ON STRONG DIFFERENTIABILITY OF INTEGRALS ALONG DIFFERENT DIRECTIONS

G. LEPSVERIDZE

ABSTRACT. Theorems are proved as regards strong differentiability of integrals in different directions.

§ 1. INTRODUCTION

The well-known negative result in the theory of strong differentiability of integrals reads: there exists a summable function whose integral is differentiated in a strong sense in none of the directions.

Below we shall prove the theorems which in particular imply: for each pair of directions γ_1 and γ_2 differing from each other there exists a non-negative summable function whose integral is strongly differentiated in the directions γ_1 and is not strongly differentiated in the direction γ_2 .

§ 2. Definitions and Formulation of the Problem

Let B(x) be a differentiation basis at the point $x \in \mathbb{R}^n$, i.e., a family of bounded measurable sets with positive measure containing x and such that there is at least a sequence $\{B_k\} \subset B(x)$ with $\operatorname{diam}(B_k) \to 0$ as $k \to \infty$, (see, [1,Ch. II, Section 2]). A collection $B = \{B(x) : x \in \mathbb{R}^n\}$ is called a differentiation basis in \mathbb{R}^n .

For $f \in L_{loc}(\mathbb{R}^n)$ and $x \in \mathbb{R}^n$ by $M_B f(x)$, $\overline{D}_B(\int f, x)$, and $\underline{D}_B(\int f, x)$ are denoted, respectively, the maximal Hardy–Littlewood function with respect to B, and the upper and the lower derivatives of the integral $\int f$ with respect to B at x. If $\overline{D}_B(\int f, x) = \underline{D}_B(\int f, x)$, then this number will be denoted by $D_B(\int f, x)$; the basis B will be said to differentiate $\int f$ if the equality $D_B(\int f, x) = f(x)$ holds for almost all $x \in \mathbb{R}^n$. If the differentiation basis differentiates the integrals of all functions from some class M, then it is said to differentiate M [1, Ch. II and Ch. III].

613

1072-947X/95/1100-0613
\$07.50/0 \odot 1995 Plenum Publishing Corporation

¹⁹⁹¹ Mathematics Subject Classification. 28A15.

Key words and phrases. Strong differentiability of an integral, Zygmund problem on differentiation with respect to rectangles, field of directions, strong maximal function.

G. LEPSVERIDZE

Let γ denote the set of *n* mutually orthogonal straight lines in \mathbb{R}^n which intersect at the origin. The union of such sets will be denoted by $\Gamma(\mathbb{R}^n)$. Elements of $\Gamma(\mathbb{R}^n)$ will be called directions. If $\gamma \in \Gamma(\mathbb{R}^n)$, then B_2^{γ} will denote the differentiation basis consisting of all *n*-dimensional rectangles whose sides are parallel to straight lines from γ .

The standard direction in \mathbb{R}^n will be denoted by γ^0 and, for simplicity, the basis $B_2^{\gamma^0}$ will be written as B_2 . We shall denote by B_3 the differentiation basis in \mathbb{R}^n $(n \ge 2)$ consisting

We shall denote by B_3 the differentiation basis in \mathbb{R}^n $(n \ge 2)$ consisting of all *n*-dimensional rectangles and by B_1 the differentiation basis in \mathbb{R}^n consisting of all *n*-dimensional cubic intervals whose sides are parallel to the coordinate axes.

The fact that B_2 differentiates $L(1 + \log^+ L)^{n-1}(\mathbb{R}^n)$ is well known [2], but in a class wider than $L(1+\log^+ L)^{n-1}(\mathbb{R}^n)$ there exists a function whose integral is not differentiated almost everywhere by the basis B_2 ([3], [4]). On the other hand, the basis B_3 with "freely" rotating constituent rectangles does not differentiate $L^{\infty}(\mathbb{R}^n)$ [1,Ch. V, Section 2]. The dependence of differentiation properties on the orientation of the sides of rectangles leads to the problem proposed by A. Zygmund ([1, Ch. IV, Section 2]): given a function $f \in L(\mathbb{R}^2)$, is it possible to choose a direction of $\gamma \in \Gamma(\mathbb{R}^2)$ such that B_2^{γ} would differentiate $\int f$?

A negative answer to A. Zygmund's question was given by D. Marstrand [5] who constructed an example of an integrable function whose integral is not differentiated almost everywhere by the basis B_2^{γ} for any fixed direction γ . Some generalizations of this result were later given in [6] and [7]. Hence we face the question whether the following hypothesis holds: if $f \in L(\mathbb{R}^2)$ and B_2 does not differentiate $\int f$, then B_2^{γ} will not differentiate $\int f$ either whatever γ is.

We shall show that there exists a function $f \in L(\mathbb{R}^2)$ for which this hypothesis does not hold.

In connection with this we have to answer the following questions: what is a set of those directions from $\Gamma(\mathbb{R}^2)$ that differentiate $\int f$? What are optimal conditions for such functions being integrable?

§ 3. STATEMENT OF THE MAIN RESULTS

Note that $\Gamma(\mathbb{R}^2)$ corresponds in a one-to-one manner to the interval $[0, \frac{\pi}{2})$. To each direction γ we put into correspondence a number $\alpha(\gamma), 0 \leq \alpha(\gamma) < \frac{\pi}{2}$, which is defined as the angle between the positive direction of the axis ox and the straight direction from γ lying in the first quadrant of the plane. Elements of the set $\Gamma(\mathbb{R}^2)$ will be identified with points from $[0, \frac{\pi}{2})$. By the neighborhood of the point 0 will be meant the union of intervals $[0, \varepsilon) \cup (\frac{\pi}{2} - \varepsilon, \frac{\pi}{2}), 0 < \varepsilon < \frac{\pi}{4}$.

Denote $S = [0, 1]^2$, and [T] the closure of a set T.

Theorem 1. Let $\Phi(t)$ be a nondecreasing continuous function on the interval $[0,\infty)$ and $\Phi(t) = o(t \log^+ t)$ for $t \to \infty$. Then there exists a nonnegative summable function $f \in \Phi(L)(S)$ such that

(a) $\overline{D}_{B_2}(\int f, x) = +\infty$ a.e. on S;

(b) $D_{B_2^{\gamma}}(\int f, x) = f(x)$ a.e. on S for each γ from $\Gamma(\mathbb{R}^2) \setminus \gamma^0$ and, moreover,

$$\sup_{\gamma:\varepsilon<\alpha(\gamma)<\frac{\pi}{2}-\varepsilon}\left\{M_{B_2^\gamma}f(x)\right\}<\infty \ \text{a.e. on }S$$

for each number ε , $0 < \varepsilon < \frac{\pi}{2}$.

Theorem 2. Let $\Phi(t)$ be a nondecreasing continuous function on the interval $[0, \infty)$ and $\Phi(t) = o(t \log^+ t)$ as $t \to \infty$. Let, moreover, a sequence $(\gamma_n)_{n=1}^{\infty} \subset \Gamma(\mathbb{R}^2)$ be given. Then there exists a nonnegative summable function $f \in \Phi(L)(S)$ such that

(a) for every n = 1, 2, ...

$$\overline{D}_{B_2^{\gamma_n}}(\int f, x) = +\infty \quad a.e. \quad on \quad S; \tag{1}$$

(b) for almost every $\gamma \in \Gamma(\mathbb{R}^2)$

$$D_{B_2^{\gamma}}(\int f, x) = f(x) \quad a.e. \quad on \quad S \tag{2}$$

and, moreover, for every set T for which $[T] \subset \Gamma(\mathbb{R}^2) \setminus (\gamma_n)_{n=1}^{\infty}$ a function f can bu chosen such that in addition to (1) and (2) the following relaton will be fullfiled:

$$\sup_{\gamma:\gamma\in T} \left\{ M_{B_2^\gamma} f(x) \right\} < \infty \quad a.e. \ on \ S.$$

§ 4. Auxiliary Statements

To prove Theorem 1 we shall make use of the following two lemmas in which $I = [0, l_1] \times [0, l_2]$; χ_A and |A| will stand below for the characteristic function and Lebesgue measure of a set A, respectively.

Lemma 1. Let $\gamma \in \Gamma(\mathbb{R}^2) \setminus \gamma^0$. There exists a constant $c(\gamma)$, $1 < c(\gamma) < \infty$, such that the inequality

$$\left|\left\{x\in\mathbb{R}^2:M_{B_2^{\gamma}}(\chi_{I})(x)>\lambda\right\}\right|<9c(\gamma)\lambda^{-1}|I|$$

holds for any λ , $0 < \lambda < 1$, satisfying the condition

$$c(\gamma)\lambda^{-1}l_1 \le l_2.$$

Lemma 2. The inequality

$$\left|\left\{x \in \mathbb{R}^2 : M_{B_2}(\chi_I)(x) > \lambda\right\}\right| > \frac{1}{\lambda} \log\left(\frac{1}{\lambda}\right) |I|$$

holds for any number λ , $0 < \lambda < 1$.

G. LEPSVERIDZE

One can easily verify Lemma 2.

Proof of Lemma 1. Let $x \notin I$. It is easy to show that the maximal function $M_{B_{\gamma}^{\gamma}}(\chi_{I})$ at the point x can be estimated from above as follows:

$$M_{B_2^{\gamma}}(\chi_I)(x) \le c(\gamma) \, \frac{l_1}{\rho(x,I)},\tag{3}$$

where

$$c(\gamma) = 2 \max\left\{\frac{1}{\cos(\alpha(\gamma))}; \frac{1}{\sin(\alpha(\gamma))}\right\}$$
(4)

and $\rho(x, I)$ denotes the distance between x and the interval I.

Hence it is obvious that

$$\left\{ x \in \mathbb{R}^2 : M_{B_2^{\gamma}}(\chi_I(x) > \lambda \right\} \subset \\ \subset \left\{ x \in \mathbb{R}^2 : c(\gamma) \, \frac{l_1}{\rho(x,I)} > \lambda \right\} \subset Q(I,\lambda^{-1},\gamma), \tag{5}$$

where

$$Q(I,\lambda^{-1},\gamma) = \left[-c(\gamma)\lambda^{-1}l_1, 2c(\gamma)\lambda^{-1}l_1\right] \times \left[-l_2, 2l_2\right].$$
 (6)

Clearly,

$$\left|Q(I,\lambda^{-1},\gamma)\right| = 9c(\gamma)\lambda^{-1}|I|.$$

We eventually obtain

$$\left|\left\{x \in \mathbb{R}^2 : M_{B_2^{\gamma}}(\chi_I(x) > \lambda\right\}\right| \le \left|Q(I, \lambda^{-1}, \gamma), \right| = 9c(\gamma)\lambda^{-1}|I|.$$

§ 5. Proof of the Main Results

Proof of Theorem 1. Let $(c_n)_{n=1}^{\infty}$ be an increasing sequence of natural numbers and the constants $c(\gamma)$ be defined by equality (4). Obviously, $1 < c < \infty$, where

$$c = \sup\left\{c(\gamma) : \gamma \in \Gamma(\mathbb{R}^2), \ \varepsilon < \alpha(\gamma) < \frac{\pi}{2} - \varepsilon\right\}.$$

Let us construct a sequence of natural numbers $(\beta_n)_{n=1}^{\infty}$ so as to satisfy the conditions

$$\beta_n \log(\beta_n) \ge \max\left\{c_n \beta_n 2^{2n}; 2^n \Phi(\beta_n)\right\}.$$
(7)

The intervals $I^n = [0, l_1^n] \times [0, l_2^n]$ for n = 1, 2, ... will be constructed so as to satisfy the equality

$$c_n \beta_n 2^n l_1^n = l_2^n. \tag{8}$$

In what follows, for $g \in L(\mathbb{R}^2)$, $0 < \lambda < \infty$, $\gamma \in \Gamma(\mathbb{R}^2) \setminus \gamma^0$, we shall use the following notation:

$$H_2(g,\lambda) = \left\{ x \in \mathbb{R}^2 : M_{B_2}g(x) \ge \lambda \right\}, H_2^{\gamma}(g,\lambda) = \left\{ x \in \mathbb{R}^2 : M_{B_2^{\gamma}}g(x) > \lambda \right\}.$$

Using (7) and Lemma 2 we obtain

$$|H_2(\beta_n \chi_I, 1)| = |H_2(\chi_{I^n}, \beta_n^{-1})| > \beta_n \log(\beta_n) |I^n| > 2^n (c_n \beta_n 2^n |I^n|).$$
(9)

Consider the interval

$$Q^{n} = \left[-c_{n}\beta_{n}2^{n}l_{1}^{n}, c_{n}\beta_{n}2^{n+1}l_{1}^{n} \right] \times \left[-l_{2}^{n}, 2l_{2}^{n} \right].$$

Note that if γ satisfies the condition $c(\gamma) < c_n$, then (see (5), (6), (8)) then we have the inclusions

$$H_2^{\gamma}(\beta_n \chi_{I^n}, 2^{-n}) \subset Q(I^n, \beta_n 2^n, \gamma) \subset Q^n.$$
(10)

Since Q^n is the cubic interval (see (8)), it is easy to ascertain that for each direction γ there exists an interval $E^{n,\gamma}$ such that $E^{n,\gamma} \in B_2^{\gamma}$ and the conditions

$$Q^n \subset E^{n,\gamma} \subset 2Q^n \tag{11}$$

are fulfilled (see Figure 1).

We have

$$|2Q^{n}| \le 36c_{n}\beta_{n}2^{n}|I^{n}|.$$
(12)

From (9) and (12) it follows that

$$\left|H_2(\beta_n \chi_{I^n}, 1)\right| > \frac{2^n}{36} \left(36c_n \beta_n 2^n |I^n|\right) \ge \frac{2^n}{36} |2Q^n|.$$
(13)

For each $n \in \mathbb{N}$ consider the set

$$H_2^n \equiv H_2(\beta_n \chi_{I^n}, 1) \cup 2Q^n.$$

Since the set H_2^n is compact, almost the whole interval S can be represented as the union of nonintersecting sets that are homothetic to the set H_2^n and have a diameter not exceeding n^{-1} (see Lemma 1.3 from [1, Ch. III, Section 1]). Assuming that $H_2^{n,k}$ (k = 1, 2, ...) are such sets, we obtain

$$\operatorname{diam}\left(H_{2}^{n,k}\right) \leq n^{-1},\tag{14}$$

$$\left|S \setminus \bigcup_{k=1}^{\infty} H_2^{n,k}\right| = 0.$$
(15)

Let, moreover, $P^{n,k}$ denote a homothety transforming the set H_2^n to $H_2^{n,k}$. The images of the sets I^n , Q^n , $E^{n,\gamma}$ for the homothety $P^{n,k}$ will be denoted by $I^{n,k}$, $Q^{n,k}$ and $E^{n,\gamma,k}$.

Using one of the homothetic properties, from (13) we obtain

$$\left| \bigcup_{k=1}^{\infty} 2Q^{n,k} \right| \le \frac{36}{2^n} \left| \bigcup_{k=1}^{\infty} H_2^{n,k} \right| = \frac{36}{2^n}.$$

Therefore

$$\sum_{n=1}^{\infty} \left| \bigcup_{k=1}^{\infty} 2Q^{n,k} \right| < \infty, \tag{16}$$

which implies

$$\left|\limsup_{n \to \infty} \bigcup_{k=1}^{\infty} 2Q^{n,k}\right| = 0.$$
(17)

The function f_n on S is defined by

$$f_n(x) = \sum_{k=1}^{\infty} \beta_n \chi_{I^{n,k}}(x), \quad n = 1, 2, \dots,$$

and f by

$$f(x) = \sup_{n \in \mathbb{N}} f_n(x).$$

Let us show that $f \in \Phi(L)(S)$. We have (see (15))

$$1 = |S| \ge \Big| \bigcup_{k=1}^{\infty} H_2(\beta_n \chi_{I^{n,k}}, 1) \Big| > \sum_{k=1}^{\infty} \beta_n \log(\beta_n) |I^{n,k}|,$$

which by virtue of (7) gives us

$$1 \ge 2^n \sum_{k=1}^{\infty} \Phi(\beta_n) |I^{n,k}|.$$

Therefore

$$\int_{S} \Phi(f_n) = \sum_{k=1}^{\infty} \Phi(\beta_n) |I^{n,k}| \le 2^{-n}, \quad n = 1, 2, \dots$$

Since $\Phi(t)$ is a continuous nondecreasing function, we obtain

$$\int_{S} \Phi(f) \le \sum_{n=1}^{\infty} \int_{S} \Phi(f_n) \le \sum_{n=1}^{\infty} 2^{-n} < \infty.$$

To prove the theorem we have first to show that

$$\overline{D}_{B_2}(\int f, x) = +\infty$$
 a.e. on S.

We have (see (15))

$$1 = |S| = \left| \limsup_{n \to \infty} \bigcup_{k=1}^{\infty} H_2^{n,k} \right| = \left| \limsup_{n \to \infty} \bigcup_{k=1}^{\infty} \left(H_2(\beta_n \chi_{I^{n,k}}, 1) \cup 2Q^{n,k} \right) \right| \le \\ \le \left| \limsup_{n \to \infty} \bigcup_{k=1}^{\infty} \left(H_2(\beta_n \chi_{I^{n,k}}, 1) \right| + \left| \limsup_{n \to \infty} \bigcup_{k=1}^{\infty} 2Q^{n,k} \right) \right|.$$

Hence by virtue of (17) we conclude that

$$\left|\limsup_{n \to \infty} \bigcup_{k=1}^{\infty} (H_2(\beta_n \chi_{I^{n,k}}, 1))\right| = 1$$
(18)

which clearly implies that for almost all $x \in S$ there exists a sequence $(n_i, k_i)_{i=1}^{\infty}$ (depending on x) such that

$$x \in H_2(\beta_{n_i}\chi_{I^{n_i,k_i}}, 1), \quad i = 1, 2, \dots$$

Note further that

diam
$$(H_2(\beta_{n_i}\chi_{I^{n_i,k_i}},1)) < n_i^{-1}, \quad i = 1, 2, \dots$$

From the inclusion $x \in H_2(\beta_{n_i}\chi_{{}_{I^{n_i,k_i}}}, 1)$ and construction of sets $H_2(\beta_n\chi_{{}_{I^{n,k}}}, 1)$ it follows that there exists an interval $R_i \in B_2(x)$ contained in the set $H_2(\beta_i\chi_{{}_{I^{n_i,k_i}}}, 1)$ and

$$\frac{1}{|R_i|} \int_{R_i} \chi_{I^{n_i,k_i}}(y) \, dy \ge \beta_{n_i}^{-1}, \quad i = 1, 2, \dots$$
(19)

We define f^n as

$$f^n(x) = \sup_{m \ge n} f_m(x).$$

By (19) the relations

$$\overline{D}_{B_2}(\int f^n, x) \ge \lim_{i \to \infty} \frac{1}{|R_i|} \int_{R_i} f_{n_i}(y) dy \ge \lim_{i \to \infty} \frac{\beta_{n_i}}{|R_i|} \int_{R_i} \chi_{I^{n_i, k_i}}(y) dy \ge 1$$

a.e. on S.

We have

$$\operatorname{supp}(f^n)| \le \sum_{m=n}^{\infty} |\operatorname{supp}(f_m)| \le \sum_{m=n}^{\infty} \Big| \bigcup_{k=1}^{\infty} 2Q^{m,k} \Big|.$$

Hence by virtue of (16) we find that for each number ε , $0 < \varepsilon < 1$, there exists a number $n = n(\varepsilon)$ such that $|\operatorname{supp}(f^n)| < \varepsilon$.

We have

$$\left| \left\{ x \in S : \overline{D}_{B_2}(\int f^n, x) > f^n(x) \right\} \right| \ge$$

$$\ge \left| \left\{ x \in S : \overline{D}_{B_2}(\int f^n, x) \ge 1, \ x \notin \operatorname{supp}(f^n) \right\} \right| =$$

$$= \left| \left\{ x \in S : x \notin \operatorname{supp}(f^n) \right\} \right| > 1 - \varepsilon$$

which by the Besikovitch theorem (see [1, Ch. IV, Section 3]) implies

$$\left|\left\{x \in S : \overline{D}_{B_2}(\int f^n, x) = +\infty\right\}\right| > 1 - \varepsilon.$$

Since ε is arbitrary and $f(x) \ge f^n(x)$, we have

$$\left|\left\{x \in S : \overline{D}_{B_2}(\int f^n, x) = +\infty\right\}\right| = 1$$

thereby proving assertion (a) of Theorem 1.

Let us now show that if $\gamma \in \Gamma(\mathbb{R}^2) \setminus \gamma^0$ then

$$D_{B^{\gamma}_{2}}(\int f, x) = f(x)$$
 a.e. on S.

By virtue of the above-mentioned Besikovitch theorem it is sufficient to prove that

$$M_{B_2^{\gamma}}f(x) < \infty$$

at almost every point $x \in S$.

Fix $\gamma \neq \gamma^0$. Note that there exists a number $n(\gamma)$ such that $c(\gamma) < c_n$ for $n > n(\gamma)$. The inclusions (10) and (11) imply that the following inclusions are valid: if $n > n(\gamma)$ then

$$H_2^{\gamma}(\beta_n \chi_{I^{n,k}}, 2^{-n}) \subset Q(I^{n,k}, \beta_n 2^n, \gamma) \subset Q^{n,k} \subset E^{n,\gamma,k} \subset 2Q^{n,k}$$
(20)

for all k = 1, 2...

By (17) we find that for almost all $x \in S$ there exists a finite set $p(x) \subset \mathbb{N}$ with the properties

$$x \in \bigcup_{k=1}^{\infty} 2Q^{n,k}$$
 for $n \in p(x)$

and

$$x\not\in \underset{k=1}{\overset{\infty}{\cup}} 2Q^{n,k} \quad \text{for} \quad n\not\in p(x).$$

We obtain

$$M_{B_{2}^{\gamma}}f(x) \leq \sum_{n=1}^{n(\gamma)} M_{B_{2}^{\gamma}}f_{n}(x) + \sum_{n \in p(x), n > n(\gamma)} M_{B_{2}^{\gamma}}f_{n}(x) + \sum_{n \notin p(x), n > n(\gamma)} M_{B_{2}^{\gamma}}f_{n}(x) = I_{1}(x,\gamma) + I_{2}(x,\gamma) + I_{3}(x,\gamma).$$

Let us estimate from above the values $I_k(x, \gamma)$, k = 1, 2, 3. Note that

$$I_1(x,\gamma) \le \sum_{n=1}^{n(\gamma)} \beta_n < \infty$$

for all $x \in S$.

Similarly,

$$I_2(x,\gamma) \le \operatorname{card}(p(x)) \max_{n \in p(x)} \{\beta_n\} < \infty \text{ a.e. on } S.$$

We shall now prove that

$$M_{B_2^{\gamma}} f_n(x) \le 2^{-n}, \quad n \notin p(x), \quad n > n(\gamma).$$

Assume that $R^{\gamma} \in B_2^{\gamma}(x)$ and let $\{k_1^n, \ldots, k_j^n, \ldots\}$ denote a set of natural numbers for which

$$|R^{\gamma} \cap I^{n,k_j^n}| > 0, \quad j = 1, 2, \dots$$

Note that $R^{\gamma} \cap E^{n,\gamma,k_j^n} \in B_2^{\gamma}$, and if $n \notin p(x)$, $n > n(\gamma)$, then $x \notin E^{n,\gamma,k_j^n}$. Also taking into account the fact that the set $R^{\gamma} \cap E^{n,\gamma,k_j^n}$ contains at least one point from $(E^{n,\gamma,k_j^n})^c$, we obtain (see (20))

$$|R^{\gamma} \cap I^{n,k_{j}^{n}}| < \beta_{n}^{-1}2^{-n}|R^{\gamma} \cap E^{n,\gamma,k_{j}^{n}}|, \quad j = 1, 2, \dots,$$

for $n > n(\gamma)$, $n \notin p(x)$.

Hence it follows that if $n > n(\gamma)$, $n \notin p(x)$ then

$$\frac{1}{|R^{\gamma}|} \int_{R^{\gamma}} f_n(y) dy = \frac{\beta_n}{|R^{\gamma}|} \sum_{j=1}^{\infty} |R^{\gamma} \cap I^{n,k_j^n}| \le$$
$$\le \frac{\beta_n}{|R^{\gamma}|} \sum_{j=1}^{\infty} \beta_n^{-1} 2^{-n} |R^{\gamma} \cap E^{n,\gamma,k_j^n}|.$$
(21)

Since the sets E^{n,γ,k_j^n} , j = 1, 2, ..., do not intersect for $n > n(\gamma)$ (see (20)), we have

$$|R^{\gamma}| \ge \Big| \bigcup_{j=1}^{\infty} \left(R^{\gamma} \cap E^{n,\gamma,k_j^n} \right) \Big| = \sum_{j=1}^{\infty} |R^{\gamma} \cap E^{n,\gamma,k_j^n}|.$$
(22)

(21)–(22) imply that if $n \notin p(x), n > n(\gamma)$ then

$$M_{B_2^{\gamma}} f_n(x) = \sup_{R^{\gamma} \in B_2^{\gamma}(x)} \frac{1}{|R^{\gamma}|} \int_{R^{\gamma}} f_n(y) dy \le 2^{-n}.$$

Therefore

$$I_3(x,\gamma) = \sum_{n \notin p(x), \ n > n(\gamma)} M_{B_2^{\gamma}} f_n(x) \le \sum_{n=1}^{\infty} 2^{-n} < \infty.$$

Finally,

$$M_{B_2^{\gamma}}f(x) < \infty \tag{23}$$

for almost all $x \in S$, which proves the first part of assertion (b) of Theorem 1.

Let us prove the second part. There exists a number $n(\varepsilon)$ for which

$$c < c_n \quad \text{for} \quad n > n(\varepsilon).$$
 (24)

We can write

$$\begin{split} M_{B_{2}^{\gamma}}f(x) &\leq \sum_{n=1}^{n(\varepsilon)} M_{B_{2}^{\gamma}}f_{n}(x) + \sum_{n \in p(x), \ n > n(\varepsilon)} M_{B_{2}^{\gamma}}f_{n}(x) + \\ &+ \sum_{n \notin p(x), \ n > n(\varepsilon)} M_{B_{2}^{\gamma}}f_{n}(x) = I_{1}(x) + I_{2}(x) + I_{3}(x). \end{split}$$

We have

$$I_1(x) \le \sum_{n=1}^{n(\varepsilon)} \beta_n < \infty$$

and

$$I_2(x) \le \operatorname{card}(p(x)) \max_{n \in p(x)} \{\beta_n\} < \infty$$
 a.e. on S.

The relations (10), (11), (24) imply that if $\varepsilon < \alpha(\gamma) < \frac{\pi}{2} - \varepsilon$, then the inclusions

$$H_2^{\gamma}(\beta_n \chi_{I^{n,k}}, 2^{-n}) \subset Q(I^{n,k}, \beta_n^{-1}2^{-n}, \gamma) \subset Q^{n,k} \subset E^{n,\gamma,k} \subset 2Q^{n,k}$$
(25)

hold for $n > n(\varepsilon), k = 1, 2, \ldots$

From (25) it follows that relations (21) and (22) are valid for any direction γ for which $\varepsilon < \alpha(\gamma) < \frac{\pi}{2} - \varepsilon$ when $n \notin p(x)$, $n > n(\varepsilon)$. This means that for such directions we have

 $M_{B_2^{\gamma}} f_n(x) \le 2^{-n}$ for $n \notin p(x), n > n(\varepsilon),$

and thus

$$M_{B_2^{\gamma}}f(x) \leq \sum_{n=1}^{n(\varepsilon)} \beta_n + \operatorname{card}\left(p(x)\right) \max_{n \in p(x)} \left\{\beta_n\right\} + 1 < \infty \quad \text{a.e. on } S_n^{\gamma}(x) \leq \sum_{n=1}^{n(\varepsilon)} \beta_n + \operatorname{card}\left(p(x)\right) \sum_{n \in p(x)} \left\{\beta_n\right\} + 1 < \infty$$

Since the right-hand side does not depend on γ , we have

$$\sup_{\gamma:\varepsilon<\alpha(\gamma)<\frac{\pi}{2}-\varepsilon}\left\{M_{M_{2}^{\gamma}}f(x)\right\}<\infty \quad \text{a.e. on } S. \quad \Box$$

Remark. The first part of assertion (b) of Theorem 1 can be formulated as follows (see (23)):

$$M_{B_{\gamma}^{\gamma}}f(x) < \infty$$
 a.e. on S

for each direction $\gamma \in \Gamma(\mathbb{R}^2) \setminus \gamma^0$.

Proof of Theorem 2. Since $\gamma_n \notin \overline{T}$, the inclusion

$$K_n \equiv \left\{ \gamma \in \Gamma(\mathbb{R}^2) : |\alpha(\gamma) - \alpha(\gamma_n)| > \pi \varepsilon_n^{-1} \right\} \supset T$$
(26)

holds for a sufficiently large number ε_n .

Note that if $\gamma_n = \gamma^0$ for some *n*, the set K_n will have the form

$$K_n \equiv \left\{ \gamma \in \Gamma(\mathbb{R}^2) : \pi \varepsilon_n^{-1} < \alpha(\gamma) < \frac{\pi}{2} - \pi \varepsilon_n^{-1} \right\}.$$

Let, moreover,

$$\sum_{n=1}^{\infty} \varepsilon_n^{-1} < \infty.$$
 (27)

Note that by virtue of the above remark Theorem 1 implies that for any number $n \in \mathbb{N}$ there exists a function $f_n \in \Phi(L)(S)$, $f \ge 0$, $\|\Phi(f_n)\|_{n(S)} < 2^{-n}$ such that the following three conditions hold:

$$\begin{cases} \overline{D}_{B_2^{\gamma_n}}(\int f_n, x) = +\infty \text{ a.e. on } S, \\ M_{B_2^{\gamma}} f_n(x) < \infty, \quad \forall \gamma \in \Gamma(\mathbb{R}^2) \setminus \gamma_n \text{ a.e. on } S, \\ \sup_{\gamma: |\alpha(\gamma) - \alpha(\gamma_n)| > \pi \varepsilon_n^{-1}} \left\{ M_{B_2^{\gamma}} f_n(x) \right\} \le F_n(x), \end{cases}$$

where the function F_n is finite a.e. There exist a number P_n and a set $E_n \subset S$ such that $1 < P_n < \infty$, $|S \setminus E_n| < 2^{-n}$, and

$$F_n(x) \le P_n$$
 for $x \in E_n$, $n = 1, 2, \dots$

Let

$$g_n(x) = \frac{1}{P_n 2^n} f_n(x).$$

Clearly, the following conditions hold for g_n :

$$\begin{cases} \overline{D}_{B_2^{\gamma_n}}(\int g_n, x) = \frac{1}{P_n 2^n} \overline{D}_{B_2^{\gamma_n}}(\int f, x) = +\infty \text{ a.e. on } S, \\ M_{B_2^{\gamma}} g_n(x) < \infty, \quad \forall \gamma \in \Gamma(\mathbb{R}^2) \backslash \gamma_n \text{ a.e. on } S, \\ \sup_{\gamma: \gamma \in K_n \supset T} \left\{ M_{B_2^{\gamma}} g_n(x) \right\} \le \frac{1}{2^n} \text{ on } E_n. \end{cases}$$

We defined the function g as

$$g(x) = \sup_{n} g_n(x).$$

Note that $g \in \Phi(L)(S)$. Indeed, since $\Phi(t)$ is the nondecreasing continuous function,

$$\int_{S} \Phi(g) \le \sum_{n=1}^{\infty} \int_{S} \Phi(g_n) \le \sum_{n=1}^{\infty} \int_{S} \Phi(f_n) < \sum_{n=1}^{\infty} 2^{-n} < \infty.$$

We have

$$\overline{D}_{B_2^{\gamma_n}}({\textstyle\int} g,x)\geq\overline{D}_{B_2^{\gamma_n}}({\textstyle\int} g_n,x)=+\infty \ \text{a.e. on } S.$$

Relations (26) and (27) imply that

$$\sum_{n=1}^{\infty} |K_n^c| \le 2\pi \sum_{n=1}^{\infty} \varepsilon_n^{-1} < \infty.$$

Therefore

$$\left|\limsup_{n \to \infty} K_n^c\right| = 0. \tag{28}$$

Similarly, since

$$\sum_{n=1}^{\infty} |E_n^c| < \sum_{n=1}^{\infty} 2^{-n} < \infty,$$

we have

$$\Big|\limsup_{n \to \infty} E_n^c\Big| = 0.$$

Define the sets

$$Z_n \equiv \{x \in S : F_n(x) = +\infty\}, \quad n = 1, 2, \dots,$$
$$K \equiv \liminf_{n \to \infty} K_n,$$
$$E \equiv \liminf_{n \to \infty} E_n \setminus \bigcup_{n=1}^{\infty} Z_n.$$

For $\gamma \in K \setminus (\gamma_n)_{n=1}^{\infty}$ we set

$$G(\gamma) \equiv \bigcap_{n=1}^{\infty} \left\{ x \in S : M_{B_2^{\gamma}} g_n(x) < \infty \right\}.$$

Clearly,

$$|E| = |G(\gamma)| = 1, \quad |K| = \frac{\pi}{2}.$$

Let $\gamma \in K$. It follows from (28) that there exists a finite set $t(\gamma) \subset \mathbb{N}$ for which

$$\gamma \in K_n^c \quad \text{for} \quad n \in t(\gamma)$$

and

$$\gamma \in K_n$$
 for $n \notin t(\gamma)$.

Similarly, if $x \in E$ then there exists a finite set $p(x) \subset \mathbb{N}$ for which

$$x \in E_n^c$$
 for $n \in p(x)$,
 $x \in E_n$ for $n \notin p(x)$.

Let us show that

$$M_{B^{\gamma}_{2}}g(x) < \infty$$

if $x \in G(\gamma) \cap E$ and $\gamma \in K \setminus (\gamma_n)_{n=1}^{\infty}$.

We can write

$$M_{B_{2}^{\gamma}}g(x) \leq \sum_{n \in p(x) \cup t(\gamma)} M_{B_{2}^{\gamma}}g_{n}(x) + \sum_{n \notin p(x), \ n \notin t(\gamma)} M_{B_{2}^{\gamma}}g_{n}(x) = I_{1}(x,\gamma) + I_{2}(x,\gamma).$$

For $x \in G(\gamma) \cap E$ we have

$$I_1(x,\gamma) \le \operatorname{card} \left(p(x) \cup t(\gamma) \right) \max_{n \in p(x) \cup t(\gamma)} \left\{ M_{B_2^{\gamma}} g_n(x) \right\} < \infty.$$

On the other hand,

$$I_2(x,\gamma) = \sum_{n:x \in E_n, \ \gamma \in K_n} M_{B_2^{\gamma}} g_n(x) \le \sum_{n=1}^{\infty} 2^{-n} < \infty.$$

Therefore for $\gamma \in K \setminus (\gamma_n)_{n=1}^{\infty}$ we obtain $(|\sigma(\gamma) \cap E| = 1)$

$$M_{B^{\gamma}_{2}}g(x) < \infty$$
 a.e. on S ,

which by the Besikovitch theorem implies

$$D_{B^{\gamma}_{2}}(\int g, x) = g(x)$$
 a.e. on S.

Now let us prove the second part of condition (b) of Theorem 2. Since $K_n \supset T$, we have $K_n^c \cap T = \emptyset$, n = 1, 2, ..., and therefore

$$T \cap K_n^c = \emptyset, \quad n \in \mathbb{N}.$$

Thus if $\gamma \in T$, then $t(\gamma) = \emptyset$. We have

$$M_{B_2^{\gamma}}g(x) \leq \sum_{n \in p(x)} M_{B_2^{\gamma}}g_n(x) + \sum_{n \notin p(x)} M_{B_2^{\gamma}}g_n(x) = I_1(x) + I_2(x).$$

Note that if $\gamma \in T$, $x \in E$, then

$$I_1(x) \le \operatorname{card}(p(x)) \max_{n \in p(x)} \{F_n(x)\} < \infty$$

and

$$I_2(x) \le \sum_{n:x \in E_n} F_n(x) \le \sum_{n=1}^{\infty} 2^{-n} < 1.$$

Therefore if $\gamma \in T$ then we obtain (|E| = 1)

$$M_{B_2^{\gamma}}g(x) \le \operatorname{card}(p(x)) \max_{n \in p(x)} \{F_n(x)\} + 1 \text{ a.e. on } S,$$

and since the right-hand side of this inequality is independent of the direction γ , we have

$$\sup_{\gamma:\gamma\in T} \left\{ M_{B_2^\gamma} g(x) \right\} < \infty \text{ a.e. on } S. \quad \Box$$

§ 6. Corollaries

Theorem 2 implies

Corollary 1. There exists a nonnegative function $f \in L(S)$ such that the following conditions are fulfilled:

(a) if there is a direction γ such that $\alpha(\gamma)$ is a rational number, then

$$\overline{D}_{B^{\gamma}}(\int f, x) = +\infty$$
 a.e. on S;

(b) for almost all directions γ

$$D_{B^{\gamma}_{\alpha}}(f, x) = f(x)$$
 a.e. on S.

Definition. Assume that we are given a sequence of directions $(\gamma_n)_{n=1}^{\infty}$ and let $\gamma_n \nearrow \gamma$, $n \nearrow \infty$. Following [8], we shall say that the sequence of directions is exponential if there exists a constant c > 0 such that

$$|\alpha(\gamma_i) - \alpha(\gamma_j)| > c|\alpha(\gamma_i) - \alpha(\gamma)|, \quad i \neq j.$$

Corollary 2. Assume that we are given two sequences of directions $(\gamma_n)_{n=1}^{\infty}$ and $(\gamma'_n)_{n=1}^{\infty}$, the sequence $(\gamma_n)_{n=1}^{\infty}$ being exponential, and let

$$\gamma'_m \in \Gamma(\mathbb{R}^2) \setminus \overline{(\gamma_n)_{n=1}^{\infty}}, \quad m = 1, 2, \dots$$

There exists $f \in L(S)$, $f \ge 0$, such that

$$\overline{D}_{B_2^{\gamma'_n}}(\int f, x) = +\infty \quad a.e. \ on \ S, \ n = 1, 2, \dots,$$

and

$$D_B(\int f, x) = f(x)$$
 a.e. on S ,

where the differentiation basis B at the point x is defined as follows:

$$B(x) = \bigcup_{n} B_2^{\gamma_n}(x).$$

Proof. By virtue of Theorem 2 from [8] we find that the basis B with the exponential property differentiates the space $L^p(\mathbb{R}^2)$, p > 2. Therefore the basis with this property has the property of density. Using this fact and the fact that

$$M_B f(x) < \infty$$
 a.e. on S

(see Theorem 2, $T = (\gamma_n)_{n=1}^{\infty}$), by virtue of the de Guzmán and Menárguez theorem (see [1, Ch. IV, Section 3]), we obtain

$$D_B(\int f, x) = f(x)$$
 a.e. on S .

§ 7. Remarks

1. A set of functions described by Theorems 1 and 2 forms a first-category set in $L(\mathbb{R}^2)$ (see Saks' theorem ([3]; [1, Ch. VII, Section 2]).

2. Let $\gamma_1, \gamma_2 \in \Gamma(\mathbb{R}^m), m \geq 3$. Denote by $\alpha_k(\gamma_1, \gamma_2), k = 1, 2, \ldots, m$, the angle formed by the *k*th straight line of the direction γ_1 and by the *k*th straight line of the direction γ_2 . If $\gamma \in \Gamma(\mathbb{R}^m)$ then we denote by $\overline{\gamma}$ the following subset from $\Gamma(\mathbb{R}^m)$:

$$\overline{\gamma} \equiv \big\{\gamma' \in \Gamma(\mathbb{R}^m) : \exists K \ (1 \le k \le m), \ \exists j \ (1 \le j \le 4), \ \alpha_k(\gamma, \gamma') = \frac{\pi}{2}(j-1)\big\}.$$

Without changing the essence of the proof of the main results, we can prove, for example,

Theorem 3. Let $\Phi(t)$ be a nondecreasing continuous function on the interval $[0,\infty)$ and $\Phi(t) = o(t(\log^+ t)^{m-1})$ for $t \to \infty$ $(m \ge 3)$. For each pair of directions γ_1 and γ_2 for which $\gamma_2 \notin \overline{\gamma_1}$, there exists a nonnegative summable function $f \in \Phi(L)([0,1]^m)$ such that

(a)
$$D_{B_{2}^{\gamma_{1}}}(\int f, x) = +\infty$$
 a.e. on $[0, 1]^{m}$;

(b)
$$D_{B_2^{\gamma_2}}(\int f, x) = f(x) \text{ a.e. on } [0, 1]^m$$
.

3. We have ascertained that for one class of functions the so-called basis rotation changes the strong differentiability property of integrals. Note that there exist functions such that the basis rotation changes the integrability property of a strong maximal function. More exactly, for any number ε , $0 < \varepsilon < \frac{\pi}{2}$, there exists a function $f \in L(U)$, $U = [-1, 1]^2$, such that

(a)
$$\int_{\{M_{B_2}f>1\}} M_{B_2}f(y) \, dy = +\infty;$$

(b) for any direction γ such that $\varepsilon < \alpha(\gamma) < \frac{\pi}{2} - \varepsilon$ we have

$$\int\limits_{\{M_{B_2^{\gamma}}f>1\}} M_{B_2^{\gamma}}f(y)\,dy <\infty.$$

Indeed, let the constant $c, 1 < c < \infty$, be defined by the equality

$$c = \sup \left\{ c(\gamma) : \gamma \in \Gamma(\mathbb{R}^2), \ \varepsilon < \alpha(\gamma) < \frac{\pi}{2} - \varepsilon \right\}.$$

Consider the nonnegative function g for which the following three conditions are fulfilled:

$$g \in L \log^+ L(U) \backslash L(\log^+ L)^2(U), \tag{29}$$

$$||g||_1 > (2c)^{-1}, \quad \operatorname{supp}(g) \subset U.$$
 (30)

Assuming that $0 \leq \lambda < \infty$ and

$$E_{\lambda} = \big\{ x \in U : g(x) > \lambda \big\},\$$

we define the interval I_{λ} by

$$I_{\lambda} = [-l'_{\lambda}, l'_{\lambda}] \times [-1, 1],$$

where

$$l_{\lambda}' = 4^{-1} |E_{\lambda}|.$$

The function f is defined by

$$f(x) = \int_0^\infty \chi_{I_\lambda}(x) \, d\lambda.$$

It is clear that f and g are the equimeasurable functions. Let $x \in \mathbb{R}^2$, $\gamma \neq \gamma^0$, and $R \in B_2^{\gamma}(x)$. By using inequality (3) it is not difficult to show that there exists a cubic interval $Q_x \in B_1(x)$ such that for any λ we have the relation

$$\frac{1}{|R|} |R \cap I_{\lambda}| \le 4c(\gamma) \frac{1}{|Q_{x/3}|} |Q_{x/3} \cap I_{\lambda}| + c(\gamma)|I_{\lambda}|,$$

where $Q_{x/3}$ denotes the image of the interval Q_x under the homothety with center at the origin and coefficient 1/3. Since R is arbitrary, we obtain (see [9, p. 649])

$$M_{B_2^{\gamma}}f(x) \le 4c(\gamma)M_{B_1}f(x/3) + c(\gamma)\int_S f.$$

Finally, for directions γ for which $\varepsilon < \alpha(\gamma) < \frac{\pi}{2} - \varepsilon$ we have (see (30))

$$M_{B_2^{\gamma}}f(x) \le 4c(\gamma)M_{B_1}f(x/3) + 2^{-1}.$$

By virtue of Stein's theorem [10] and the fact that $f \in L \log^+ L(U)$ (see (29)) we obtain

$$\int_{\{M_{B_2^{\gamma}}f>1\}} M_{B_2^{\gamma}}f(x) \, dx <$$

$$< 4c \int_{\{x:M_{B_1}f(x/3)>1/8c\}} M_{B_1}f(x/3) \, dx + 2^{-1} \big| \big\{ x: M_{B_1}f(x/3)>1/8c \big\} \big| < \infty.$$

Now we shall prove assertion (a). Define the function $\Phi(x_1)$ as

$$\Phi(x_1) = f(x_1, 0).$$

Note that if $x_1 \in [-1, 1]$ and $x_2 \ge 1$ then

$$M_{B_2}f(x_1, x_2) \ge \frac{2}{x_2 + 1} M\Phi(x_1),$$

where $M\Phi(x_1)$ is the maximal Hardy–Littlewood function on the straight line. By performing transformations and using the fact that f does not belong to the class $L(\log^+ L)^2(U)$ we arrive at

$$\int_{\{M_{B_2}f>1\}} M_{B_2}f(x_1, x_2) \, dx_1 \, dx_2 \ge$$
$$\ge 2 \int_1^\infty dx_2 \left(\int_{\{x_1 \in (-1,1): M\Phi(x_1) \ge \frac{x_2+1}{2}\}} \frac{1}{x_2+1} \, M\Phi(x_1) \, dx_1 \right) =$$
$$= 2 \int_{\{x_1 \in (-1,1): M\Phi(x_1)>1\}} M\Phi(x_1) \log^+ \left(M\Phi(x_1)\right) \, dx_1 = +\infty.$$

References

1. M. de Guzmán, Differentiation of integrals in \mathbb{R}^n . Springer-Verlag, Berlin-Heidelberg-New York, 1975.

2. B. Jessen, J. Marcinkiewicz, and A. Zygmund, Note on the differentiability of multiple integrals. *Fund. Math.* **25**(1935), 217–234.

3. H. Buseman and W. Feller, Zur Differentiation der Lebesgueschen Integrale. *Fund. Math.* **22**(1934), 226–256.

4. S. Saks, Remarks on the differentiability of the Lebesgue indefinite integral. *Fund. Math.* **22**(1934), 257–261.

5. J. Marstrand, A counter-example in the theory of strong differentiation. Bull. London Math. Soc. 9(1977), 209–211.

G. LEPSVERIDZE

6. A. M. Stokolos, An inequality for equimeasurable rearrangements and its application in the theory of differentiaton of integrals. *Anal. Math.* 9(1983), 133-146.

7. B. López Melero, A negative result in differentiation theory. *Studia Math.* **72**(1982), 173–182.

8. J.-O. Strömberg, Weak estimates on maximal functions with rectangles in certain directions. *Ark. Math.* **15**(1977), 229–240.

9. R. J. Bagby, A note on the strong maximal function. *Proc. Amer. Math. Soc.* **88**(1983), No. 4, 648–650.

10. E. M. Stein, Note on the class $L(\log^+ L)$. Studia Math. **32**(1969), 305–310.

(Received 17.01.1994)

Author's address:

Faculty of Mechanics and Mathematics

I. Javakhishvili Tbilisi State University

2, University St., Tbilisi 380043

Republic of Georgia