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AN INTERPOLATION INEQUALITY INVOLVING
HÖLDER NORMS

ALOIS KUFNER AND ANDREAS WANNEBO

Abstract. An interpolation inequality of Nirenberg, involving Le-
besgue-space norms of functions and their derivatives, is modified,
replacing one of the norms by a Hölder norm.

0. Introduction

In his paper [1], L. Nirenberg derived the inequality

‖∇ju‖q 5 C‖∇mu‖a
p ‖u‖1−a

r (0.1)

which holds for all functions u ∈ C∞0 (RN ) with a constant C > 0 indepen-
dent of u. Here ‖ · ‖s is the Ls-norm, ∇ku is the vector of all derivatives
Dαu of order |α| = k, k ∈ N, and the parameters p, q, r are connected, for
0 < a < 1 and 0 < j < m, by the ”dilation formula”

−j +
N
q

= a
(

−m +
N
p

)

+ (1− a)
N
r

. (0.2)

Moreover, it is shown that the parameter a has to satisfy the condition

a =
j
m

.

Inequality (0.1) was, among others, a very important tool in the descrip-
tion of properties of Sobolev spaces Wm,p(Rn). For example, for the limiting
cases j = 0 and a = 1, we obtain from (0.1) the famous Sobolev Imbedding
theorem

‖u‖q 5 C‖∇mu‖p with
1
q

=
1
p
− m

N
.
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The aim of this note is to modify inequality (0.1) replacing the Lr-norm
of u, ‖u‖r on the right-hand side by the Hölder quotient

[u]H(λ) = sup
x 6=y

|u(x)− u(y)|
|x− y|λ

, 0 < λ < 1, (0.3)

i.e., to derive inequalities of the form

‖∇ju‖q 5 C‖∇mu‖a
p [u]1−a

H(λ) (0.4)

for appropriate values of the parameters j, m, p, q, λ, a.
First, let us note that the formula

−j +
N
q

= a
(

−m +
N
p

)

+ (1− a)(−λ) (0.5)

is an analogue of formula (0.2) for the case of inequality (0.4). Indeed, if
(0.4) holds for every function u = u(x) ∈ C∞0 (Rn) with a constant C > 0
independent of u, then it holds necessarily for the function U(x) = u(Rx)
with R > 0, which again belongs to C∞0 (Rn). From (0.4) we obtain that

‖∇jU‖qR−j+ N
p 5 C‖∇mU‖a

pRa(−m+ N
p )[u]1−a

H(λ)R
−λ(1−a)

and (0.5) follows since R > 0 is arbitrary.
The paper is organized as follows: in Section 1, we will derive an im-

portant auxiliary estimate (Lemma 1). In Section 2, we will first deal with
inequality (0.4) for the one-dimensional case (Theorem 1) and then, in Sec-
tion 3, the result will be extended to functions defined on RN , N > 1, but
under certain more restrictive conditions on the parameters (Theorem 2).

1. An auxiliary result

Lemma 1. Let u = u(t) be a smooth function on the finite closed interval
I ⊂ R. Suppose m, j ∈ N, 0 < j < m, 0 < λ 5 1 and denote

[u]λ,I = sup
{ |u(t)− u(s)|

|t− s|λ
; t, s ∈ I, t 6= s

}

.

Then the estimate

|u(j)(t)| 5 K
{

|I|m−j−1
∫

I

|u(m)(s)|ds + |I|λ−j [u]λ,I

}

(1.1)

holds for every t ∈ I with K > 0 independent of u, t and the length |I| of
the interval I: K = K(j,m, λ).
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Proof. Without loss of generality, we can assume that I = [0, b], 0 < b < ∞.
(i) Take ξ ∈ [0, 1

3b], η ∈ [ 23b, b]. Then there is an x ∈ [ξ, η] such that

u(ξ)− u(η) = u′(x)(ξ − η),

i.e.,

|u′(x)| = |u(ξ)− u(η)|
|ξ − η|

=
|u(ξ)− u(η)|
|ξ − η|λ

|ξ − η|λ−1,

and since |ξ − η| = 1
3b and λ− 1 5 0, we have

|u′(x)| 5 [u]λ,I

( b
3

)λ−1
. (1.2)

Let us fix this x and take any t ∈ [0, b]. Then

u′(t) =

t
∫

x

u′′(s)ds + u′(x)

and consequently

|u′(t)| 5
b

∫

0

|u′′(s)|ds + |u′(x)| 5
b

∫

0

|u′′(s)|ds + 31−λbλ−1[u]λ,I (1.3)

due to (1.2). But (1.3) is (1.1) for j = 1, m = 2.
(ii) Take ξ0 ∈ [0, 1

9b], ξ1 ∈ [ 29b, 1
3b]. Then there is a ξ ∈ [ξ0, ξ1] – i.e.,

ξ ∈ [0, 1
3b] – such that

u(ξ0)− u(ξ1) = u′(ξ)(ξ0 − ξ1).

Further, take η0 ∈ [ 23b, 7
9b], η1 ∈ [ 89b, b]. Then there is an η ∈ [η0, η1] – i.e.,

η ∈ [ 23b, b] – such that

u(η0)− u(η1) = u′(η)(η0 − η1).

Moreover, there is an x ∈ [ξ, η] such that

u′(ξ)− u′(η) = u′′(x)(ξ − η).

Consequently,

u′′(x) =
u′(ξ)− u′(η)

ξ − η
=

1
ξ − η

[u(ξ0)− u(ξ1)
ξ0 − ξ1

− u(η0)− u(η1)
η0 − η1

]

,

and since |ξ − η| = 1
3b, |ξ0 − ξ1| = 1

9b, |η0 − η1| = 1
9b, we have

|u′′(x)| 5
1

|ξ − η|

[ |u(ξ0)− u(ξ1)|
|ξ0 − ξ1|λ

|ξ0 − ξ1|λ−1 +
|u(η0)− u(η1)|
|η0 − η1|λ

|η0 − η1|λ−1
]

5
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5
3
b
2[u]λ,I

( b
9

)λ−1
= 6 · 91−λbλ−2[u]λ,I . (1.4)

Let us fix this x and take any t ∈ [0, b]. Then

u′′(t) =

t
∫

x

u′′′(s)ds + u′′(x)

and consequently, due to (1.4)

|u′′(t)| 5
b

∫

0

|u′′′(s)|ds + 6 · 91−λbλ−2[u]λ,I . (1.5)

But this is (1.1) for j = 2, m = 3.
(iii) Integrating (1.5) with respect to t over the interval [0, b], we obtain

that

b
∫

0

|u′′(t)|dt 5 b
[

b
∫

0

|u′′′(s)|ds + 6 · 91−λbλ−2[u]λ,I

]

=

= b

b
∫

0

|u′′′(s)|ds + 6 · 91−λbλ−1[u]λ,I .

Using this estimate in (1.3), we see that

|u′(t)| 5 b

b
∫

0

|u′′′(s)|ds + 6 · 91−λbλ−1[u]λ + 31−λbλ−1[u]λ,I =

= b

b
∫

0

|u′′′(s)|ds + Kbλ−1[u]λ,I

with K = 6 · 91−λ + 31−λ. But this is (1.1) for j = 1, m = 3.
(iv) The proof for general j, m ∈ N (j < m) proceeds by induction. First,

we show that there is an x ∈ [0, b] such that

|u(j)(x)| 5 K(j)[u]λ,Ibλ−j

with K(j) = 2j−13
j
2 (j−2λ+1) [compare with (1.2) and (1.4) for j = 1 and

j = 2, respectively].
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Putting this x fixed and taking any x ∈ [0, b], we obtain from

u(j)(t) =

t
∫

x

u(j+1)(s)ds + u(j)(x)

that

|u(j)(t)| 5
b

∫

0

|u(j+1)(s)|ds + K(j)bλ−j [u]λ,I (1.6)

and integration with respect to t over [0, b] yields

b
∫

0

|u(j)(t)| 5 b

b
∫

0

|u(j+1)(s)|ds + K(j)bλ−j+1[u]λ,I . (1.7)

For j = m− 1, (1.6) is the estimate (1.1).
For j = m− 2, estimate (1.6) yields

|u(m−2)(t)| 5
b

∫

0

|u(m−1)(s)|ds + K(m− 2)bλ−m+2[u]λ,I (1.8)

while (1.7) yields, for j = m− 1, that

b
∫

0

|u(m−1)(s)|ds 5 b

b
∫

0

|u(m)(s)|ds + K(m− 1)bλ−m+2[u]λ,I .

Using this estimate in (1.8), we immediately obtain (1.1) for j = m−2 with
K = K(m− 1) + K(m− 2).

Analogously we proceed for j = m− 3, m− 4, . . . .

Remark. Inequality (1.1) is a counterpart of the inequality

|u(j)(t)| 5 K
{

|I|m−j−1
∫

I

|u(m)(s)ds + |I|−j−1
∫

I

|u(s)|ds
}

which is a useful tool when deriving interpolation inequalities in (weighted)
Ls-norms (see, e.g., R.C. Brown and D.B. Hinton [2]).

Suppose 1 < p, q < ∞. Then we can immediately derive from Lemma 1
the following
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Corollary. Under the assumptions of Lemma 1, the estimate
∫

I

|u(j)(t)|qdt 5

5 ˜K
{

|I|(m−j)q+1− q
p

(

∫

I

|u(m)(s)|pds
)q/p

+ |I|1+(λ−j)q[u]qλ,I

}

(1.9)

holds.

Proof. The Hölder inequality yields for 1 < p < ∞ that
∫

I

|u(m)(s)|ds 5
(

∫

I

|u(m)(s)|pds
)1/p

|I|1−
1
p . (1.10)

For 1 < q < ∞, if follows from (1.1) that

|u(j)(t)|q 5

5 2q−1K
{

|I|(m−j−1)q
(

∫

I

|u(m)(s)|ds
)q

+ |I|(λ−j)q[u]qλ,I

}

holds for every t ∈ I. Integrating this inequality with respect to t over I
and using (1.10), we obtain the estimate (1.9).

2. The one-dimensional case

Let us assume that u = u(t) is defined on R+, that 0 < j < ∞, and that
u(m) ∈ Lp(R+), u(j) ∈ Lq(R+), and [u]λ,R+ is finite.

Consider first the interval [0, L], 0 < L < ∞. Following the idea of
L. Nirenberg [2], we will cover this interval by a finite number of successive
intervals I1, I2, . . . where the initial point of Ii+1 coincides with the endpoint
of Ii.

Take a fixed k ∈ N and consider the estimate (1.9) for the special interval
I = [0, L/k]. If the first term on the right-hand side of (1.9) is greater than
the second, then we set I1 = I and hence we have the estimate

∫

I1

|u(j)(s)|qds 5 2 ˜K
(L

k

)(m−j− 1
p )q+1(

∫

I1

|u(m)(s)|pds
)q/p

. (2.1)

On the other hand, if the second term is greater, we proceed in the
following way: We suppose that

1 + (λ− j)q < 0 (2.2)
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[in fact, this means that we have to suppose λ < 1− 1/q if j = 1, since for
j = 2, 3, . . . the condition (2.2) is satisfied due to the assumption 0 < λ 5 1],
while

(

m− j − 1
p

)

q + 1 > 0, (2.3)

and we introduce a parameter a, 0 < a < 1.
Now we extend the interval I (keeping the left endpoint fixed) until the

a-multiple of the second term becomes equal to the (1 − a)-multiple of the
first term. This must occur for a finite value of |I|, since the exponent on |I|
in the first term is positive due to (2.3), but the exponent on |I| is negative
due to (2.2). Denoting I1 the resulting interval and using the identity

A + B =
(1

a

)a( 1
1− a

)1−a
AaB1−a if aB = (1− a)A,

we then have
∫

I1

|u(j)(s)|qds 5 ˜K
(1

a

)a( 1
1− a

)1−a
|I1|(m−j− 1

p )qa+a ×

×
(

∫

I1

|u(m)(t)|pdt
)aq/p

· |I1|(1−a)(1+λq−jq)[u]q(1−a)
λ,I1

.

If we choose

a =
j − 1

q − λ

m− 1
p − λ

(2.4)

then the foregoing estimate becomes simple:

∫

I1

|u(j)(s)|qds 5 ˜Ka

(

∫

I1

|u(m)(s)|pds
)aq/p

· [u]q(1−a)
λ,I1

. (2.5)

Keeping k fixed, we now start at the endpoint of I1 and repeat this pro-
cess [beginning with an interval of length L/k, comparing the two terms
on the right-hand side of the corresponding inequality (1.9), etc.] choos-
ing I2, I3, . . . until the interval [0, l] is covered. There are at most k such
intervals, and if we now sum up our estimates of

∫

Ii

|u(j)(s)|qds
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which are of the form (2.1) or (2.5), we finally find that

L
∫

0

|u(j)(s)|qds 5
∑

i

∫

Ii

|u(j)(s)|qds 5

5 k · 2 ˜K
(L

k

)(m−j− 1
p )q+1(

∞
∫

0

|u(m)(s)|pds
)q/p

+

+ ˜Ka

∑

i

(

∫

Ii

|u(m)(t)|pdt
)aq/p

· [u]q(1−a)
λ,Ii

. (2.6)

If we suppose
aq
p

= 1, (2.7)

which in fact means that

λ 5
jq −mp

q − p
(2.8)

and which contains the assumption jq −mp > 0, i.e.,

q >
m
j

p, (2.9)

then
∑

i

(

∫

Ii

|u(m)(t)|pdt
)aq/p

· [u]q(1−a)
λ,Ii

5

5
{

∑

i

(

∫

Ii

|u(m)(t)|pdt
)aq/p}

· [u]q(1−a)
λ,R+

5

5
{

∑

i

(

∫

Ii

|u(m)(t)|pdt
)}aq/p

· [u]q(1−a)
λ,R+

5

5
(

∞
∫

0

|u(m)(t)|pdt
)aq/p

· [u]q(1−a)
λ,R+

.

This is a (global) bound for the second term on the right-hand side of (2.6).
If we now let k →∞, then the first term tends to zero, since (m− j− 1

p )q +
1 > 1, and we obtain the interpolation inequality

(

∞
∫

0

|u(j)(t)|qdt
)1/q

5 C
(

∞
∫

0

|u(m)(t)|pdt
)a/p

· [u]1−a
λ,R+

(2.10)



AN INTERPOLATION INEQUALITY INVOLVING HÖLDER NORMS 611

since the number L on the left-hand side of (2.6) was arbitrary.
Let us summarize the result.

Theorem 1. Suppose m, j ∈ N, 0 < j < m, 1 < p < q < ∞, 0 < λ 5 1,
0 < λ < 1− 1

q , if j = 1. Further suppose that

q >
m
j

p

and

λ 5
jq −mp

q − p
.

Then the interpolation inequality

‖u(j)‖q 5 C‖u(m)‖a
p · [u]1−a

H(λ) (2.11)

holds for every u ∈ C∞0 (R+) with

a =
j − 1

p − λ

m− 1
p − λ

.

3. The N-dimensional case

Theorem 2. Suppose N, m, j ∈ N, N = 2, 0 < j < m, 1 < p < q < ∞.
Further, let

m
j

p < q 5
m− 1
j − 1

p (3.1)

and

λ =
jq −mp

q − p
. (3.2)

Then the interpolation inequality (0.4),

‖∇ju‖q 5 C‖∇mu‖a
p · [u]1−a

H(λ), (3.3)

holds for every u ∈ C∞0 (RN ) with

a =
p
q
. (3.4)

Proof. For x ∈ RN denote x = (t, x′) with t ∈ R and x′ ∈ RN−1. For
any fixed x′ we can rewrite the inequality (2.11) [i.e., (2.10), but now on R
instead of R+] in the form

+∞
∫

−∞

∣

∣

∣

∂ju
∂tj

(x′, t)
∣

∣

∣

q
dt 5 Cq

(

+∞
∫

−∞

∣

∣

∣

∂mu
∂tm

(x′, t)
∣

∣

∣

p
dt

)aq/p
· [u(x′, ·)](1−a)q

λ,R+
.
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Estimating [u](x′, ·)]λ,R by [u]H(λ) and integrating the resulting inequality
with respect to x′ ∈ RN−1, we obtain that

∫

RN

∣

∣

∣

∂ju
∂tj

(x)
∣

∣

∣

q
dx 5 C

(

∫

RN−1

[

∫

R

∣

∣

∣

∂mu
∂tm

(x′, t)
∣

∣

∣

p
dt

]aq/p
dx′

)

· [u](1−a)q
H(λ) =

= Cp
(

∫

RN

∣

∣

∣

∂mu
∂tm

(x)
∣

∣

∣

p
dx

)aq/p
· [u](1−a)q

H(λ)

since due to (3.4), aq/p = 1. Now (3.3) follows immediately, taking the
1/qth power of both sides.

Due to (3.4), the “dilation formula” (0.5) has now the form

−j +
N
q

=
p
q

(

−m +
N
p

)

+
p− q

q
λ

which leads to formula (3.2), and since 0 < λ 5 1, we obtain the conditions
(3.1).
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