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MORE ON OSCILLATION OF nTH-ORDER EQUATIONS

WITOLD A. J. KOSMALA

Abstract. In this paper we prove that a higher-order differential
equation with one middle term has every bounded solution oscillatory.
Moreover, the behavior of unbounded solutions is given. Two other
results dealing with positive solutions are also given.

1. Introduction

Little is known about the behavior of solutions of differential equations
which involve a nonlinear term H(t, x), where H : R+×R→ R is continuous
(R is the real line and R+ is the interval (0,∞)), decreasing in its second
variable and is such that uH(t, u) < 0 for all u 6= 0. Some properties of
solutions of such equations are given by the author in [1]–[4]. In [3] the
author gave two oscillation results for odd-order equations of the form

x(n) + p(t)x(n−1) + q(t)x(n−2) + H(t, x) = 0. (1)

In [4] bounded and eventually positive solutions of (1) were studied for
different choices of p and q. The main difficulty in handling equations
involving the indicated H is the lack of tools for equations involving H
continuous, increasing in its second variable, and keeping the sign of the
second variable. Some successful tools for equations with either H proved
to be nonlinear functions which were used by Erbe [5], Heidel [6], Kartsatos
[7], Kartsatos and Kosmala [8], Kosmala [3], and others. In most cases the
method used on an even-ordered equation does not apply to an odd-ordered
equation, and vice versa.

2. Preliminaries

A function x(t), t ∈ [tx,∞) ⊂ R+, is a solution of (1) if it is n times
continuously differentiable and satisfies (1) on [tx,∞). The number tx > 0
depends on the particular solution x(t) under consideration. We say that
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a function is “oscillatory” if it has an unbounded set of zeros. Moreover,
a property P holds “eventually” or “for all large t” if there exists T > 0
such that P holds for all t ≥ T . Cn(I) denotes the space of all n times
continuously differentiable functions f : I → R. And we write C(I) instead
of C0(I). From [3] we quote the following lemma.

Lemma 2.1. If x is an eventually positive solution of (1), p ∈ C1[t0,∞),
q ∈ C[t0,∞) with t0 > 0 where 2q(t) ≤ p′(t) for all t ≥ t0, then either
x(n−2)(t)
≤ 0 or x(n−2)(t) > 0 for all large t.

The main result from [2] we state as our next lemma.

Lemma 2.2. Suppose that x(t) is a nonoscillatory solution of (1) with
n even. Suppose further that p ∈ C1[t0,∞), q ∈ C[t0,∞) with t0 > 0 where
p(t) ≤ 0 and 2q(t) ≤ p′(t) ≤ 0 for all t ≥ t0 and limt→∞ p(t) is finite.
Moreover, suppose that

−
∞
∫

tH(t,±k)dt = ±∞

for any constant k > 0. Suppose further that for v > 0 both

I(v) ≡
∞
∫

v

tq(t)dt and

∞
∫

I(t)dt

are finite. Then x(t)x(n−2) > 0 eventually.

3. Main Results

Theorem 3.1. Suppose that n is odd, p ∈ C[t0,∞) with t0 > 0 where
p(t) for all t ≥ t0, and that

∞
∫

t∗

ti
(

exp

t
∫

t∗

p(s)ds
)

H(t, k)dt = −∞ (2)

for any t∗ ≥ 0, every positive real constant k, and some integer i where
1 ≤ i ≤ n− 1.

(a) Then every solution of

x(n) + p(t)x(n−1) + H(t, x) = 0 (3)

with bounded (n − i − 1)st derivative is oscillatory. In particular, every
bounded solution of (3) is oscillatory.

(b) If i = 1 and x(t) is an unbounded solution of (3), then x(t)x(j)(t) > 0
for all j = 0, 1, 2, · · · , n eventually.
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Proof of part (a). First we assume that x(t) is a positive solution of (3)
such that x(n−i−1)(t) is bounded and p(t) ≤ 0 for t ≥ t1 ≥ t0. Now we
distinguish three cases.

Case 1. Suppose that x(n−1)(t2) for some t2 ≥ t1. Then, from (3) we
have

x(n)(t2) = −H(t2, x(t2)) > 0.

Thus, x(n−1)(t) is increasing at any t2, for which it is zero. Therefore,
x(n−1)(t) cannot have any zeros larger than t2.

Case 2. Suppose that x(n−1)(t) > 0 for t ≥ t3 ≥ t2. Then, from (3) we
have that

x(n)(t) = −p(t)x(n−1)(t)−H(t, x(t)) > 0.

But, x(n)(t) > 0 and x(n−1)(t) > 0 imply that x(n−2)(t) tends to +∞ as
t tends to +∞. But, x(n−i−1)(t) is bounded for some integer i, where
1 ≤ i ≤ n− 1, which contradicts limt→∞ x(n−2)(t) = +∞ no matter what i
is. This takes us to the final case.

Case 3. Suppose that x(n−1)(t) < 0 for t ≥ t3 ≥ t1. Since n is odd
there exists t4 ≥ t3 such that x′(t) > 0 for all t ≥ t4. Thus, we have
k ≡ x(t4) ≤ x(t) and hence

−ti
(

exp

t
∫

t4

p(s)ds
)

H
(

t, x(t)
)

≥ −ti
(

exp

t
∫

t4

p(s)ds
)

H(t, k) (4)

for all t ≥ t4. Now, define

F (t) = ti
(

exp

t
∫

t4

p(s)ds
)

x(n−1)(t)

for t ≥ t4. Then, for t ≥ t4 we have

F ′(t) = ti
(

exp

t
∫

t4

p(s)ds
)

x(n)(t) +

+ti
(

exp

t
∫

t4

p(s)ds
)

p(t)x(n−1)(t) + iti−1
(

exp

t
∫

t4

p(s)ds
)

x(n−1)(t) =

= ti
(

exp

t
∫

t4

p(s)ds
)(

− p(t)x(n−1)(t)−H
(

t, x(t)
)

)

+
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+ti
(

exp

t
∫

t4

p(s)ds
)

p(t)x(n−1)(t) + iti−1
(

exp

t
∫

t4

p(s)ds
)

x(n−1)(t) =

= iti−1
(

exp

t
∫

t4

p(s)ds
)

x(n−1)(t)− ti
(

exp

t
∫

t4

p(s)ds
)

H
(

t, x(t)
)

.

Now we integrate above from t4 to t, t ≥ t4,and then use (4) to obtain

F (t)− F (t4) =

t
∫

t4

isi−1
(

exp

s
∫

t4

p(u)du
)

x(n−1)(s)ds−

−
t

∫

t4

si
(

exp

s
∫

t4

p(u)du
)

H
(

s, x(s)
)

ds ≥

≥
t

∫

t4

isi−1
(

exp

s
∫

t4

p(u)du
)

x(n−1)(s)ds−

−
t

∫

t4

si
(

exp

s
∫

t4

p(u)du
)

H(s, k)ds.

Due to integral hypothesis (2) and the fact that F (t) < 0, we have that

lim
t→∞

t
∫

t4

si−1
(

exp

s
∫

t4

p(u)du
)

x(n−1)(s)ds = −∞.

But, since p(t) ≤ 0 and x(n−1)(t) < 0, which implies that x(n−2)(t) > 0, we
have that

ti−1
(

exp

t
∫

t4

p(s)ds
)

≥ ti−1x(n−1)(t).

Thus,

lim
t→∞

t
∫

t4

si−1x(n−1)(s)ds = −∞. (5)

Integration by parts gives

lim
t→∞

[

si−1x(n−2)(s)
∣

∣

∣

t

t4
−

t
∫

t4

(i− 1)si−2x(n−2)(s)ds
]

= −∞.
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Since x(n−2)(t) is positive, we have

lim
t→∞

t
∫

t4

si−2x(n−2)(s)ds = +∞.

Integration by parts gives

lim
t→∞

t
∫

t4

si−3x(n−3)(s)ds = −∞.

Continuing this process we get

(−1)m

∞
∫

t4

si−mx(n−m)(s)ds = +∞,

where m is an integer such that 1 ≤ m ≤ i. (This can be proved by
induction.) Setting m = i, we obtain

(−1)i

∞
∫

t4

x(n−i)(s)ds = +∞,

which gives

lim
t→∞

(−1)i[x(n−i−1)(t)− x(n−i−1)(t4)
]

= +∞.

But, x(n−i−1)(t) is bounded. This is a contradiction. Therefore assuming
that x(t) is eventually positive prevents x(n−1)(t) from existing. Similar
steps to the above ones also bring a contradiction for an eventually negative
solution of (3). Hence, the proof of part (a) is complete.

Proof of part (b). Suppose that x(t) is an unbounded positive solution of
(3) and p(t) ≤ 0 for t ≥ 0. In view of case 1 above, x(n−1)(t) cannot be
oscillatory. From (5) we have that

∞
∫

x(n−1)(t)dt = −∞,

which gives limt→∞ x(n−2)(t) = −∞. This is, however, not possible due
to the positiveness of x(t). Therefore, the only possibility is case 2 above,
which yields the desired result.
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Theorem 3.2. Suppose n is odd, p ∈ C1[t0,∞), q ∈ C[t0,∞) with t0 >0
where p(t) ≤ 0 and q(t) ≤ p′(t) ≤ 0 for all t ≥ t0, and limt→∞ p(t) is finite.
Suppose further that for v > 0 both

I(v) ≡
∞
∫

v

tq(t)dt and

∞
∫

I(t)dt (6)

are finite. Also, H∗(t, u) ≡ d
duH(t, u) is continuous negative, and decreasing

for u > 0, and

∞
∫

H∗(t, 0)dt = −∞. (7)

If u(t) and v(t) are two bounded eventually positive solutions of (1), then
the difference w(t) = u(t)− v(t) must be oscillatory.

Remark 3.3. The conditions of Theorem 3.2 imply that 2q(t) ≤ p′(t) for
t ≥ t0 and that

∞
∫

tH∗(t, 0) = −∞.

This is needed so that the proof of Lemma 2.2 can be used in Case 2 below.
Furthermore, functions in the differential equation

x(5) +
( 1

3t3
− 1

)

x(4) − 2
t4

x′′′ + (1− etx) = 0

satisfy all the conditions of Theorem 3.2.

Proof of Theorem 3.2. Suppose that u(t) and v(t) are bounded, positive
solutions of (1) and that w(t) = u(t) − v(t) for all t ≥ t1 ≥ t0. The case
where w(t) is negative follows similar steps and is therefore omitted. Now,
from (1) we have

w(n)(t) + p(t)w(n−1)(t) + q(t)w(n−2)(t) +

+H(t, u(t))−H(t, v(t)) = 0. (8)

Note that since w(t) > 0, we have H(t, u(t)) < H(t, v(t)). Hence, we can
follow the proof of Lemma 2.1 to reach the conclusion that w(n−2)(t) ≤ 0
or w(n−2)(t) > 0 for all t ≥ t2 ≥ t1. In order to prove this theorem, we need
to consider both cases and find a contradiction in each.

Case 1. Suppose that w(n−2)(t) > 0 for t ≥ t2. Since n is odd we have
w′(t) > 0 for all t ≥ t3 ≥ t2.Now, if w(n−2)(t4) > 0 for some t4 ≥ t3, then
from (8) we have

w(n)(t4) = −q(t4)w(n−2)(t4)−
(

H
(

t4)
)

−H
(

t4, v(t4)
))

> 0.
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Therefore, w(n−1)(t) is increasing at each of its zeros. Thus, w(n−1)(t) > 0
or w(n−1)(t) < 0 for all t ≥ t5 > t4.If w(n−1)(t) > 0, then together with
w(n−2)(t) > 0 we contradict the fact that w(t) is bounded. Thus, we must
have w(n−1)(t) < 0 for all t ≥ t5. Since w′(t) > 0, we have 0 < k ≡ w(t5) ≤
w(t) for all t ≥ t5. So, by the mean value theorem there exists a function λ
between u and v, hence positive, such that

H(t, u(t))−H(t, v(t))
u(t)− v(t)

= H∗(t, λ(t)).

Therefore,

H(t, u(t))−H(t, v(t)) = (u(t)− v(t))H∗(t, λ(t)) =

= w(t)H∗(t, λ(t)) ≤ kH∗(t, 0) (9)

for all t ≥ t5. Now, integrate (8) from t5 to t ≥ t5 to obtain

w(n−1)(t) + p(t)w(n−2) = w(n−1)(t5) + p(t5)w(n−2)(t5) +

+

t
∫

t5

(

p′(s)− q(s)
)

w(n−2)(s)ds−
t

∫

t5

(

H
(

s, u(s)
)

−H
(

s, v
(

s)
))

ds =

= M + f(t)−
t

∫

t5

(

H
(

s, u)
)

−H
(

s, v(s)
))

ds,

where M is a constant and f(t) the first integral in the above expression.
If z(t) = w(n−2)(t), then z satisfies a first-order linear differential equation
and thus can be written as

z(t) = exp
[

−
t

∫

t5

p(s)ds
]{

z(t5) +

t
∫

t5

[

exp

s
∫

t5

p(r)dr
][

M + f(s)−

−
s

∫

t5

(

H
(

r, u(r)
)

−H
(

r, v(r)
))

dr
]

ds
}

.

But, f(t) ≥ 0 and exp

[

−
t
∫

t5
p(s)ds

]

≥ 1; thus in view of (9) we have

z(t) ≥
t

∫

t5

[

exp
(

−
t

∫

s

p(r)dr
)][

M − k

s
∫

t5

H∗(r, 0)dr
]

ds. (10)
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Due to condition (7), there exists s0 ∈ R+ such that

M − k

s0
∫

t5

H∗(t, 0)dt > 0.

Therefore, the right hand side of (10) tends to +∞. This implies that the
left hand side of (10) also tends to +∞. But this is a contradiction to the
positiveness of w(t). Hence, w(n−2)(t) cannot be eventually positive.

Case 2. Suppose that w(n−2)(t) ≤ 0 for t ≥ t2. With a few minor changes,
the proof of Lemma 2.2 goes through for equation (8), contradicting this
situation as well. In this proof we need assumption (6). We will not give the
detailed proof since it is very long and tedious. Also, see Remark 3.3.

Theorem 3.4. Suppose that n is odd, p ∈ C1[t0,∞) for t0 >0, p(t)> 0
for all t ≥ t0, with limt→∞ p(t) finite and

∞
∫

1
p(s)

ds = +∞.

Also,
∞
∫

H(t, k)dt = −∞

for any positive real constant k. Then, the differential inequality
(

p(t)x(n−1))′ + H(t, x) ≥ 0 (11)

has no bounded eventually positive solutions.

Proof. Suppose that x(t) > 0 is a bounded solution of (11) and p(t) > 0 for
t ≥ t0 > 0. Then

(

p(t)x(n−1))′ ≥ −H(t, x) > 0. (12)

Therefore, if v(t) ≡ p(t)x(n−1)(t), then v(t) is increasing for all t ≥ t0. We
distinguish two cases.

Case 1. Suppose v(t) > 0 for all t ≥ t1 ≥ t0. Then, from (12) we have
v′(t) > 0, and so v(t) ≥ v(t1) > 0 for all t ≥ t1. Therefore,

x(n−1)(t) =
v(t)
p(t)

≥ v(t1)
p(t)

for all t ≥ t1. Integrating the above from t to t1, t ≥ t1 we obtain

x(n−2)(t)− x(n−2)(t1) ≥ v(t1)

∞
∫

t1

1
p(s)

ds → +∞ as t → +∞.
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Therefore, limt→∞ x(n−2)(t) = +∞, which is a contradiction to the bound-
edness of x(t).

Case 2. Suppose v(t) < 0 for all t ≥ t2 ≥ t0. Then, from (12) since
p(t) > 0, we have x(n−1)(t) < 0. Now, since n is odd we have x′(t) > 0
which gives H(t, x(t)) ≤ H(t, k) for all t ≥ t2 ≡ k. Therefore, integrating
(11) from t2 to t, t ≥ t2, we get

p(t)x(n−1)(t)− p(t2)x(n−1)(t2) ≥

≥ −
t

∫

t2

H(s, x(s))ds ≥ −
t

∫

t2

H(s, k)ds → +∞

as t → +∞. Thus, limt→∞ p(t)x(n−1)(t) = +∞. Since limt→∞ p(t) is
finite, we have limt→∞ x(n−1)(t) = +∞, which is a contradiction to the
positiveness of x(t). Hence, the proof is complete.
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