ON STRONG DIFFERENTIABILITY OF INTEGRALS ALONG DIFFERENT DIRECTIONS

G. LEPSVERIDZE

Abstract

Theorems are proved as regards strong differentiability of integrals in different directions.

§ 1. Introduction

The well-known negative result in the theory of strong differentiability of integrals reads: there exists a summable function whose integral is differentiated in a strong sense in none of the directions.

Below we shall prove the theorems which in particular imply: for each pair of directions γ_{1} and γ_{2} differing from each other there exists a nonnegative summable function whose integral is strongly differentiated in the directions γ_{1} and is not strongly differentiated in the direction γ_{2}.

§ 2. Definitions and Formulation of the Problem

Let $B(x)$ be a differentiation basis at the point $x \in \mathbb{R}^{n}$, i.e., a family of bounded measurable sets with positive measure containing x and such that there is at least a sequence $\left\{B_{k}\right\} \subset B(x)$ with $\operatorname{diam}\left(B_{k}\right) \rightarrow 0$ as $k \rightarrow \infty$, (see, [1,Ch. II, Section 2]). A collection $B=\left\{B(x): x \in \mathbb{R}^{n}\right\}$ is called a differentiation basis in \mathbb{R}^{n}.

For $f \in L_{l o c}\left(\mathbb{R}^{n}\right)$ and $x \in \mathbb{R}^{n}$ by $M_{B} f(x), \bar{D}_{B}\left(\int f, x\right)$, and $\underline{D}_{B}(f f, x)$ are denoted, respectively, the maximal Hardy-Littlewood function with respect to B, and the upper and the lower derivatives of the integral $\int f$ with respect to B at x. If $\bar{D}_{B}\left(\int f, x\right)=\underline{D}_{B}\left(\int f, x\right)$, then this number will be denoted by $D_{B}\left(\int f, x\right)$; the basis B will be said to differentiate $\int f$ if the equality $D_{B}\left(\int f, x\right)=f(x)$ holds for almost all $x \in \mathbb{R}^{n}$. If the differentiation basis differentiates the integrals of all functions from some class M, then it is said to differentiate M [1, Ch. II and Ch. III].

[^0]Let γ denote the set of n mutually orthogonal straight lines in \mathbb{R}^{n} which intersect at the origin. The union of such sets will be denoted by $\Gamma\left(\mathbb{R}^{n}\right)$. Elements of $\Gamma\left(\mathbb{R}^{n}\right)$ will be called directions. If $\gamma \in \Gamma\left(\mathbb{R}^{n}\right)$, then B_{2}^{γ} will denote the differentiation basis consisting of all n-dimensional rectangles whose sides are parallel to straight lines from γ.

The standard direction in \mathbb{R}^{n} will be denoted by γ^{0} and, for simplicity, the basis $B_{2}^{\gamma^{0}}$ will be written as B_{2}.

We shall denote by B_{3} the differentiation basis in $\mathbb{R}^{n}(n \geq 2)$ consisting of all n-dimensional rectangles and by B_{1} the differentiation basis in \mathbb{R}^{n} consisting of all n-dimensional cubic intervals whose sides are parallel to the coordinate axes.

The fact that B_{2} differentiates $L\left(1+\log ^{+} L\right)^{n-1}\left(\mathbb{R}^{n}\right)$ is well known [2], but in a class wider than $L\left(1+\log ^{+} L\right)^{n-1}\left(\mathbb{R}^{n}\right)$ there exists a function whose integral is not differentiated almost everywhere by the basis B_{2} ([3], [4]). On the other hand, the basis B_{3} with "freely" rotating constituent rectangles does not differentiate $L^{\infty}\left(\mathbb{R}^{n}\right)$ [1,Ch. V, Section 2]. The dependence of differentiation properties on the orientation of the sides of rectangles leads to the problem proposed by A. Zygmund ([1, Ch. IV, Section 2]): given a function $f \in L\left(\mathbb{R}^{2}\right)$, is it possible to choose a direction of $\gamma \in \Gamma\left(\mathbb{R}^{2}\right)$ such that B_{2}^{γ} would differentiate $\int f$?

A negative answer to A. Zygmund's question was given by D. Marstrand [5] who constructed an example of an integrable function whose integral is not differentiated almost everywhere by the basis B_{2}^{γ} for any fixed direction γ. Some generalizations of this result were later given in [6] and [7]. Hence we face the question whether the following hypothesis holds: if $f \in L\left(\mathbb{R}^{2}\right)$ and B_{2} does not differentiate $\int f$, then B_{2}^{γ} will not differentiate $\int f$ either whatever γ is.

We shall show that there exists a function $f \in L\left(\mathbb{R}^{2}\right)$ for which this hypothesis does not hold.

In connection with this we have to answer the following questions: what is a set of those directions from $\Gamma\left(\mathbb{R}^{2}\right)$ that differentiate $\int f$? What are optimal conditions for such functions being integrable?

§ 3. Statement of the Main Results

Note that $\Gamma\left(\mathbb{R}^{2}\right)$ corresponds in a one-to-one manner to the interval $\left[0, \frac{\pi}{2}\right)$. To each direction γ we put into correspondence a number $\alpha(\gamma), 0 \leq \alpha(\gamma)<$ $\frac{\pi}{2}$, which is defined as the angle between the positive direction of the axis $o x$ and the straight direction from γ lying in the first quadrant of the plane. Elements of the set $\Gamma\left(\mathbb{R}^{2}\right)$ will be identified with points from $\left[0, \frac{\pi}{2}\right)$. By the neighborhood of the point 0 will be meant the union of intervals $[0, \varepsilon) \cup\left(\frac{\pi}{2}-\right.$ $\left.\varepsilon, \frac{\pi}{2}\right), 0<\varepsilon<\frac{\pi}{4}$.

Denote $S=[0,1]^{2}$, and $[T]$ the closure of a set T.

Theorem 1. Let $\Phi(t)$ be a nondecreasing continuous function on the interval $[0, \infty)$ and $\Phi(t)=o\left(t \log ^{+} t\right)$ for $t \rightarrow \infty$. Then there exists a nonnegative summable function $f \in \Phi(L)(S)$ such that
(a) $\bar{D}_{B_{2}}\left(\int f, x\right)=+\infty$ a.e. on S;
(b) $D_{B_{2}^{\gamma}}\left(\int f, x\right)=f(x)$ a.e. on S for each γ from $\Gamma\left(\mathbb{R}^{2}\right) \backslash \gamma^{0}$ and, moreover,

$$
\sup _{\gamma: \varepsilon<\alpha(\gamma)<\frac{\pi}{2}-\varepsilon}\left\{M_{B_{2}^{\gamma}} f(x)\right\}<\infty \text { a.e. on } S
$$

for each number $\varepsilon, 0<\varepsilon<\frac{\pi}{2}$.
Theorem 2. Let $\Phi(t)$ be a nondecreasing continuous function on the interval $[0, \infty)$ and $\Phi(t)=o\left(t \log ^{+} t\right)$ as $t \rightarrow \infty$. Let, moreover, a sequence $\left(\gamma_{n}\right)_{n=1}^{\infty} \subset \Gamma\left(\mathbb{R}^{2}\right)$ be given. Then there exists a nonnegative summable function $f \in \Phi(L)(S)$ such that
(a) for every $n=1,2, \ldots$

$$
\begin{equation*}
\bar{D}_{B_{2}^{\gamma_{n}}}\left(\int f, x\right)=+\infty \text { a.e. on } S \tag{1}
\end{equation*}
$$

(b) for almost every $\gamma \in \Gamma\left(\mathbb{R}^{2}\right)$

$$
\begin{equation*}
D_{B_{2}^{\gamma}}\left(\int f, x\right)=f(x) \text { a.e. on } S \tag{2}
\end{equation*}
$$

and, moreover, for every set T for which $[T] \subset \Gamma\left(\mathbb{R}^{2}\right) \backslash\left(\gamma_{n}\right)_{n=1}^{\infty}$ a function f can bu chosen such that in addition to (1) and (2) the following relaton will be fullfiled:

$$
\sup _{\gamma: \gamma \in T}\left\{M_{B_{2}^{\gamma}} f(x)\right\}<\infty \text { a.e. on } S
$$

§ 4. Auxiliary Statements

To prove Theorem 1 we shall make use of the following two lemmas in which $I=\left[0, l_{1}\right] \times\left[0, l_{2}\right] ; \chi_{A}$ and $|A|$ will stand below for the characteristic function and Lebesgue measure of a set A, respectively.

Lemma 1. Let $\gamma \in \Gamma\left(\mathbb{R}^{2}\right) \backslash \gamma^{0}$. There exists a constant $c(\gamma), 1<c(\gamma)<$ ∞, such that the inequality

$$
\left|\left\{x \in \mathbb{R}^{2}: M_{B_{2}^{\gamma}}\left(\chi_{I}\right)(x)>\lambda\right\}\right|<9 c(\gamma) \lambda^{-1}|I|
$$

holds for any $\lambda, 0<\lambda<1$, satisfying the condition

$$
c(\gamma) \lambda^{-1} l_{1} \leq l_{2}
$$

Lemma 2. The inequality

$$
\left|\left\{x \in \mathbb{R}^{2}: M_{B_{2}}\left(\chi_{I}\right)(x)>\lambda\right\}\right|>\frac{1}{\lambda} \log \left(\frac{1}{\lambda}\right)|I|
$$

holds for any number $\lambda, 0<\lambda<1$.

One can easily verify Lemma 2.
Proof of Lemma 1. Let $x \notin I$. It is easy to show that the maximal function $M_{B_{2}^{\gamma}}\left(\chi_{I}\right)$ at the point x can be estimated from above as follows:

$$
\begin{equation*}
M_{B_{2}^{\gamma}}\left(\chi_{I}\right)(x) \leq c(\gamma) \frac{l_{1}}{\rho(x, I)} \tag{3}
\end{equation*}
$$

where

$$
\begin{equation*}
c(\gamma)=2 \max \left\{\frac{1}{\cos (\alpha(\gamma))} ; \frac{1}{\sin (\alpha(\gamma))}\right\} \tag{4}
\end{equation*}
$$

and $\rho(x, I)$ denotes the distance between x and the interval I.
Hence it is obvious that

$$
\begin{gather*}
\left\{x \in \mathbb{R}^{2}: M_{B_{2}^{\gamma}}\left(\chi_{I}(x)>\lambda\right\} \subset\right. \\
\subset\left\{x \in \mathbb{R}^{2}: c(\gamma) \frac{l_{1}}{\rho(x, I)}>\lambda\right\} \subset Q\left(I, \lambda^{-1}, \gamma\right) \tag{5}
\end{gather*}
$$

where

$$
\begin{equation*}
Q\left(I, \lambda^{-1}, \gamma\right)=\left[-c(\gamma) \lambda^{-1} l_{1}, 2 c(\gamma) \lambda^{-1} l_{1}\right] \times\left[-l_{2}, 2 l_{2}\right] \tag{6}
\end{equation*}
$$

Clearly,

$$
\left|Q\left(I, \lambda^{-1}, \gamma\right)\right|=9 c(\gamma) \lambda^{-1}|I|
$$

We eventualy obtain

$$
\mid\left\{x \in \mathbb{R}^{2}: M_{B_{2}^{\gamma}}\left(\chi_{I}(x)>\lambda\right\}\left|\leq\left|Q\left(I, \lambda^{-1}, \gamma\right),\left|=9 c(\gamma) \lambda^{-1}\right| I\right|\right.\right.
$$

§ 5. Proof of the Main Results

Proof of Theorem 1. Let $\left(c_{n}\right)_{n=1}^{\infty}$ be an increasing sequence of natural numbers and the constants $c(\gamma)$ be defined by equality (4). Obviously, $1<c<\infty$, where

$$
c=\sup \left\{c(\gamma): \gamma \in \Gamma\left(\mathbb{R}^{2}\right), \varepsilon<\alpha(\gamma)<\frac{\pi}{2}-\varepsilon\right\}
$$

Let us construct a sequence of natural numbers $\left(\beta_{n}\right)_{n=1}^{\infty}$ so as to satisfy the conditions

$$
\begin{equation*}
\beta_{n} \log \left(\beta_{n}\right) \geq \max \left\{c_{n} \beta_{n} 2^{2 n} ; 2^{n} \Phi\left(\beta_{n}\right)\right\} \tag{7}
\end{equation*}
$$

The intervals $I^{n}=\left[0, l_{1}^{n}\right] \times\left[0, l_{2}^{n}\right]$ for $n=1,2, \ldots$ will be constructed so as to satisfy the equality

$$
\begin{equation*}
c_{n} \beta_{n} 2^{n} l_{1}^{n}=l_{2}^{n} \tag{8}
\end{equation*}
$$

In what follows, for $g \in L\left(\mathbb{R}^{2}\right), 0<\lambda<\infty, \gamma \in \Gamma\left(\mathbb{R}^{2}\right) \backslash \gamma^{0}$, we shall use the following notation:

$$
\begin{aligned}
H_{2}(g, \lambda) & =\left\{x \in \mathbb{R}^{2}: M_{B_{2}} g(x) \geq \lambda\right\} \\
H_{2}^{\gamma}(g, \lambda) & =\left\{x \in \mathbb{R}^{2}: M_{B_{2}^{\gamma}} g(x)>\lambda\right\}
\end{aligned}
$$

Using (7) and Lemma 2 we obtain

$$
\begin{equation*}
\left|H_{2}\left(\beta_{n} \chi_{I}, 1\right)\right|=\left|H_{2}\left(\chi_{I^{n}}, \beta_{n}^{-1}\right)\right|>\beta_{n} \log \left(\beta_{n}\right)\left|I^{n}\right|>2^{n}\left(c_{n} \beta_{n} 2^{n}\left|I^{n}\right|\right) \tag{9}
\end{equation*}
$$

Consider the interval

$$
Q^{n}=\left[-c_{n} \beta_{n} 2^{n} l_{1}^{n}, c_{n} \beta_{n} 2^{n+1} l_{1}^{n}\right] \times\left[-l_{2}^{n}, 2 l_{2}^{n}\right] .
$$

Note that if γ satisfies the condition $c(\gamma)<c_{n}$, then (see (5), (6), (8)) then we have the inclusions

$$
\begin{equation*}
H_{2}^{\gamma}\left(\beta_{n} \chi_{I^{n}}, 2^{-n}\right) \subset Q\left(I^{n}, \beta_{n} 2^{n}, \gamma\right) \subset Q^{n} \tag{10}
\end{equation*}
$$

Since Q^{n} is the cubic interval (see (8)), it is easy to ascertain that for each direction γ there exists an interval $E^{n, \gamma}$ such that $E^{n, \gamma} \in B_{2}^{\gamma}$ and the conditions

$$
\begin{equation*}
Q^{n} \subset E^{n, \gamma} \subset 2 Q^{n} \tag{11}
\end{equation*}
$$

are fulfilled (see Figure 1).

Figure 1
We have

$$
\begin{equation*}
\left|2 Q^{n}\right| \leq 36 c_{n} \beta_{n} 2^{n}\left|I^{n}\right| \tag{12}
\end{equation*}
$$

From (9) and (12) it follows that

$$
\begin{equation*}
\left|H_{2}\left(\beta_{n} \chi_{I^{n}}, 1\right)\right|>\frac{2^{n}}{36}\left(36 c_{n} \beta_{n} 2^{n}\left|I^{n}\right|\right) \geq \frac{2^{n}}{36}\left|2 Q^{n}\right| \tag{13}
\end{equation*}
$$

For each $n \in \mathbb{N}$ consider the set

$$
H_{2}^{n} \equiv H_{2}\left(\beta_{n} \chi_{I^{n}}, 1\right) \cup 2 Q^{n} .
$$

Since the set H_{2}^{n} is compact, almost the whole interval S can be represented as the union of nonintersecting sets that are homothetic to the set H_{2}^{n} and have a diameter not exceeding n^{-1} (see Lemma 1.3 from [1, Ch. III, Section 1]). Assuming that $H_{2}^{n, k}(k=1,2, \ldots)$ are such sets, we obtain

$$
\begin{gather*}
\operatorname{diam}\left(H_{2}^{n, k}\right) \leq n^{-1} \tag{14}\\
\left|S \backslash \bigcup_{k=1}^{\infty} H_{2}^{n, k}\right|=0 \tag{15}
\end{gather*}
$$

Let, moreover, $P^{n, k}$ denote a homothety transforming the set H_{2}^{n} to $H_{2}^{n, k}$. The images of the sets $I^{n}, Q^{n}, E^{n, \gamma}$ for the homothety $P^{n, k}$ will be denoted by $I^{n, k}, Q^{n, k}$ and $E^{n, \gamma, k}$.

Using one of the homothetic properties, from (13) we obtain

$$
\left|\bigcup_{k=1}^{\infty} 2 Q^{n, k}\right| \leq \frac{36}{2^{n}}\left|\bigcup_{k=1}^{\infty} H_{2}^{n, k}\right|=\frac{36}{2^{n}} .
$$

Therefore

$$
\begin{equation*}
\sum_{n=1}^{\infty}\left|\bigcup_{k=1}^{\infty} 2 Q^{n, k}\right|<\infty \tag{16}
\end{equation*}
$$

which implies

$$
\begin{equation*}
\left|\limsup _{n \rightarrow \infty} \bigcup_{k=1}^{\infty} 2 Q^{n, k}\right|=0 \tag{17}
\end{equation*}
$$

The function f_{n} on S is defined by

$$
f_{n}(x)=\sum_{k=1}^{\infty} \beta_{n} \chi_{I^{n, k}}(x), \quad n=1,2, \ldots
$$

and f by

$$
f(x)=\sup _{n \in \mathbb{N}} f_{n}(x)
$$

Let us show that $f \in \Phi(L)(S)$. We have (see (15))

$$
1=|S| \geq\left|\bigcup_{k=1}^{\infty} H_{2}\left(\beta_{n} \chi_{I^{n, k}}, 1\right)\right|>\sum_{k=1}^{\infty} \beta_{n} \log \left(\beta_{n}\right)\left|I^{n, k}\right|
$$

which by virtue of (7) gives us

$$
1 \geq 2^{n} \sum_{k=1}^{\infty} \Phi\left(\beta_{n}\right)\left|I^{n, k}\right|
$$

Therefore

$$
\int_{S} \Phi\left(f_{n}\right)=\sum_{k=1}^{\infty} \Phi\left(\beta_{n}\right)\left|I^{n, k}\right| \leq 2^{-n}, \quad n=1,2, \ldots
$$

Since $\Phi(t)$ is a continuous nondecreasing function, we obtain

$$
\int_{S} \Phi(f) \leq \sum_{n=1}^{\infty} \int_{S} \Phi\left(f_{n}\right) \leq \sum_{n=1}^{\infty} 2^{-n}<\infty
$$

To prove the theorem we have first to show that

$$
\bar{D}_{B_{2}}\left(\int f, x\right)=+\infty \text { a.e. on } S
$$

We have (see (15))

$$
\begin{aligned}
1=|S|= & \left|\limsup _{n \rightarrow \infty} \bigcup_{k=1}^{\infty} H_{2}^{n, k}\right|=\left|\limsup _{n \rightarrow \infty} \bigcup_{k=1}^{\infty}\left(H_{2}\left(\beta_{n} \chi_{I^{n, k}}, 1\right) \cup 2 Q^{n, k}\right)\right| \leq \\
& \leq\left|\limsup _{n \rightarrow \infty} \bigcup_{k=1}^{\infty}\left(H_{2}\left(\beta_{n} \chi_{I^{n, k}}, 1\right)|+| \limsup _{n \rightarrow \infty} \bigcup_{k=1}^{\infty} 2 Q^{n, k}\right)\right|
\end{aligned}
$$

Hence by virtue of (17) we conclude that

$$
\begin{equation*}
\mid \limsup _{n \rightarrow \infty} \bigcup_{k=1}^{\infty}\left(H_{2}\left(\beta_{n} \chi_{I^{n, k}}, 1\right) \mid=1\right. \tag{18}
\end{equation*}
$$

which clearly implies that for almost all $x \in S$ there exists a sequence $\left(n_{i}, k_{i}\right)_{i=1}^{\infty}$ (depending on $\left.x\right)$ such that

$$
x \in H_{2}\left(\beta_{n_{i}} \chi_{I^{n_{i}, k_{i}}}, 1\right), \quad i=1,2, \ldots
$$

Note further that

$$
\operatorname{diam}\left(H_{2}\left(\beta_{n_{i}} \chi_{I^{n_{i}, k_{i}}}, 1\right)\right)<n_{i}^{-1}, \quad i=1,2, \ldots
$$

From the inclusion $x \in H_{2}\left(\beta_{n_{i}} \chi_{I_{i}, k_{i}}, 1\right)$ and construction of sets $H_{2}\left(\beta_{n} \chi_{I^{n, k}}, 1\right)$ it follows that there exists an interval $R_{i} \in B_{2}(x)$ contained in the set $H_{2}\left(\beta_{i} \chi_{I^{n_{i}, k_{i}}}, 1\right)$ and

$$
\begin{equation*}
\frac{1}{\left|R_{i}\right|} \int_{R_{i}} \chi_{I^{n_{i}, k_{i}}}(y) d y \geq \beta_{n_{i}}^{-1}, \quad i=1,2, \ldots \tag{19}
\end{equation*}
$$

We define f^{n} as

$$
f^{n}(x)=\sup _{m \geq n} f_{m}(x)
$$

By (19) the relations

$$
\bar{D}_{B_{2}}\left(\int f^{n}, x\right) \geq \lim _{i \rightarrow \infty} \frac{1}{\left|R_{i}\right|} \int_{R_{i}} f_{n_{i}}(y) d y \geq \lim _{i \rightarrow \infty} \frac{\beta_{n_{i}}}{\left|R_{i}\right|} \int_{R_{i}} \chi_{I^{n_{i}, k_{i}}}(y) d y \geq 1
$$

a.e. on S.

We have

$$
\left|\operatorname{supp}\left(f^{n}\right)\right| \leq \sum_{m=n}^{\infty}\left|\operatorname{supp}\left(f_{m}\right)\right| \leq \sum_{m=n}^{\infty}\left|\bigcup_{k=1}^{\infty} 2 Q^{m, k}\right| .
$$

Hence by virtue of (16) we find that for each number $\varepsilon, 0<\varepsilon<1$, there exists a number $n=n(\varepsilon)$ such that $\left|\operatorname{supp}\left(f^{n}\right)\right|<\varepsilon$.

We have

$$
\begin{gathered}
\left|\left\{x \in S: \bar{D}_{B_{2}}\left(\int f^{n}, x\right)>f^{n}(x)\right\}\right| \geq \\
\geq\left|\left\{x \in S: \bar{D}_{B_{2}}\left(\int f^{n}, x\right) \geq 1, x \notin \operatorname{supp}\left(f^{n}\right)\right\}\right|= \\
=\left|\left\{x \in S: x \notin \operatorname{supp}\left(f^{n}\right)\right\}\right|>1-\varepsilon
\end{gathered}
$$

which by the Besikovitch theorem (see [1, Ch. IV, Section 3]) implies

$$
\left|\left\{x \in S: \bar{D}_{B_{2}}\left(\int f^{n}, x\right)=+\infty\right\}\right|>1-\varepsilon .
$$

Since ε is arbitrary and $f(x) \geq f^{n}(x)$, we have

$$
\left|\left\{x \in S: \bar{D}_{B_{2}}\left(\int f^{n}, x\right)=+\infty\right\}\right|=1
$$

thereby proving assertion (a) of Theorem 1.
Let us now show that if $\gamma \in \Gamma\left(\mathbb{R}^{2}\right) \backslash \gamma^{0}$ then

$$
D_{B_{2}^{\gamma}}\left(\int f, x\right)=f(x) \text { a.e. on } S \text {. }
$$

By virtue of the above-mentioned Besikovitch theorem it is sufficient to prove that

$$
M_{B_{2}^{\gamma}} f(x)<\infty
$$

at almost every point $x \in S$.
Fix $\gamma \neq \gamma^{0}$. Note that there exists a number $n(\gamma)$ such that $c(\gamma)<c_{n}$ for $n>n(\gamma)$. The inclusions (10) and (11) imply that the following inclusions are valid: if $n>n(\gamma)$ then

$$
\begin{equation*}
H_{2}^{\gamma}\left(\beta_{n} \chi_{I^{n, k}}, 2^{-n}\right) \subset Q\left(I^{n, k}, \beta_{n} 2^{n}, \gamma\right) \subset Q^{n, k} \subset E^{n, \gamma, k} \subset 2 Q^{n, k} \tag{20}
\end{equation*}
$$

for all $k=1,2 \ldots$.
By (17) we find that for almost all $x \in S$ there exists a finite set $p(x) \subset \mathbb{N}$ with the properties

$$
x \in \bigcup_{k=1}^{\infty} 2 Q^{n, k} \text { for } n \in p(x)
$$

and

$$
x \notin \bigcup_{k=1}^{\infty} 2 Q^{n, k} \text { for } n \notin p(x)
$$

We obtain

$$
\begin{aligned}
& M_{B_{2}^{\gamma}} f(x) \leq \sum_{n=1}^{n(\gamma)} M_{B_{2}^{\gamma}} f_{n}(x)+\sum_{n \in p(x), n>n(\gamma)} M_{B_{2}^{\gamma}} f_{n}(x)+ \\
& +\sum_{n \notin p(x), n>n(\gamma)} M_{B_{2}^{\gamma}} f_{n}(x)=I_{1}(x, \gamma)+I_{2}(x, \gamma)+I_{3}(x, \gamma) .
\end{aligned}
$$

Let us estimate from above the values $I_{k}(x, \gamma), k=1,2,3$. Note that

$$
I_{1}(x, \gamma) \leq \sum_{n=1}^{n(\gamma)} \beta_{n}<\infty
$$

for all $x \in S$.
Similarly,

$$
I_{2}(x, \gamma) \leq \operatorname{card}(p(x)) \max _{n \in p(x)}\left\{\beta_{n}\right\}<\infty \text { a.e. on } S
$$

We shall now prove that

$$
M_{B_{2}^{\gamma}} f_{n}(x) \leq 2^{-n}, \quad n \notin p(x), \quad n>n(\gamma)
$$

Assume that $R^{\gamma} \in B_{2}^{\gamma}(x)$ and let $\left\{k_{1}^{n}, \ldots, k_{j}^{n}, \ldots\right\}$ denote a set of natural numbers for which

$$
\left|R^{\gamma} \cap I^{n, k_{j}^{n}}\right|>0, \quad j=1,2, \ldots
$$

Note that $R^{\gamma} \cap E^{n, \gamma, k_{j}^{n}} \in B_{2}^{\gamma}$, and if $n \notin p(x), n>n(\gamma)$, then $x \notin E^{n, \gamma, k_{j}^{n}}$. Also taking into account the fact that the set $R^{\gamma} \cap E^{n, \gamma, k_{j}^{n}}$ contains at least one point from $\left(E^{n, \gamma, k_{j}^{n}}\right)^{c}$, we obtain (see (20))

$$
\left|R^{\gamma} \cap I^{n, k_{j}^{n}}\right|<\beta_{n}^{-1} 2^{-n}\left|R^{\gamma} \cap E^{n, \gamma, k_{j}^{n}}\right|, \quad j=1,2, \ldots,
$$

for $n>n(\gamma), n \notin p(x)$.
Hence it follows that if $n>n(\gamma), n \notin p(x)$ then

$$
\begin{align*}
& \frac{1}{\left|R^{\gamma}\right|} \int_{R^{\gamma}} f_{n}(y) d y=\frac{\beta_{n}}{\left|R^{\gamma}\right|} \sum_{j=1}^{\infty}\left|R^{\gamma} \cap I^{n, k_{j}^{n}}\right| \leq \\
& \quad \leq \frac{\beta_{n}}{\left|R^{\gamma}\right|} \sum_{j=1}^{\infty} \beta_{n}^{-1} 2^{-n}\left|R^{\gamma} \cap E^{n, \gamma, k_{j}^{n}}\right| \tag{21}
\end{align*}
$$

Since the sets $E^{n, \gamma, k_{j}^{n}}, j=1,2, \ldots$, do not intersect for $n>n(\gamma)$ (see (20)), we have

$$
\begin{equation*}
\left|R^{\gamma}\right| \geq\left|\bigcup_{j=1}^{\infty}\left(R^{\gamma} \cap E^{n, \gamma, k_{j}^{n}}\right)\right|=\sum_{j=1}^{\infty}\left|R^{\gamma} \cap E^{n, \gamma, k_{j}^{n}}\right| \tag{22}
\end{equation*}
$$

(21)-(22) imply that if $n \notin p(x), n>n(\gamma)$ then

$$
M_{B_{2}^{\gamma}} f_{n}(x)=\sup _{R^{\gamma} \in B_{2}^{\gamma}(x)} \frac{1}{\left|R^{\gamma}\right|} \int_{R^{\gamma}} f_{n}(y) d y \leq 2^{-n} .
$$

Therefore

$$
I_{3}(x, \gamma)=\sum_{n \notin p(x), n>n(\gamma)} M_{B_{2}^{\gamma}} f_{n}(x) \leq \sum_{n=1}^{\infty} 2^{-n}<\infty
$$

Finally,

$$
\begin{equation*}
M_{B_{2}^{\gamma}} f(x)<\infty \tag{23}
\end{equation*}
$$

for almost all $x \in S$, which proves the first part of assertion (b) of Theorem 1.

Let us prove the second part. There exists a number $n(\varepsilon)$ for which

$$
\begin{equation*}
c<c_{n} \text { for } n>n(\varepsilon) \tag{24}
\end{equation*}
$$

We can write

$$
\begin{aligned}
& M_{B_{2}^{\gamma}} f(x) \leq \sum_{n=1}^{n(\varepsilon)} M_{B_{2}^{\gamma}} f_{n}(x)+\sum_{n \in p(x), n>n(\varepsilon)} M_{B_{2}^{\gamma}} f_{n}(x)+ \\
& \quad+\sum_{n \notin p(x), n>n(\varepsilon)} M_{B_{2}^{\gamma}} f_{n}(x)=I_{1}(x)+I_{2}(x)+I_{3}(x) .
\end{aligned}
$$

We have

$$
I_{1}(x) \leq \sum_{n=1}^{n(\varepsilon)} \beta_{n}<\infty
$$

and

$$
I_{2}(x) \leq \operatorname{card}(p(x)) \max _{n \in p(x)}\left\{\beta_{n}\right\}<\infty \text { a.e. on } S
$$

The relations (10), (11), (24) imply that if $\varepsilon<\alpha(\gamma)<\frac{\pi}{2}-\varepsilon$, then the inclusions

$$
\begin{equation*}
H_{2}^{\gamma}\left(\beta_{n} \chi_{I^{n, k}}, 2^{-n}\right) \subset Q\left(I^{n, k}, \beta_{n}^{-1} 2^{-n}, \gamma\right) \subset Q^{n, k} \subset E^{n, \gamma, k} \subset 2 Q^{n, k} \tag{25}
\end{equation*}
$$

hold for $n>n(\varepsilon), k=1,2, \ldots$.
From (25) it follows that relations (21) and (22) are valid for any direction γ for which $\varepsilon<\alpha(\gamma)<\frac{\pi}{2}-\varepsilon$ when $n \notin p(x), n>n(\varepsilon)$. This means that for such directions we have

$$
M_{B_{2}^{\gamma}} f_{n}(x) \leq 2^{-n} \text { for } n \notin p(x), \quad n>n(\varepsilon)
$$

and thus

$$
M_{B_{2}^{\gamma}} f(x) \leq \sum_{n=1}^{n(\varepsilon)} \beta_{n}+\operatorname{card}(p(x)) \max _{n \in p(x)}\left\{\beta_{n}\right\}+1<\infty \quad \text { a.e. on } S
$$

Since the right-hand side does not depend on γ, we have

$$
\sup _{\gamma: \varepsilon<\alpha(\gamma)<\frac{\pi}{2}-\varepsilon}\left\{M_{M_{2}^{\gamma}} f(x)\right\}<\infty \quad \text { a.e. on } S .
$$

Remark. The first part of assertion (b) of Theorem 1 can be formulated as follows (see (23)):

$$
M_{B_{2}^{\gamma}} f(x)<\infty \text { a.e. on } S
$$

for each direction $\gamma \in \Gamma\left(\mathbb{R}^{2}\right) \backslash \gamma^{0}$.
Proof of Theorem 2. Since $\gamma_{n} \notin \bar{T}$, the inclusion

$$
\begin{equation*}
K_{n} \equiv\left\{\gamma \in \Gamma\left(\mathbb{R}^{2}\right):\left|\alpha(\gamma)-\alpha\left(\gamma_{n}\right)\right|>\pi \varepsilon_{n}^{-1}\right\} \supset T \tag{26}
\end{equation*}
$$

holds for a sufficiently large number ε_{n}.
Note that if $\gamma_{n}=\gamma^{0}$ for some n, the set K_{n} will have the form

$$
K_{n} \equiv\left\{\gamma \in \Gamma\left(\mathbb{R}^{2}\right): \pi \varepsilon_{n}^{-1}<\alpha(\gamma)<\frac{\pi}{2}-\pi \varepsilon_{n}^{-1}\right\}
$$

Let, moreover,

$$
\begin{equation*}
\sum_{n=1}^{\infty} \varepsilon_{n}^{-1}<\infty \tag{27}
\end{equation*}
$$

Note that by virtue of the above remark Theorem 1 implies that for any number $n \in \mathbb{N}$ there exists a function $f_{n} \in \Phi(L)(S), f \geq 0,\left\|\Phi\left(f_{n}\right)\right\|_{n(S)}<$ 2^{-n} such that the following three conditions hold:

$$
\left\{\begin{array}{l}
\bar{D}_{B_{2}^{\gamma n}}\left(\int f_{n}, x\right)=+\infty \text { a.e. on } S \\
M_{B_{2}^{\gamma}} f_{n}(x)<\infty, \forall \gamma \in \Gamma\left(\mathbb{R}^{2}\right) \backslash \gamma_{n} \text { a.e. on } S, \\
\sup _{\gamma:\left|\alpha(\gamma)-\alpha\left(\gamma_{n}\right)\right|>\pi \varepsilon_{n}^{-1}}\left\{M_{B_{2}^{\gamma}} f_{n}(x)\right\} \leq F_{n}(x)
\end{array}\right.
$$

where the function F_{n} is finite a.e. There exist a number P_{n} and a set $E_{n} \subset S$ such that $1<P_{n}<\infty,\left|S \backslash E_{n}\right|<2^{-n}$, and

$$
F_{n}(x) \leq P_{n} \quad \text { for } \quad x \in E_{n}, \quad n=1,2, \ldots
$$

Let

$$
g_{n}(x)=\frac{1}{P_{n} 2^{n}} f_{n}(x)
$$

Clearly, the following conditions hold for g_{n} :

$$
\left\{\begin{array}{l}
\bar{D}_{B_{2}^{\gamma_{n}}}\left(\int g_{n}, x\right)=\frac{1}{P_{n} 2^{n}} \bar{D}_{B_{2}^{\gamma_{n}}}\left(\int f, x\right)=+\infty \text { a.e. on } S, \\
M_{B_{2}^{\gamma}} g_{n}(x)<\infty, \forall \gamma \in \Gamma\left(\mathbb{R}^{2}\right) \backslash \gamma_{n} \text { a.e. on } S, \\
\sup _{\gamma: \gamma \in K_{n} \supset T}\left\{M_{B_{2}^{\gamma}} g_{n}(x)\right\} \leq \frac{1}{2^{n}} \text { on } E_{n} .
\end{array}\right.
$$

We defined the function g as

$$
g(x)=\sup _{n} g_{n}(x) .
$$

Note that $g \in \Phi(L)(S)$. Indeed, since $\Phi(t)$ is the nondecreasing continuous function,

$$
\int_{S} \Phi(g) \leq \sum_{n=1}^{\infty} \int_{S} \Phi\left(g_{n}\right) \leq \sum_{n=1}^{\infty} \int_{S} \Phi\left(f_{n}\right)<\sum_{n=1}^{\infty} 2^{-n}<\infty .
$$

We have

$$
\bar{D}_{B_{2}^{\gamma_{n}}}\left(\int g, x\right) \geq \bar{D}_{B_{2}^{\gamma_{n}}}\left(\int g_{n}, x\right)=+\infty \text { a.e. on } S .
$$

Relations (26) and (27) imply that

$$
\sum_{n=1}^{\infty}\left|K_{n}^{c}\right| \leq 2 \pi \sum_{n=1}^{\infty} \varepsilon_{n}^{-1}<\infty .
$$

Therefore

$$
\begin{equation*}
\left|\limsup _{n \rightarrow \infty} K_{n}^{c}\right|=0 . \tag{28}
\end{equation*}
$$

Similarly, since

$$
\sum_{n=1}^{\infty}\left|E_{n}^{c}\right|<\sum_{n=1}^{\infty} 2^{-n}<\infty
$$

we have

$$
\left|\limsup _{n \rightarrow \infty} E_{n}^{c}\right|=0 .
$$

Define the sets

$$
\begin{aligned}
Z_{n} & \equiv\left\{x \in S: F_{n}(x)=+\infty\right\}, \quad n=1,2, \ldots, \\
K & \equiv \liminf _{n \rightarrow \infty} K_{n}, \\
E & \equiv \liminf _{n \rightarrow \infty} E_{n} \backslash \bigcup_{n=1}^{\infty} Z_{n} .
\end{aligned}
$$

For $\gamma \in K \backslash\left(\gamma_{n}\right)_{n=1}^{\infty}$ we set

$$
G(\gamma) \equiv \bigcap_{n=1}^{\infty}\left\{x \in S: M_{B_{2}^{\gamma}} g_{n}(x)<\infty\right\} .
$$

Clearly,

$$
|E|=|G(\gamma)|=1, \quad|K|=\frac{\pi}{2}
$$

Let $\gamma \in K$. It follows from (28) that there exists a finite set $t(\gamma) \subset \mathbb{N}$ for which

$$
\gamma \in K_{n}^{c} \text { for } n \in t(\gamma)
$$

and

$$
\gamma \in K_{n} \quad \text { for } \quad n \notin t(\gamma)
$$

Similarly, if $x \in E$ then there exists a finite set $p(x) \subset \mathbb{N}$ for which

$$
\begin{array}{lll}
x \in E_{n}^{c} & \text { for } & n \in p(x), \\
x \in E_{n} & \text { for } & n \notin p(x) .
\end{array}
$$

Let us show that

$$
M_{B_{2}^{\gamma}} g(x)<\infty
$$

if $x \in G(\gamma) \cap E$ and $\gamma \in K \backslash\left(\gamma_{n}\right)_{n=1}^{\infty}$.
We can write

$$
M_{B_{2}^{\gamma}} g(x) \leq \sum_{n \in p(x) \cup t(\gamma)} M_{B_{2}^{\gamma}} g_{n}(x)+\sum_{n \notin p(x), n \notin t(\gamma)} M_{B_{2}^{\gamma}} g_{n}(x)=I_{1}(x, \gamma)+I_{2}(x, \gamma)
$$

For $x \in G(\gamma) \cap E$ we have

$$
I_{1}(x, \gamma) \leq \operatorname{card}(p(x) \cup t(\gamma)) \max _{n \in p(x) \cup t(\gamma)}\left\{M_{B_{2}^{\gamma}} g_{n}(x)\right\}<\infty
$$

On the other hand,

$$
I_{2}(x, \gamma)=\sum_{n: x \in E_{n}, \gamma \in K_{n}} M_{B_{2}^{\gamma}} g_{n}(x) \leq \sum_{n=1}^{\infty} 2^{-n}<\infty
$$

Therefore for $\gamma \in K \backslash\left(\gamma_{n}\right)_{n=1}^{\infty}$ we obtain $(|\sigma(\gamma) \cap E|=1)$

$$
M_{B_{2}^{\gamma}} g(x)<\infty \text { a.e. on } S \text {, }
$$

which by the Besikovitch theorem implies

$$
D_{B_{2}^{\gamma}}\left(\int g, x\right)=g(x) \text { a.e. on } S
$$

Now let us prove the second part of condition (b) of Theorem 2. Since $K_{n} \supset T$, we have $K_{n}^{c} \cap T=\varnothing, n=1,2, \ldots$, and therefore

$$
T \cap K_{n}^{c}=\varnothing, \quad n \in \mathbb{N}
$$

Thus if $\gamma \in T$, then $t(\gamma)=\varnothing$. We have

$$
M_{B_{2}^{\gamma}} g(x) \leq \sum_{n \in p(x)} M_{B_{2}^{\gamma}} g_{n}(x)+\sum_{n \notin p(x)} M_{B_{2}^{\gamma}} g_{n}(x)=I_{1}(x)+I_{2}(x)
$$

Note that if $\gamma \in T, x \in E$, then

$$
I_{1}(x) \leq \operatorname{card}(p(x)) \max _{n \in p(x)}\left\{F_{n}(x)\right\}<\infty
$$

and

$$
I_{2}(x) \leq \sum_{n: x \in E_{n}} F_{n}(x) \leq \sum_{n=1}^{\infty} 2^{-n}<1
$$

Therefore if $\gamma \in T$ then we obtain $(|E|=1)$

$$
M_{B_{2}^{\gamma}} g(x) \leq \operatorname{card}(p(x)) \max _{n \in p(x)}\left\{F_{n}(x)\right\}+1 \text { a.e. on } S,
$$

and since the right-hand side of this inequality is independent of the direction γ, we have

$$
\sup _{\gamma: \gamma \in T}\left\{M_{B_{2}^{\gamma}} g(x)\right\}<\infty \text { a.e. on } S \text {. }
$$

§ 6. Corollaries

Theorem 2 implies
Corollary 1. There exists a nonnegative function $f \in L(S)$ such that the following conditions are fulfilled:
(a) if there is a direction γ such that $\alpha(\gamma)$ is a rational number, then

$$
\bar{D}_{B_{2}^{\gamma}}\left(\int f, x\right)=+\infty \quad \text { a.e. on } S ;
$$

(b) for almost all directions γ

$$
D_{B_{2}^{\gamma}}\left(\int f, x\right)=f(x) \text { a.e. on } S .
$$

Definition. Assume that we are given a sequence of directions $\left(\gamma_{n}\right)_{n=1}^{\infty}$ and let $\gamma_{n} \nearrow \gamma, n \nearrow \infty$. Following [8], we shall say that the sequence of directions is exponential if there exists a constant $c>0$ such that

$$
\left|\alpha\left(\gamma_{i}\right)-\alpha\left(\gamma_{j}\right)\right|>c\left|\alpha\left(\gamma_{i}\right)-\alpha(\gamma)\right|, \quad i \neq j
$$

Corollary 2. Assume that we are given two sequences of directions $\left(\gamma_{n}\right)_{n=1}^{\infty}$ and $\left(\gamma_{n}^{\prime}\right)_{n=1}^{\infty}$, the sequence $\left(\gamma_{n}\right)_{n=1}^{\infty}$ being exponential, and let

$$
\gamma_{m}^{\prime} \in \Gamma\left(\mathbb{R}^{2}\right) \backslash \overline{\left(\gamma_{n}\right)_{n=1}^{\infty}}, \quad m=1,2, \ldots
$$

There exists $f \in L(S), f \geq 0$, such that

$$
\bar{D}_{B_{2}^{\gamma_{n}^{\prime}}}\left(\int f, x\right)=+\infty \quad \text { a.e. on } S, \quad n=1,2, \ldots
$$

and

$$
D_{B}\left(\int f, x\right)=f(x) \quad \text { a.e. on } \quad S,
$$

where the differentiation basis B at the point x is defined as follows:

$$
B(x)=\cup_{n} B_{2}^{\gamma_{n}}(x)
$$

Proof. By virtue of Theorem 2 from [8] we find that the basis B with the exponential property differentiates the space $L^{p}\left(\mathbb{R}^{2}\right)$, $p>2$. Therefore the basis with this property has the property of density. Using this fact and the fact that

$$
M_{B} f(x)<\infty \quad \text { a.e. on } S
$$

(see Theorem 2, $\left.T=\left(\gamma_{n}\right)_{n=1}^{\infty}\right)$, by virtue of the de Guzmán and Menárguez theorem (see [1, Ch. IV, Section 3]), we obtain

$$
D_{B}\left(\int f, x\right)=f(x) \quad \text { a.e. on } \quad S .
$$

§ 7. Remarks

1. A set of functions described by Theorems 1 and 2 forms a first-category set in $L\left(\mathbb{R}^{2}\right)$ (see Saks' theorem ([3]; [1, Ch. VII, Section 2]).
2. Let $\gamma_{1}, \gamma_{2} \in \Gamma\left(\mathbb{R}^{m}\right), m \geq 3$. Denote by $\alpha_{k}\left(\gamma_{1}, \gamma_{2}\right), k=1,2, \ldots, m$, the angle formed by the k th straight line of the direction γ_{1} and by the k th straight line of the direction γ_{2}. If $\gamma \in \Gamma\left(\mathbb{R}^{m}\right)$ then we denote by $\bar{\gamma}$ the following subset from $\Gamma\left(\mathbb{R}^{m}\right)$:
$\bar{\gamma} \equiv\left\{\gamma^{\prime} \in \Gamma\left(\mathbb{R}^{m}\right): \exists K(1 \leq k \leq m), \exists j(1 \leq j \leq 4), \alpha_{k}\left(\gamma, \gamma^{\prime}\right)=\frac{\pi}{2}(j-1)\right\}$.
Without changing the essence of the proof of the main results, we can prove, for example,

Theorem 3. Let $\Phi(t)$ be a nondecreasing continuous function on the interval $[0, \infty)$ and $\Phi(t)=o\left(t\left(\log ^{+} t\right)^{m-1}\right)$ for $t \rightarrow \infty(m \geq 3)$. For each pair of directions γ_{1} and γ_{2} for which $\gamma_{2} \notin \overline{\gamma_{1}}$, there exists a nonnegative summable function $f \in \Phi(L)\left([0,1]^{m}\right)$ such that
(a) $\bar{D}_{B_{2}^{\gamma_{1}}}\left(\int f, x\right)=+\infty$ a.e. on $[0,1]^{m}$;
(b) $D_{B_{2}^{\gamma_{2}}}\left(\int f, x\right)=f(x)$ a.e. on $[0,1]^{m}$.
3. We have ascertained that for one class of functions the so-called basis rotation changes the strong differentiability property of integrals. Note that there exist functions such that the basis rotation changes the integrability property of a strong maximal function. More exactly, for any number ε, $0<\varepsilon<\frac{\pi}{2}$, there exists a function $f \in L(U), U=[-1,1]^{2}$, such that
(a)

$$
\int_{\left\{M_{B_{2}} f>1\right\}} M_{B_{2}} f(y) d y=+\infty
$$

(b) for any direction γ such that $\varepsilon<\alpha(\gamma)<\frac{\pi}{2}-\varepsilon$ we have

$$
\int_{\left\{M_{B_{2}^{\gamma}} f>1\right\}} M_{B_{2}^{\gamma}} f(y) d y<\infty
$$

Indeed, let the constant $c, 1<c<\infty$, be defined by the equality

$$
c=\sup \left\{c(\gamma): \gamma \in \Gamma\left(\mathbb{R}^{2}\right), \varepsilon<\alpha(\gamma)<\frac{\pi}{2}-\varepsilon\right\}
$$

Consider the nonnegative function g for which the following three conditions are fulfilled:

$$
\begin{gather*}
g \in L \log ^{+} L(U) \backslash L\left(\log ^{+} L\right)^{2}(U) \tag{29}\\
\|g\|_{1}>(2 c)^{-1}, \quad \operatorname{supp}(g) \subset U \tag{30}
\end{gather*}
$$

Assuming that $0 \leq \lambda<\infty$ and

$$
E_{\lambda}=\{x \in U: g(x)>\lambda\}
$$

we define the interval I_{λ} by

$$
I_{\lambda}=\left[-l_{\lambda}^{\prime}, l_{\lambda}^{\prime}\right] \times[-1,1]
$$

where

$$
l_{\lambda}^{\prime}=4^{-1}\left|E_{\lambda}\right|
$$

The function f is defined by

$$
f(x)=\int_{0}^{\infty} \chi_{I_{\lambda}}(x) d \lambda
$$

It is clear that f and g are the equimeasurable functions. Let $x \in \mathbb{R}^{2}$, $\gamma \neq \gamma^{0}$, and $R \in B_{2}^{\gamma}(x)$. By using inequality (3) it is not difficult to show that there exists a cubic interval $Q_{x} \in B_{1}(x)$ such that for any λ we have the relation

$$
\frac{1}{|R|}\left|R \cap I_{\lambda}\right| \leq 4 c(\gamma) \frac{1}{\left|Q_{x / 3}\right|}\left|Q_{x / 3} \cap I_{\lambda}\right|+c(\gamma)\left|I_{\lambda}\right|
$$

where $Q_{x / 3}$ denotes the image of the interval Q_{x} under the homothety with center at the origin and coefficient $1 / 3$. Since R is arbitrary, we obtain (see [9, p. 649])

$$
M_{B_{2}^{\gamma}} f(x) \leq 4 c(\gamma) M_{B_{1}} f(x / 3)+c(\gamma) \int_{S} f
$$

Finally, for directions γ for which $\varepsilon<\alpha(\gamma)<\frac{\pi}{2}-\varepsilon$ we have (see (30))

$$
M_{B_{2}^{\gamma}} f(x) \leq 4 c(\gamma) M_{B_{1}} f(x / 3)+2^{-1}
$$

By virtue of Stein's theorem [10] and the fact that $f \in L \log ^{+} L(U)$ (see (29)) we obtain

$$
\begin{gathered}
\int_{\left\{M_{B_{2}^{\gamma}} f>1\right\}} M_{B_{2}^{\gamma}} f(x) d x< \\
<4 c \int_{\left\{x: M_{B_{1}} f(x / 3)>1 / 8 c\right\}} M_{B_{1}} f(x / 3) d x+2^{-1}\left|\left\{x: M_{B_{1}} f(x / 3)>1 / 8 c\right\}\right|<\infty .
\end{gathered}
$$

Now we shall prove assertion (a). Define the function $\Phi\left(x_{1}\right)$ as

$$
\Phi\left(x_{1}\right)=f\left(x_{1}, 0\right)
$$

Note that if $x_{1} \in[-1,1]$ and $x_{2} \geq 1$ then

$$
M_{B_{2}} f\left(x_{1}, x_{2}\right) \geq \frac{2}{x_{2}+1} M \Phi\left(x_{1}\right)
$$

where $M \Phi\left(x_{1}\right)$ is the maximal Hardy-Littlewood function on the straight line. By performing transformations and using the fact that f does not belong to the class $L\left(\log ^{+} L\right)^{2}(U)$ we arrive at

$$
\begin{gathered}
\int_{\left\{M_{B_{2}} f>1\right\}} M_{B_{2}} f\left(x_{1}, x_{2}\right) d x_{1} d x_{2} \geq \\
\geq 2 \int_{1}^{\infty} d x_{2}\left(\int_{\left\{x_{1} \in(-1,1): M \Phi\left(x_{1}\right) \geq \frac{x_{2}+1}{2}\right\}} \frac{1}{x_{2}+1} M \Phi\left(x_{1}\right) d x_{1}\right)= \\
=2 \int_{\left\{\Phi(-1,1): M \Phi\left(x_{1}\right)>1\right\}} M \Phi\left(x_{1}\right) \log ^{+}\left(M \Phi\left(x_{1}\right)\right) d x_{1}=+\infty .
\end{gathered}
$$

References

1. M. de Guzmán, Differentiation of integrals in \mathbb{R}^{n}. Springer-Verlag, Berlin-Heidelberg-New York, 1975.
2. B. Jessen, J. Marcinkiewicz, and A. Zygmund, Note on the differentiability of multiple integrals. Fund. Math. 25(1935), 217-234.
3. H. Buseman and W. Feller, Zur Differentiation der Lebesgueschen Integrale. Fund. Math. 22(1934), 226-256.
4. S. Saks, Remarks on the differentiability of the Lebesgue indefinite integral. Fund. Math. 22(1934), 257-261.
5. J. Marstrand, A counter-example in the theory of strong differentiation. Bull. London Math. Soc. 9(1977), 209-211.
6. A. M. Stokolos, An inequality for equimeasurable rearrangements and its application in the theory of differentiaton of integrals. Anal. Math. 9(1983), 133-146.
7. B. López Melero, A negative result in differentiation theory. Studia Math. 72(1982), 173-182.
8. J.-O. Strömberg, Weak estimates on maximal functions with rectangles in certain directions. Ark. Math. 15(1977), 229-240.
9. R. J. Bagby, A note on the strong maximal function. Proc. Amer. Math. Soc. 88(1983), No. 4, 648-650.
10. E. M. Stein, Note on the class $L\left(\log ^{+} L\right)$. Studia Math. 32(1969), 305-310.
(Received 17.01.1994)
Author's address:
Faculty of Mechanics and Mathematics
I. Javakhishvili Tbilisi State University

2, University St., Tbilisi 380043
Republic of Georgia

[^0]: 1991 Mathematics Subject Classification. 28A15.
 Key words and phrases. Strong differentiability of an integral, Zygmund problem on differentiation with respect to rectangles, field of directions, strong maximal function.

