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FIXED POINTS OF SEMIGROUPS OF LIPSCHITZIAN
MAPPINGS DEFINED ON NONCONVEX DOMAINS

KOK-KEONG TAN AND HONG-KUN XU

Abstract. Certain fixed point theorems are established for nonlinear
semigroups of Lipschitzian mappings defined on nonconvex domains
in Hilbert and Banach spaces. Some known results are thus general-
ized.

1. Introduction

Let X be a Banach space and C be a nonempty subset of X. A mapping
T : C → C is said to be a Lipschitzian mapping if, for each integer n ≥ 1,
there exists a constant kn ≥ 0 such that ‖Tnx−Tny‖ ≤ kn‖x−y‖ ∀x, y ∈ C.
A Lipschitzian mapping T is said to be uniformly Lipschitzian if kn = k
for all n ≥ 1, nonexpansive if kn = 1 for all n ≥ 1, and asymptotically
nonexpansive if limn→∞ kn = 1, respectively. Goebel and Kirk [1] initiated
in 1973 the study of the fixed point theory for Lipschitzian mappings. They
showed that if X is uniformly convex and C is a bounded closed convex
subset of X, then every uniformly k-Lipschitzian mapping T : C → C with
k < γ has a fixed point, where γ > 1 is the unique solution of the equation

γ
[

1− δX

(

1
γ

)]

= 1,

with δX the modulus of convexity of X. Since then, much effort has been
devoted to the existence theory for fixed points of Lipschitzian mappings in
both Hilbert and Banach spaces; see [2], [4], [5], [7], [10], [11], and refereces
cited there. Usually the domain C on which T is defined is assumed to be
convex. Recently, Ishihara [3] and Takahashi [9] studied in Hilbert spaces
the existence theory for fixed points of Lipschitzian mappings which are
defined on nonconvex domains. However, their methods do not work outside
Hilbert spaces.
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The purpose of the present paper is to investigate the existence theory
for the fixed point theory of semigroups of Lipschitzian mappings defined
on nonconvex domains in both Hilbert and Banach spaces.

2. Preliminaries

Let G be a semitopological semigroup, i.e., G is a semigroup with a
Hausdorff topology such that for each a ∈ G, the mappings t → at and
t → ta from G into itself are continuous. Let C be a nonempty subset of
a Banach space X. Then a family F = {Tt : t ∈ G} of self-mappings of C
is said to be a Lipschitzian semigroup on C if the following properties are
satisfied:

(1) Ttsx = TtTsx for all t, s ∈ G and x ∈ C;
(2) for each x ∈ C, the mapping t → Ttx is continuous on G;
(3) for each t ∈ G, there is a constant kt > 0 such that ‖Ttx− Tty‖ ≤

kt‖x− y‖ ∀x, y ∈ C.

A Lipschitzian semigroup F is called uniformly k-Lipschitzian if kt = k for
all t ∈ G and in particular, nonexpansive if kt = 1 for all t ∈ G. We shall
denote by F (F) the set of common fixed points of F = {Tt : t ∈ G}.

Recall that a semitopological semigroup G is said to be left reversible if
any two closed right ideals of G have nonvoid intersection. In this case,
(G,≤) is a directed system when the binary relation “≤” on G is defined by
a ≤ b if and only if {a} ∪ aG ⊇ {b} ∪ bG. Let B(G) be the Banach space of
all bounded real-valued functions on G with the supremum norm and let X
be a subspace of B(G) containing constants. Then an element µ of X∗, the
dual space of X, is said to be a mean on X if ‖µ‖ = µ(1) = 1. It is known
that µ ∈ X∗ is a mean on X if and only if the inequalty

inf{f(t) : t ∈ G} ≤ µ(f) ≤ sup{f(t) : t ∈ G}

holds for all f ∈ X. For a mean µ on X∗ and an element f ∈ X, we use
either µt(f(t)) or µ(f) to denote the value of µ at f . For each s ∈ G, we
define the left transformation `s from B(G) into itself by (`sf)(t) = f(st),
t ∈ G, for all f ∈ B(G). The right transformation rs is defined similarly. Let
X be a subspace of B(G) containing constants which is `G-invariant (rG-
invariant), i.e., `s(X) ⊆ X (rs(X) ⊆ X) for all s ∈ G. Then a mean µ on X
is said to be left invariant (right invariant) if µ(f) = µ(`sf) (µ(f) = µ(rsf))
for all f ∈ X and s ∈ G. An invariant mean is a mean that is both left and
right invariant.

Let C(G) be the Banach space of all bounded continuous real-valued
functions on G, let RUC(G) be the space of all bounded right uniformly
continuous functions on G, i.e., all f ∈ C(G) for which the mapping s → rsf
is continuous, and let AP (G) be the space of all f ∈ C(G) for which {`sf :
s ∈ G} is relatively norm compact. Then RUC(G) is a closed subalgebra of
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C(G) containing constants and both `G- and rG-invariant; see [7] for details.
If {xs : s ∈ G} is a bounded family of elements of a Banach space E, then
for all x ∈ E and p ≥ 1, the functions g(s) := ‖xs − x‖p and h(s) := 〈xs, x〉
(if E is a Hilbert space) are in RUC(G).

3. The Hilbert Space Setting

In this section, we prove fixed point theorems for Lipschitzian semigroups
defined on nonconvex domains in Hilbert spaces.

Theorem 3.1. Let C be a nonempty subset of a real Hilbert space H,
let G be a semitopological semigroup such that RUC(G) has a left invariant
mean µ, and let F = {Tt : t ∈ G} be a Lipschitzian semigroup on C such
that µt(k2

t ) < 2. Suppose that {Ttx : t ∈ G} is bounded and ∩s∈G co{Tstx :
t ∈ G} is contained in C for all x ∈ C. Then there exists a point z ∈ C for
which Ttz = z for all t ∈ G.

Proof. Let x0 ∈ C. It is easily seen that the functional µt〈Ttx0, x〉, x ∈ H,
is a continuous linear functional on H. By Riesz’s representation theorem,
there is a unique element x1 ∈ H satisfying µt〈Ttx0, x〉 = 〈x1, x〉, ∀x ∈ H.
By a routine argument (cf. [3] and [9]) via the separation theorem, we have
x1 ∈ ∩

s∈G
co{Tstx0 : t ∈ G} and hence by assumption, x1 does remain in

C. Therefore, we can continue the above procedure to obtain a sequence
{xn}∞n=1 in C satisfying the following property:

µt〈Ttxn−1, x〉 = 〈xn, x〉, ∀x ∈ H, ∀n ≥ 1. (3.1)

Noting the fact that for all u, v ∈ H, the function h(t) := ‖Ttu − v‖2 is in
RUC(G), it follows from (3.1) that

µt‖Ttxn−1 − x‖2 =µt‖(Ttxn−1 − xn) + (xn − x)‖2 =µt(‖Ttxn−1 − xn‖2+

+ ‖xn − x‖2 + 2 〈Ttxn−1 − xn, xn − x〉) = µt‖Ttxn−1 − xn‖2 +

+ ‖xn − x‖2 + 2 µt〈Ttxn−1 − xn, xn − x〉 = µt‖Ttxn−1 − xn‖2 +

+ ‖xn − x‖2 + 2 〈xn − xn, xn − x〉 = µt‖Ttxn−1 − xn‖2 + ‖xn − x‖2.

This shows that xn is the unique minimizer of the convex function µt‖Ttxn−1

− x‖2 over H and in particular, taking x = Tsxn and noting that µ is left
invariant, we get

µt‖Ttxn−1 − xn‖2 + ‖xn − Tsxn‖2 = µt‖Ttxn−1 − Tsxn‖2 =

= µt‖Tstxn−1 − Tsxn‖2 = µt‖TsTtxn−1 − Tsxn‖2 ≤ k2
sµt‖Ttxn−1 − xn‖2.

It follows that

‖xn − Tsxn‖2 ≤ (k2
s − 1)µt‖Ttxn−1 − xn‖2. (3.2)
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Set A = µs(k2
s−1), rn = µt‖Ttxn−xn+1‖2 and Rn = µt‖Ttxn−xn‖2. Then

from (3.2) we have

Rn ≤ Arn−1 ≤ ARn−1 ≤ · · · ≤ AnR0. (3.3)

It then follows from (3.3) that

‖xn+1 − xn‖2 = µt‖(xn+1 − Ttxn) + (Ttxn − xn)‖2 ≤
≤ 2 µt(‖Ttxn − xn+1‖2 + ‖Ttxn − xn‖2) =

= 2(rn + Rn) ≤ 4 Rn ≤ 4 AnR0.

Since A < 1, we see that {xn} is Cauchy and hence convergent in norm.
Let z be the limit of {xn}. We claim that z is a common fixed point of F .
In fact, for any s ∈ G, since µ is left invariant, we have

‖Tsz − z‖2 = µt(‖(Tsz − Tstxn) + (Tstxn − z)‖2 ≤
≤ 2µt(‖Tstxn − Tsz‖2 + ‖Tstxn − z‖2) ≤
≤ 2(k2

s µt‖Ttxn − z‖2 + µt‖Tstxn − z‖2) =

= 2(1 + k2
s) µt‖Ttxn − z‖2 =

= 2(1 + k2
s) µt‖(Ttxn − xn) + (xn − z)‖2 ≤

≤ 4(1 + k2
s)(µt‖Ttxn − xn‖2 + ‖xn − z‖2) =

= 4(1 + ks)(Rn + ‖xn − z‖2) → 0 as n →∞.

Therefore, Tsz = z.

Corollary 3.1 (Theorem 3.5 [4]). If F = {Tt : t ∈ G} is a non-
expansive semigroup on a closed convex subset C of a Hilbert space H,
RUC(G) has a left invariant mean, and there exists an x ∈ C such that
{Ts(x) : s ∈ G} is bounded, then F has a common fixed point in C.

Let X be a subspace of B(G) containing constants. Following Mizoguchi
and Takahashi [7T], we say that a real valued function on X is a submean
on X if the following conditions are fulfilled:

(1) µ(f + g) ≤ µ(f) + µ(g), ∀f, g ∈ X;
(2) µ(αf) ≤ α µ(f), ∀f ∈ X, ∀α ≥ 0;
(3) ∀ f, g ∈ X, f ≤ g =⇒ µ(f) ≤ µ(g);
(4) µ(c) = c for all constants c.

Theorem 3.2. Let H be a real Hilbert space, C a nonempty subset of
H, X an `G-invariant subspace of B(G) containing constants that has a
left invariant submean µ on X, and F = {Tt : t ∈ G} a Lipschitzian
semigroup on C. Suppose that {Ttx : t ∈ G} is bounded for some x ∈ C
and ∩s∈G co{Tstx : t ∈ G} ⊂ C for all x ∈ C. Suppose also that for all
u, v ∈ C, the function f on G defined by f(t) = ‖Ttu−v‖2 and the function
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h on G defined by h(t) = k2
t belong to X and µt(k2

t ) < 2. Then there is a
point z ∈ C such that Ttz = z for all t ∈ G.

Proof. Let x0 ∈ C and define the function r0 on H by r0(x) = µt‖Ttx0−x‖2,
x ∈ H. Note that r0 is well defined since by assumption, the function
t 7→ ‖Ttx0 − x‖2 is in X for every x ∈ H. As r0 is strictly convex and
continuous and r0(x) →∞ as ‖x‖ → ∞, there is a unique element x1 ∈ H
such that r0 := r0(x1) = inf{r0(x) : x ∈ H}. We claim that this x1 belongs
to ∩s∈G co{Tstx0 : t ∈ G} and thus to C by our hypothesis. Indeed, if we
denote by Ps the nearest point projection of H onto the set co{Tstx0; t ∈ G},
then, as Ps is nonexpansive and µ is left invariant, we get

r0(Psx1) = µt‖Ttx0 − Psx1‖2 = µt‖Tstx0 − Psx1‖2 =

= µt‖PsTstx0 − Psx1‖2 ≤ µt‖Tstx0 − x1‖2 =

= µt‖Ttx0 − x1‖2 = r0,

which shows that Psx1 is also a minimizer of r0 and hence by uniqueness,
Psx1 = x1, i.e., x1 ∈ ∩s∈G co{Tstx0 : t ∈ G}. This proves the claim.
Repeating the above process, we obtain a sequence {xn} in C with the
following property:

xn ∈
⋂

s∈G

co{Tstxn−1 : t ∈ G} ∀n ≥ 1

and xn is the unique minimizer over H of the functional rn(·) defined by
rn(x) = µt‖Ttxn−1−x‖2, x ∈ H. Now by the same argument as in the proof
of Theorem 3.1, we conclude that {xn} converges strongly to a common fixed
point z ∈ C.

Corollary 3.2 (Theorem 1 [8]). Let C be a closed convex subset of
a Hilbert space H and X be an `G-invariant subspace of B(G) containing
constants which has a left invariant submean µ. Let F = {Tt : t ∈ G} be a
Lipschitzian semigroup on C such that {Tsx : s ∈ G} is bounded for some
x ∈ C. If for each u, v ∈ C, the function f(t) := ‖Ttu−v‖2 and the function
g(t) := k2

t (t ∈ G) belong to X and µs(k2
s) < 2, then there is z ∈ C such

that Tsz = z for all s ∈ G.

We now extend Theorem 3.3 of Lau [4] to a wider class of Lipschitzian
semigroups which are defined on nonconvex domains.

Theorem 3.3. Suppose H is a real Hilbert space, C is a nonempty subset
of H, and F = {Tt : t ∈ G} is a Lipschitzian semigroup on C. Suppose also
AP (G) has a left invariant mean µ. If µt(k2

t ) ≤ 1 and if there exists an x ∈
C such that {Ttx : t ∈ G} is relatively compact in norm and ∩s∈G co{Tstx :
t ∈ G} is contained in C, then F has a common fixed point.
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Proof. Since {Ttx : t ∈ G} is relatively compact, by Lemma 3.1 of Lau [4],
for all y ∈ H, the functions h and g defined on G by h(t) = 〈y, Ttx〉 and
g(t) = ‖y−Ttx‖2 are both in AP (G). So we have a unique z ∈ H such that
µt〈Ttx, y〉 = 〈z, y〉, ∀y ∈ H. As seen before, we have (i) z ∈ ∩s∈G co{Tstx :
t ∈ G} and hence z ∈ C and (ii) µt‖Ttx − y‖2 = µt‖Ttx − z‖2 + ‖y − z‖2
∀y ∈ H. In particular, we have for all s ∈ G,

µt‖Ttx− Tsz‖2 = µt‖Ttx− z‖2 + ‖Tsz − z‖2.

Noting that

µt‖Ttx− Tsz‖2 = µt‖Tstx− Tsz‖2 = µt‖TsTtx− Tsz‖2 ≤ k2
sµt‖Ttx− z‖2,

we get for all s ∈ G, ‖Tsz − z‖2 ≤ (k2
s − 1)µt‖Ttx− z‖2. Hence

µs‖Tsz − z‖2 ≤ (µs(k2
s − 1))µt‖Ttx− z‖2 ≤ 0

for µs(k2
s) ≤ 1; namely, µs‖Tsz − z‖2 = 0. Now for a ∈ G, we have

‖Taz − z‖2 = µs‖(Taz − Tsz) + (Tsz − z)‖2 ≤ 2 µs(‖Taz − Tsz‖2 +

+ ‖Tsz − z‖2) = 2(µs‖Tsz − Taz‖2 + µs‖Tsz − z‖2) =

= 2 µs‖Tasz − Taz‖2 = 2 µ‖TaTsz − Taz‖2 ≤
≤ 2 k2

aµs‖Tsz − z‖2 = 0.

Therefore Taz = z.

Corollary 3.3 (Theorem 3.2 [4]). If C is a closed convex subset of a
Hilbert space H, F = {Tt : t ∈ G} is a nonexpansive semigroup on C,
AP (G) has a left invariant mean, and x ∈ C such that {Tsx : s ∈ G} is
relatively compact, then C contains a common fixed point for F .

By the same proof as in Theorem 3.1, we get immediately the following
result.

Theorem 3.4. Suppose H and C are as in Theorem 3.3, suppose AP (G)
has a left invariant mean µ, and suppose F = {Tt : t ∈ G} is a Lipschitzian
semigroup on C such that µt(k2

t ) < 2. If, for every x ∈ C, {Ttx : t ∈ G}
is relatively compact in norm and ∩s∈G co{Tstx : t ∈ G} is contained in C,
then F has a common fixed point.
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4. The Banach Space Setting

In this section we study the existence of fixed points for Lipschitzian
mappings defined on nonconvex domains in Banach spaces. So suppose C
is a nonempty subset of a Banach space X and F = {Tt : t ∈ G} is a
Lipschitzian semigroup defined on C. (Here G is as in Section 3 a semi-
topological semigroup.) We will employ the following condition introduced
by Goebel, Kirk, and Thele in [2]: A nonempty subset E of C is said to
satisfy the property

(P): For every x ∈ E and ε > 0, there exists s ∈ G such that
dist(Ttx,E) < ε for all t ≥ s.

Recall that the modulus of convexity of a Banach space X is defined as the
function

δX(ε) = inf
{

1− 1
2
‖x + y‖ : x, y ∈ BX with ‖x− y‖ ≥ ε

}

, 0 ≤ ε ≤ 2,

where BX is the closed unit ball of X. A Banach space X is said to be
uniformly convex if δX(ε) > 0 for all 0 < ε ≤ 2. It is said to be p-uniformly
convex for some p ≥ 2 if there exists a constant d > 0 such that δX(ε) ≥ d εp

for 0 ≤ ε ≤ 2. It is known that a Hilbert space is 2-uniformly convex and
an Lp (1 < p < ∞) space is max(2,p)-uniformly convex. We shall need the
following characterization of a p-uniformly convex Banach space.

Proposition ([cf. [12]). Given a number p ≥ 2. A Banach space X is
p-uniformly convex if and only if there exists a constant d = dp > 0 such
that

‖λx + (1− λ)y‖p ≤ λ‖x‖p + (1− λ)‖y‖p − dWp(λ)‖x− y‖p (4.1)

for all x, y ∈ X and 0 ≤ λ ≤ 1, where Wp(λ) = λp(1− λ) + λ(1− λ)p.

Theorem 4.1. Suppose X is a p-uniformly convex Banach space for
some p ≥ 2, C is a nonempty subset of X, G is a semitopological semigroup
that is left reversible, and F = {Tt : t ∈ G} is a uniformly k-Lipschitzian
semigroup on C with k < (1 + d)

1
p , d being the constant appearing in (4.1).

Suppose also there exist an x̄ ∈ C such that {Ttx̄ : t ∈ G} is bounded and
a nonempty bounded closed convex subset E of C with Property (P). Then
there exists a point z ∈ E such that Ttz = z for all t ∈ G.

Proof. Since {Ttx̄ : t ∈ G} is bounded, it is easily seen that for all x ∈ C,
{Ttx : t ∈ G} is bounded. Now choose any x0 ∈ E and define a functional
f on E by f(x) = infs supt≥s ‖Ttx0 − x‖p, x ∈ E. By Lemma 3 of [11],
we have a unique x1 ∈ E such that f(x1) ≤ f(x) − d‖x − x1‖p, ∀x ∈ E.
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Continuing this procedure, we construct a sequence {xn}∞n=1 in E such that
for every integer n ≥ 1,

inf
s

sup
t≥s

‖Ttxn−1 − xn‖p ≤ inf
s

sup
t≥s

‖Ttxn−1 − x‖p −

− d‖x− xn‖p, ∀x ∈ E. (4.2)

Now by Property (P), we can find for each n ≥ 1 an an ∈ G such that

dist(Taxn, E) < An for all a ≥ an, (4.3)

where A = kp−1
d < 1. For each fixed a ≥ an, from (4.3) we can thus find a

yn ∈ E such that

‖Taxn − yn‖ < An. (4.4)

Using the mean value theorem, it is easy to see that for all x, y ∈ X,

|‖y‖p − ‖x‖p| ≤ p [max{‖x‖, ‖y‖}]p−1|‖y‖−‖x‖| ≤ p(‖x‖+ ‖y‖)p−1‖y−x‖.

Since all the involved sequences are bounded, we can find a constant M big
enough so that for all t, a ∈ G and n ≥ 1,

p(‖Ttxn−1 − yn‖+ ‖Ttxn−1 − Taxn‖)p−1 ≤ M/2

and
p(‖Taxn − xn‖+ ‖yn − xn‖)p−1 ≤ M/2.

It thus follows from (4.2) and (4.4) that

inf
s

sup
t≥s

‖Ttxn−1 − xn‖p ≤ inf
s

sup
t≥s

‖Ttxn−1 − yn‖p − d‖yn − xn‖p ≤

≤ inf
s

sup
t≥s

‖Ttxn−1 − Taxn‖p − d‖Taxn − xn‖p + sup
t

(‖Ttxn−1 −

− yn‖p − ‖Ttxn−1 − Taxn‖p) + d(‖Taxn − xn‖p − ‖yn − xn‖p) ≤
≤ inf

s
sup
t≥s

‖Ttxn−1 − Taxn‖p − d‖Taxn − xn‖p + M‖Taxn − yn‖ ≤

≤ inf
s

sup
t≥s

‖Ttxn−1 − Taxn‖p − d‖Taxn − xn‖p + MAn ≤

≤ inf
s

sup
t≥s

‖Tatxn−1 − Taxn‖p − d‖Taxn − xn‖p + MAn ≤

≤ kp
a inf

s
sup
t≥s

‖Ttxn−1 − xn‖p − d‖Taxn − xn‖p + MAn.

Hence for all a ≥ an,

d‖Taxn − xn‖p ≤ (kp − 1) inf
s

sup
t≥s

‖Ttxn−1 − xn‖p + MAn,
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which results in the conclusion

inf
s

sup
t≥s

‖Ttxn − xn‖p ≤ A inf
s

sup
t≥s

‖Ttxn−1 − xn‖p + M ′An,

where M ′ = M/d. Write Rn = infs supt≥s ‖Ttxn − xn‖p and rn =
infs supt≥s ‖Ttxn −xn+1‖p. Then rn ≤ Rn by (4.2) and

Rn ≤ Arn−1 + M ′An ≤ ARn−1 + M ′An ≤ A(ARn−2 + M ′An−1) +

+ M ′An = A2Rn−2 + 2M ′An ≤ · · · ≤ (R0 + nM ′)An.

Therefore,

‖xn − xn−1‖p = inf
s

sup
t≥s

‖(xn − Ttxn−1) + (Ttxn−1 − xn−1)‖p ≤

≤ 2p−1 inf
s

sup
t≥s

(‖xn − Ttxn−1‖p + ‖Ttxn−1 − xn−1‖p) ≤

≤2p−1(rn−1+Rn−1)≤2pRn−1≤2p(R0+(n− 1)M ′)An−1,

which shows that {xn} is Cauchy and hence convergent to some z strongly.
We now show that this z is a common fixed point of F . In fact, noting that
the inequality (cf. [11])

inf
s

sup
t≥s

‖Ttx− y‖p ≤ inf
s

sup
t≥s

‖Tatx− y‖p

is valid for all x, y ∈ C and a ∈ G, we have for all a ∈ G,

‖z − Taz‖p ≤ inf
s

sup
t≥s

(‖z − xn‖+ ‖xn − Ttxn‖+

+ ‖Ttxn − Taxn‖+ ‖Taxn − Taz‖)p ≤ 4p inf
s

sup
t≥s

((1 + kp)‖z − xn‖p +

+ ‖xn − Ttxn‖p + ‖Ttxn − Taxn‖p) ≤ 4p((1 + kp)‖z − xn‖p + Rn +

+ inf
s

sup
t≥s

‖Tatxn − Taxn‖p) ≤ 4p(1 + kp)(‖z − xn‖p + Rn) → 0 (n →∞).

Hence Taz = z.

Theorem 4.2. Let X be a p-uniformly convex Banach space for some
p ≥ 2, C a nonempty subset of X, G a semitopological semigroup for which
RUC(G) has a left invariant mean µ, and F = {Tt : t ∈ G} a uniformly
k-Lipschitzian semigroup on C such that k < (1 + d)

1
p with d being the

constant appearing in (4.1). Suppose there is a point x̄ ∈ C for which
the orbit {Ttx̄ : t ∈ G} is bounded. Suppose also there exists a nonempty
bounded closed convex subset E of C with the following property:

(P ∗) For every x ∈ E and ε > 0, there exists s ∈ G such that dist(Tstx,E)
< ε, ∀t ∈ G.

Then there exists some z ∈ E such that Ttz = z for all t ∈ G.
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Proof. Choose an arbitrary x0 ∈ E. As the function t 7→ ‖Ttu − v‖p is in
RUC(G) for any u ∈ C and v ∈ X, we can inductively construct a sequence
{xn}∞n=1 in E in the following way: For each integer n ≥ 1, xn ∈ E is
the unique minimizer of the functional µt‖Ttxn−1 − x‖2 over E. Then by
Lemma 2 of [11], we have

µt‖Ttxn−1 − xn‖p ≤ µt‖Ttxn−1 − x‖p − d‖x− xn‖p, ∀x ∈ E. (4.5)

Write rn = inf{µt‖Ttxn − x‖p : x ∈ E} = µt‖Ttxn − xn+1‖p and Rn =
µt‖Ttxn − xn‖p. Then for a fixed integer n ≥ 1, condition (P ∗) yields an
sn ∈ G such that

dist(Tsnrxn, E) < An, ∀r ∈ G, (4.6)

where A = (kp − 1)/d < 1. From (4.6) we can find a yn ∈ E (depending on
r) such that ‖Tsnrxn − yn‖ < An. It then follows from (4.5) that

rn−1 ≤ µt‖Ttxn−1 − yn‖p − d‖yn − xn‖p = µt‖(Ttxn−1 − Tsnrxn) +

+ (Tsnrxn − yn)‖p − d‖(yn − Tsnrxn) + (Tsnrxn − xn)‖p ≤
≤ µt‖Ttxn−1 − Tsnrxn‖p − d‖Tsnrxn − xn‖+ MAn =

= µt‖Tsnrtxn−1 − Tsnrxn‖p − d‖Tsnrxn − xn‖p + MAn ≤
≤ kp µt‖Ttxn−1 − xn‖p − d‖Tsnrxn − xn‖p + MAn,

where M > 0 is some appropriate constant independent of r ∈ G, which
can be found similarly to the proof of Theorem 4.2. Hence

‖Tsnrxn − xn‖p ≤ kp − 1
d

rn−1 +
M
d

An = Arn−1 + M ′An,

where M ′ = M/d, and

Rn = µt‖Ttxn − xn‖p = µr‖Tsnrxn − xn‖p ≤
≤ Arn−1 + M ′An ≤ · · · ≤ (R0 + nM ′)An.

Therefore, we have

‖xn − xn−1‖p ≤ µt‖(xn − Ttxn−1) + (Ttxn−1 − xn−1)‖p ≤
≤ 2p µ(‖xn − Ttxn−1‖p + ‖Ttxn−1 − xn−1‖p) =

= 2p(rn−1 + Rn−1) ≤ 2p+1Rn−1 ≤
≤ 2p+1(R0 + (n− 1)M ′)An−1,
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showing that {xn} is Cauchy and hence strongly convergent. Let z be the
limit. Now for all a ∈ G, we have

‖z − Taz‖p ≤ µt(‖z − xn‖+ ‖xn − Ttxn‖+ ‖Ttxn − Taxn‖+

+ ‖Taxn − Taz‖)p ≤ 4p µt(‖z − xn‖p + ‖xn − Ttxn‖p + ‖Ttxn − Taxn‖p +

+ ‖Taxn − Taz‖p) ≤ 4p((1 + kp)‖xn − z‖p + Rn + µt‖Tatxn − Tazn‖p) ≤
≤ 4p(1 + kp)(‖xn − z‖p + Rn) → 0 (n →∞).

Hence Taz = z.

In Lp (1 < p < ∞), we have the following inequalities (cf. [5], [6], [12]):

‖λx + (1− λ)y‖q ≤ λ‖x‖q + (1− λ)‖y‖q − dpWq(λ)‖x− y‖q

for all x, y ∈ Lp and λ ∈ [0, 1], where q = max{2, p}, Wq(λ) = λq(1 − λ) +
λ(1− λ)q, and

dp =

{

(1+tp−1
p )

(1+tp)p−1 , if 2 < p < ∞;

p− 1, if 1 < p ≤ 2.

tp is the unique solution of the equation (p− 2)tp−1 + (p− 1)tp−2 − 1 = 0,
t ∈ (0, 1). Thus we have the following consequence of Theorems 4.1 and 4.2.

Corollary 4.1. Let C be a nonempty subset of Lp (1 < p < ∞), G
a semitopological semigroup which is left reversible or for which the space
RUC(G) has an invariant mean, and F = {Tt : t ∈ G} a uniformly k-
Lipschitzian semigroup on C with k <

√
p if 1 < p ≤ 2 or k<1 + (1 + tp−1

p )

(1+tp)1−p]
1
p if 2 < p < ∞. Suppose there exists an x ∈ C such that the orbit

{Ttx : t ∈ G} is bounded. Suppose also there exists a nonempty bounded
closed convex subset of C which possesses Property (P) in the case where
G is left reversible or Property (P ∗) in the case RUC(G) has an invariant
mean. Then there exists a z ∈ E such that Tsz = z for all s ∈ G.
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