∞
∪

k=1
Hn,k

2

∣

∣

∣ = 0. (15)

Let, moreover, Pn,k denote a homothety transforming the set Hn
2 to Hn,k

2 .
The images of the sets In, Qn, En,γ for the homothety Pn,k will be denoted
by In,k, Qn,k and En,γ,k.

Using one of the homothetic properties, from (13) we obtain
∣

∣

∣

∞
∪

k=1
2Qn,k

∣

∣

∣ ≤
36
2n

∣

∣

∣

∞
∪

k=1
Hn,k

2

∣

∣

∣ =
36
2n .

Therefore
∞
∑

n=1

∣

∣

∣

∞
∪

k=1
2Qn,k

∣

∣

∣ < ∞, (16)

which implies
∣

∣

∣ lim sup
n→∞

∞
∪

k=1
2Qn,k

∣

∣

∣ = 0. (17)

The function fn on S is defined by

fn(x) =
∞
∑

k=1

βnχ
In,k (x), n = 1, 2, . . . ,

and f by
f(x) = sup

n∈N
fn(x).

Let us show that f ∈ Φ(L)(S). We have (see (15))

1 = |S| ≥
∣

∣

∣

∞
∪

k=1
H2(βnχ

In,k , 1)
∣

∣

∣ >
∞
∑

k=1

βn log(βn)|In,k|,

which by virtue of (7) gives us

1 ≥ 2n
∞
∑

k=1

Φ(βn)|In,k|.
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Therefore
∫

S
Φ(fn) =

∞
∑

k=1

Φ(βn)|In,k| ≤ 2−n, n = 1, 2, . . . .

Since Φ(t) is a continuous nondecreasing function, we obtain
∫

S
Φ(f) ≤

∞
∑

n=1

∫

S
Φ(fn) ≤

∞
∑

n=1

2−n < ∞.

To prove the theorem we have first to show that

DB2(
∫

f, x) = +∞ a.e. on S.

We have (see (15))

1 = |S| =
∣

∣

∣ lim sup
n→∞

∞
∪

k=1
Hn,k

2

∣

∣

∣ =
∣

∣

∣ lim sup
n→∞

∞
∪

k=1

(

H2(βnχ
In,k , 1) ∪ 2Qn,k)

∣

∣

∣ ≤

≤
∣

∣

∣ lim sup
n→∞

∞
∪

k=1

(

H2(βnχ
In,k , 1)

∣

∣

∣ +
∣

∣

∣ lim sup
n→∞

∞
∪

k=1
2Qn,k)

∣

∣

∣.

Hence by virtue of (17) we conclude that
∣

∣

∣ lim sup
n→∞

∞
∪

k=1

(

H2(βnχ
In,k , 1)

∣

∣

∣ = 1 (18)

which clearly implies that for almost all x ∈ S there exists a sequence
(ni, ki)∞i=1 (depending on x) such that

x ∈ H2(βniχIni,ki
, 1), i = 1, 2, . . . .

Note further that

diam
(

H2(βniχIni,ki
, 1)

)

< n−1
i , i = 1, 2, . . . .

From the inclusion x ∈ H2(βniχIni,ki
, 1) and construction of sets

H2(βnχ
In,k , 1) it follows that there exists an interval Ri ∈ B2(x) contained

in the set H2(βiχ
Ini,ki

, 1) and

1
|Ri|

∫

Ri

χ
Ini,ki

(y) dy ≥ β−1
ni

, i = 1, 2, . . . . (19)

We define fn as
fn(x) = sup

m≥n
fm(x).

By (19) the relations

DB2(
∫

fn, x) ≥ lim
i→∞

1
|Ri|

∫

Ri

fni(y)dy ≥ lim
i→∞

βni

|Ri|

∫

Ri

χ
Ini,ki

(y)dy ≥ 1

a.e. on S.
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We have

| supp(fn)| ≤
∞
∑

m=n

| supp(fm)| ≤
∞
∑

m=n

∣

∣

∣

∞
∪

k=1
2Qm,k

∣

∣

∣.

Hence by virtue of (16) we find that for each number ε, 0 < ε < 1, there
exists a number n = n(ε) such that | supp(fn)| < ε.

We have
∣

∣

{

x ∈ S : DB2(
∫

fn, x) > fn(x)
}∣

∣ ≥
≥

∣

∣

{

x ∈ S : DB2(
∫

fn, x) ≥ 1, x 6∈ supp(fn)
}∣

∣ =

=
∣

∣

{

x ∈ S : x 6∈ supp(fn)
}∣

∣ > 1− ε

which by the Besikovitch theorem (see [1, Ch. IV, Section 3]) implies
∣

∣

{

x ∈ S : DB2(
∫

fn, x) = +∞
}∣

∣ > 1− ε.

Since ε is arbitrary and f(x) ≥ fn(x), we have
∣

∣

{

x ∈ S : DB2(
∫

fn, x) = +∞
}∣

∣ = 1

thereby proving assertion (a) of Theorem 1.
Let us now show that if γ ∈ Γ(R2)\γ0 then

DBγ
2
(
∫

f, x) = f(x) a.e. on S.

By virtue of the above-mentioned Besikovitch theorem it is sufficient to
prove that

MBγ
2
f(x) < ∞

at almost every point x ∈ S.
Fix γ 6= γ0. Note that there exists a number n(γ) such that c(γ) < cn for

n > n(γ). The inclusions (10) and (11) imply that the following inclusions
are valid: if n > n(γ) then

Hγ
2 (βnχ

In,k , 2−n) ⊂ Q(In,k, βn2n, γ) ⊂ Qn,k ⊂ En,γ,k ⊂ 2Qn,k (20)

for all k = 1, 2 . . . .
By (17) we find that for almost all x ∈ S there exists a finite set p(x) ⊂ N

with the properties

x ∈
∞
∪

k=1
2Qn,k for n ∈ p(x)

and
x 6∈

∞
∪

k=1
2Qn,k for n 6∈ p(x).
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We obtain

MBγ
2
f(x) ≤

n(γ)
∑

n=1

MBγ
2
fn(x) +

∑

n∈p(x), n>n(γ)

MBγ
2
fn(x) +

+
∑

n 6∈p(x), n>n(γ)

MBγ
2
fn(x) = I1(x, γ) + I2(x, γ) + I3(x, γ).

Let us estimate from above the values Ik(x, γ), k = 1, 2, 3. Note that

I1(x, γ) ≤
n(γ)
∑

n=1

βn < ∞

for all x ∈ S.
Similarly,

I2(x, γ) ≤ card
(

p(x)
)

max
n∈p(x)

{βn} < ∞ a.e. on S.

We shall now prove that

MBγ
2
fn(x) ≤ 2−n, n 6∈ p(x), n > n(γ).

Assume that Rγ ∈ Bγ
2 (x) and let {kn

1 , . . . , kn
j , . . . } denote a set of natural

numbers for which

|Rγ ∩ In,kn
j | > 0, j = 1, 2, . . . .

Note that Rγ∩En,γ,kn
j ∈ Bγ

2 , and if n 6∈ p(x), n > n(γ), then x 6∈ En,γ,kn
j .

Also taking into account the fact that the set Rγ ∩En,γ,kn
j contains at least

one point from (En,γ,kn
j )c, we obtain (see (20))

|Rγ ∩ In,kn
j | < β−1

n 2−n|Rγ ∩ En,γ,kn
j |, j = 1, 2, . . . ,

for n > n(γ), n 6∈ p(x).
Hence it follows that if n > n(γ), n 6∈ p(x) then

1
|Rγ |

∫

Rγ
fn(y)dy =

βn

|Rγ |

∞
∑

j=1

|Rγ ∩ In,kn
j | ≤

≤ βn

|Rγ |

∞
∑

j=1

β−1
n 2−n|Rγ ∩ En,γ,kn

j |. (21)

Since the sets En,γ,kn
j , j = 1, 2, . . . , do not intersect for n > n(γ) (see (20)),

we have

|Rγ | ≥
∣

∣

∣

∞
∪

j=1

(

Rγ ∩ En,γ,kn
j
)

∣

∣

∣ =
∞
∑

j=1

|Rγ ∩ En,γ,kn
j |. (22)
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(21)–(22) imply that if n 6∈ p(x), n > n(γ) then

MBγ
2
fn(x) = sup

Rγ∈Bγ
2 (x)

1
|Rγ |

∫

Rγ
fn(y)dy ≤ 2−n.

Therefore

I3(x, γ) =
∑

n 6∈p(x), n>n(γ)

MBγ
2
fn(x) ≤

∞
∑

n=1

2−n < ∞.

Finally,

MBγ
2
f(x) < ∞ (23)

for almost all x ∈ S, which proves the first part of assertion (b) of Theo-
rem 1.

Let us prove the second part. There exists a number n(ε) for which

c < cn for n > n(ε). (24)

We can write

MBγ
2
f(x) ≤

n(ε)
∑

n=1

MBγ
2
fn(x) +

∑

n∈p(x), n>n(ε)

MBγ
2
fn(x) +

+
∑

n6∈p(x), n>n(ε)

MBγ
2
fn(x) = I1(x) + I2(x) + I3(x).

We have

I1(x) ≤
n(ε)
∑

n=1

βn < ∞

and
I2(x) ≤ card

(

p(x)
)

max
n∈p(x)

{βn} < ∞ a.e. on S.

The relations (10), (11), (24) imply that if ε < α(γ) < π
2 − ε, then the

inclusions

Hγ
2 (βnχ

In,k , 2−n) ⊂ Q(In,k, β−1
n 2−n, γ) ⊂ Qn,k ⊂ En,γ,k ⊂ 2Qn,k (25)

hold for n > n(ε), k = 1, 2, . . . .
From (25) it follows that relations (21) and (22) are valid for any direction

γ for which ε < α(γ) < π
2 − ε when n 6∈ p(x), n > n(ε). This means that

for such directions we have

MBγ
2
fn(x) ≤ 2−n for n 6∈ p(x), n > n(ε),
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and thus

MBγ
2
f(x) ≤

n(ε)
∑

n=1

βn + card
(

p(x)
)

max
n∈p(x)

{

βn
}

+ 1 < ∞ a.e. on S.

Since the right-hand side does not depend on γ, we have

sup
γ:ε<α(γ)< π

2−ε

{

MMγ
2
f(x)

}

< ∞ a.e. on S.

Remark. The first part of assertion (b) of Theorem 1 can be formulated
as follows (see (23)):

MBγ
2
f(x) < ∞ a.e. on S

for each direction γ ∈ Γ(R2)\γ0.

Proof of Theorem 2. Since γn 6∈ T , the inclusion

Kn ≡
{

γ ∈ Γ(R2) : |α(γ)− α(γn)| > πε−1
n

}

⊃ T (26)

holds for a sufficiently large number εn.
Note that if γn = γ0 for some n, the set Kn will have the form

Kn ≡
{

γ ∈ Γ(R2) : πε−1
n < α(γ) <

π
2
− πε−1

n

}

.

Let, moreover,

∞
∑

n=1

ε−1
n < ∞. (27)

Note that by virtue of the above remark Theorem 1 implies that for any
number n ∈ N there exists a function fn ∈ Φ(L)(S), f ≥ 0, ‖Φ(fn)‖n(S) <
2−n such that the following three conditions hold:



















DBγn
2

(
∫

fn, x) = +∞ a.e. on S,

MBγ
2
fn(x) < ∞, ∀γ ∈ Γ(R2)\γn a.e. on S,

sup
γ:|α(γ)−α(γn)|>πε−1

n

{

MBγ
2
fn(x)

}

≤ Fn(x),

where the function Fn is finite a.e. There exist a number Pn and a set
En ⊂ S such that 1 < Pn < ∞, |S\En| < 2−n, and

Fn(x) ≤ Pn for x ∈ En, n = 1, 2, . . . .

Let

gn(x) =
1

Pn2n fn(x).
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Clearly, the following conditions hold for gn:


























DBγn
2

(
∫

gn, x) =
1

Pn2n DBγn
2

(
∫

f, x) = +∞ a.e. on S,

MBγ
2
gn(x) < ∞, ∀γ ∈ Γ(R2)\γn a.e. on S,

sup
γ:γ∈Kn⊃T

{

MBγ
2
gn(x)

}

≤ 1
2n on En.

We defined the function g as

g(x) = sup
n

gn(x).

Note that g ∈ Φ(L)(S). Indeed, since Φ(t) is the nondecreasing continu-
ous function,

∫

S
Φ(g) ≤

∞
∑

n=1

∫

S
Φ(gn) ≤

∞
∑

n=1

∫

S
Φ(fn) <

∞
∑

n=1

2−n < ∞.

We have

DBγn
2

(
∫

g, x) ≥ DBγn
2

(
∫

gn, x) = +∞ a.e. on S.

Relations (26) and (27) imply that
∞
∑

n=1

|Kc
n| ≤ 2π

∞
∑

n=1

ε−1
n < ∞.

Therefore
∣

∣ lim sup
n→∞

Kc
n

∣

∣ = 0. (28)

Similarly, since
∞
∑

n=1

|Ec
n| <

∞
∑

n=1

2−n < ∞,

we have
∣

∣ lim sup
n→∞

Ec
n

∣

∣ = 0.

Define the sets

Zn ≡
{

x ∈ S : Fn(x) = +∞
}

, n = 1, 2, . . . ,

K ≡ lim inf
n→∞

Kn,

E ≡ lim inf
n→∞

En\
∞
∪

n=1
Zn.

For γ ∈ K\(γn)∞n=1 we set

G(γ) ≡
∞
∩

n=1

{

x ∈ S : MBγ
2
gn(x) < ∞

}

.
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Clearly,
|E| = |G(γ)| = 1, |K| = π

2
.

Let γ ∈ K. It follows from (28) that there exists a finite set t(γ) ⊂ N for
which

γ ∈ Kc
n for n ∈ t(γ)

and
γ ∈ Kn for n 6∈ t(γ).

Similarly, if x ∈ E then there exists a finite set p(x) ⊂ N for which

x ∈ Ec
n for n ∈ p(x),

x ∈ En for n 6∈ p(x).

Let us show that
MBγ

2
g(x) < ∞

if x ∈ G(γ) ∩ E and γ ∈ K\(γn)∞n=1.
We can write

MBγ
2
g(x)≤

∑

n∈p(x)∪t(γ)

MBγ
2
gn(x)+

∑

n6∈p(x), n 6∈t(γ)

MBγ
2
gn(x)=I1(x, γ)+I2(x, γ).

For x ∈ G(γ) ∩ E we have

I1(x, γ) ≤ card
(

p(x) ∪ t(γ)
)

max
n∈p(x)∪t(γ)

{

MBγ
2
gn(x)

}

< ∞.

On the other hand,

I2(x, γ) =
∑

n:x∈En, γ∈Kn

MBγ
2
gn(x) ≤

∞
∑

n=1

2−n < ∞.

Therefore for γ ∈ K\(γn)∞n=1 we obtain (|σ(γ) ∩ E| = 1)

MBγ
2
g(x) < ∞ a.e. on S,

which by the Besikovitch theorem implies

DBγ
2
(
∫

g, x) = g(x) a.e. on S.

Now let us prove the second part of condition (b) of Theorem 2. Since
Kn ⊃ T , we have Kc

n ∩ T = ∅, n = 1, 2, . . . , and therefore

T ∩Kc
n = ∅, n ∈ N.

Thus if γ ∈ T , then t(γ) = ∅. We have

MBγ
2
g(x) ≤

∑

n∈p(x)

MBγ
2
gn(x) +

∑

n6∈p(x)

MBγ
2
gn(x) = I1(x) + I2(x).
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Note that if γ ∈ T , x ∈ E, then

I1(x) ≤ card
(

p(x)
)

max
n∈p(x)

{

Fn(x)
}

< ∞

and

I2(x) ≤
∑

n:x∈En

Fn(x) ≤
∞
∑

n=1

2−n < 1.

Therefore if γ ∈ T then we obtain (|E| = 1)

MBγ
2
g(x) ≤ card

(

p(x)
)

max
n∈p(x)

{

Fn(x)
}

+ 1 a.e. on S,

and since the right-hand side of this inequality is independent of the direc-
tion γ, we have

sup
γ:γ∈T

{

MBγ
2
g(x)

}

< ∞ a.e. on S.

§ 6. Corollaries

Theorem 2 implies

Corollary 1. There exists a nonnegative function f ∈ L(S) such that
the following conditions are fulfilled:

(a) if there is a direction γ such that α(γ) is a rational number, then

DBγ
2
(
∫

f, x) = +∞ a.e. on S;

(b) for almost all directions γ

DBγ
2
(
∫

f, x) = f(x) a.e. on S.

Definition. Assume that we are given a sequence of directions (γn)∞n=1
and let γn ↗ γ, n↗∞. Following [8], we shall say that the sequence of
directions is exponential if there exists a constant c > 0 such that

|α(γi)− α(γj)| > c|α(γi)− α(γ)|, i 6= j.

Corollary 2. Assume that we are given two sequences of directions
(γn)∞n=1 and (γ′n)∞n=1, the sequence (γn)∞n=1 being exponential, and let

γ′m ∈ Γ(R2)\
(

γn
)∞
n=1, m = 1, 2, . . . .

There exists f ∈ L(S), f ≥ 0, such that

D
B

γ′n
2

(
∫

f, x) = +∞ a.e. on S, n = 1, 2, . . . ,

and
DB(

∫

f, x) = f(x) a.e. on S,
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where the differentiation basis B at the point x is defined as follows:

B(x) = ∪
n
Bγn

2 (x).

Proof. By virtue of Theorem 2 from [8] we find that the basis B with the
exponential property differentiates the space Lp(R2), p > 2. Therefore the
basis with this property has the property of density. Using this fact and the
fact that

MBf(x) < ∞ a.e. on S

(see Theorem 2, T = (γn)∞n=1), by virtue of the de Guzmán and Menárguez
theorem (see [1, Ch. IV, Section 3]), we obtain

DB(
∫

f, x) = f(x) a.e. on S.

§ 7. Remarks

1. A set of functions described by Theorems 1 and 2 forms a first-category
set in L(R2) (see Saks’ theorem ([3]; [1, Ch. VII, Section 2]).

2. Let γ1, γ2 ∈ Γ(Rm), m ≥ 3. Denote by αk(γ1, γ2), k = 1, 2, . . . ,m,
the angle formed by the kth straight line of the direction γ1 and by the kth
straight line of the direction γ2. If γ ∈ Γ(Rm) then we denote by γ the
following subset from Γ(Rm):

γ ≡
{

γ′ ∈ Γ(Rm) : ∃K (1 ≤ k ≤ m), ∃j (1 ≤ j ≤ 4), αk(γ, γ′) =
π
2

(j−1)
}

.

Without changing the essence of the proof of the main results, we can
prove, for example,

Theorem 3. Let Φ(t) be a nondecreasing continuous function on the
interval [0,∞) and Φ(t) = o(t(log+ t)m−1) for t → ∞ (m ≥ 3). For each
pair of directions γ1 and γ2 for which γ2 6∈ γ1, there exists a nonnegative
summable function f ∈ Φ(L)([0, 1]m) such that

(a) DBγ1
2

(
∫

f, x) = +∞ a.e. on [0, 1]m;
(b) DBγ2

2
(
∫

f, x) = f(x) a.e. on [0, 1]m.

3. We have ascertained that for one class of functions the so-called basis
rotation changes the strong differentiability property of integrals. Note that
there exist functions such that the basis rotation changes the integrability
property of a strong maximal function. More exactly, for any number ε,
0 < ε < π

2 , there exists a function f ∈ L(U), U = [−1, 1]2, such that

(a)
∫

{MB2f>1}

MB2f(y) dy = +∞;
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(b) for any direction γ such that ε < α(γ) < π
2 − ε we have

∫

{MBγ
2

f>1}

MBγ
2
f(y) dy < ∞.

Indeed, let the constant c, 1 < c < ∞, be defined by the equality

c = sup
{

c(γ) : γ ∈ Γ(R2), ε < α(γ) <
π
2
− ε

}

.

Consider the nonnegative function g for which the following three condi-
tions are fulfilled:

g ∈ L log+ L(U)\L(log+ L)2(U), (29)

‖g‖1 > (2c)−1, supp(g) ⊂ U. (30)

Assuming that 0 ≤ λ < ∞ and

Eλ =
{

x ∈ U : g(x) > λ
}

,

we define the interval Iλ by

Iλ = [−l′λ, l′λ]× [−1, 1],

where
l′λ = 4−1|Eλ|.

The function f is defined by

f(x) =
∫ ∞

0
χIλ

(x) dλ.

It is clear that f and g are the equimeasurable functions. Let x ∈ R2,
γ 6= γ0, and R ∈ Bγ

2 (x). By using inequality (3) it is not difficult to show
that there exists a cubic interval Qx ∈ B1(x) such that for any λ we have
the relation

1
|R|

|R ∩ Iλ| ≤ 4c(γ)
1

|Qx/3|
|Qx/3 ∩ Iλ|+ c(γ)|Iλ|,

where Qx/3 denotes the image of the interval Qx under the homothety with
center at the origin and coefficient 1/3. Since R is arbitrary, we obtain (see
[9, p. 649])

MBγ
2
f(x) ≤ 4c(γ)MB1f(x/3) + c(γ)

∫

S
f.

Finally, for directions γ for which ε < α(γ) < π
2 − ε we have (see (30))

MBγ
2
f(x) ≤ 4c(γ)MB1f(x/3) + 2−1.
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By virtue of Stein’s theorem [10] and the fact that f ∈ L log+ L(U) (see
(29)) we obtain

∫

{MBγ
2

f>1}

MBγ
2
f(x) dx <

<4c
∫

{x:MB1f(x/3)>1/8c}

MB1f(x/3) dx+2−1
∣

∣

{

x : MB1f(x/3)>1/8c
}∣

∣<∞.

Now we shall prove assertion (a). Define the function Φ(x1) as

Φ(x1) = f(x1, 0).

Note that if x1 ∈ [−1, 1] and x2 ≥ 1 then

MB2f(x1, x2) ≥
2

x2 + 1
MΦ(x1),

where MΦ(x1) is the maximal Hardy–Littlewood function on the straight
line. By performing transformations and using the fact that f does not
belong to the class L(log+ L)2(U) we arrive at

∫

{MB2f>1}

MB2f(x1, x2) dx1 dx2 ≥

≥ 2
∫ ∞

1
dx2









∫

{x1∈(−1,1):MΦ(x1)≥
x2+1

2 }

1
x2 + 1

MΦ(x1) dx1









=

= 2
∫

{x1∈(−1,1):MΦ(x1)>1}

MΦ(x1) log+ (

MΦ(x1)
)

dx1 = +∞.
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