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ON THE CONVERGENCE AND SUMMABILITY OF
SERIES WITH RESPECT TO BLOCK-ORTHONORMAL

SYSTEMS

G. NADIBAIDZE

Abstract. Statements connected with the so-called block-orthonor-
malized systems are given. The convergence and summability al-
most everywhere by the (c, 1) method with respect to such systems
are considered. In particular, the well-known theorems of Menshov-
Rademacher and Kacmarz on the convergence and (c,1)-summability
almost everywhere of orthogonal series are generalized.

1. The so-called block-orthonormal systems were introduced by
V. F. Gaposhkin who obtained the first results [1] for series with respect
to such systems. In particular, he generalized the well-known Menshov–
Rademacher theorem. This paper presents the results on the convergence
and (c,1)-summability almost everywhere of series with respect to block-
orthonormal systems. These results were announced in [2] and [3] but here
some of them are formulated in a slightly different form.

Let {Nk} be a strictly increasing sequence of natural numbers and ∆k =
(Nk, Nk+1], k = 1, 2, . . . .

Definition 1 ([1]). Let {ϕn} be a system of functions from L2(0, 1).
{ϕn} will be called a ∆k-orthonormal system (∆k-ONS) if:

(1) ‖ϕn‖2 = 1, n = 1, 2, . . . ;
(2) (ϕi, ϕj) = 0 for i, j ∈ ∆k, i 6= j, k ≥ 1.

Definition 2. A positive nondecreasing sequence {ω(n)} will be called
the Weyl multiplier for the convergence ((c, 1)-summability) a.e. of series
with respect to the ∆k-ONS {ϕn(x)} if the convergence of the series

∞
∑

n=1

a2
nω(n)

1991 Mathematics Subject Classification. 42C20.
Key words and phrases. Block-orthonormal systems, Weyl multiplier, convergence

and (c,1)-summability almost everywhere of block-normal systems.
517

1072-947X/95/0900-0517$7.50/0 c© 1995 Plenum Publishing Corporation



518 G. NADIBAIDZE

guarantees the convergence ((c, 1)-summability) a.e. of the series

∞
∑

n=1

anϕ(x). (1)

2. Let the sequence {Nk} be fixed and ∆k = (Nk, Nk+1]. Without loss
of generality it can be assumed that

N0 = 0, N1 = 1, ω(0) = 1.

We have

Theorem 1. In order that a positive nondecreasing sequence {ω(n)} be
the Weyl multiplier for the convergence a.e. of series with respect to any
∆k-ONS, it is necessary and sufficient that the following two conditions be
fulfilled:

(a)
∞
∑

k=1

1
ω(Nk)

< ∞;

(b) log2
2 n = O(ω(n)) for n →∞.

Proof. Sufficiency. Let the conditions of the theorem be fulfilled and for
the sequence {an}

∞
∑

n=1

a2
nω(n) < ∞.

We introduce

ψk(x) =
Nk+1
∑

n=Nk+1

anϕn(x), k = 0, 1, 2, . . . .

Then
∞
∑

k=0

‖ψk(x)‖1 ≤
∞
∑

k=0

‖ψk(x)‖2 =
∞
∑

k=0

‖ψk(x)‖2
(

ω(Nk)
) 1

2
(

ω(Nk)
)− 1

2 ≤

≤
∞
∑

k=0

‖ψk(x)‖22ω(Nk)
∞
∑

k=0

1
ω(Nk)

=
∞
∑

k=0





Nk+1
∑

n=Nk+1

a2
n



ω(Nk)
∞
∑

k=0

1
ω(Nk)

≤

≤
∞
∑

n=1

a2
nω(n)

∞
∑

k=0

1
ω(Nk)

< ∞,

which by the Levy theorem implies that
∞
∑

k=0

|ψk(x)| < ∞ a.e.
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Therefore the sequence SNk(x), where

Sk(x) =
k

∑

n=1

anϕn(x),

converges a.e.
Let

δk(x) = max
Nk<j≤Nk+1

∣

∣

∣

j
∑

n=Nk+1

anϕ(x)
∣

∣

∣, k ≥ 1.

Using the Kantorovich inequality, we obtain

‖δk(x)‖22 ≤ c
Nk+1
∑

n=Nk+1

a2
n log2

2 n, k ≥ 1.

Now
∞
∑

k=0

‖δk(x)‖22 ≤ c
∞
∑

k=0

Nk+1
∑

n=Nk+1

a2
n log2

2 n ≤ c
∞
∑

n=1

a2
nω(n) < ∞, 1

from which it follows that limk→∞ δk(x) = 0 for a.e. x ∈ (0, 1). This
together with the proven convergence almost everywhere of the series SNk(x)
guarantees the convergence of series (1) a.e. on (0, 1).

Necessity.
(1) Let

∞
∑

k=1

1
ω(Nk)

= ∞.

Then there exist numbers ck > 0 such that
∞
∑

k=1

c2
kω(Nk) < ∞ and

∞
∑

k=1

ck = ∞.

Let ΦNk(x) = 1 (k = 1, 2, . . . ; x ∈ (0, 1)) and choose as other functions
Φn(x) (n ∈ N , n 6= Nk, k = 1, 2, . . . ) an arbitrary ONS orthogonal to 1.
The system {Φn(x)} is an ∆k-ONS. Take bn = 0 (n 6= N1, N2, . . . ), bNk = ck

(k = 1, 2, . . . ). Then
∞
∑

n=1

bnΦn(x) =
∞
∑

k=1

ck = ∞, x ∈ (0, 1),

though
∞
∑

n=1

bnω(n) =
∞
∑

k=1

c2
kω(Nk) < ∞.

1In what follows c will denote, generally speaking , various absolute constants.
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The necessity of condition (1) is proved.
(2) If equality (b) is not fulfilled, then

log2
2 2k

ω(2k)
≥ 1

4
log2

2 2k+1

ω(2k)
≥ 1

4
log2

2 n
ω(n)

, n ∈ (2k, 2k+1] k = 1, 2, . . . ,

which implies that the equality

log2
2 2k = O

(

ω(2k)
)

for k →∞

is not fulfilled either. Therefore we can find an increasing sequence of natural
numbers qj , j = 1, 2, . . . , such that

1 ≤
√

ω(2qj+1) <
qj

j3 , j = 1, 2, . . . . (2)

Inequality (2) makes it possible to construct an orthonormal system
{Φn(x)} (which simultaneously will also be a ∆k-ONS) and a sequence
{bn} (see [4], p. 298, the proof of Menshov’s theorem) such that

∞
∑

n=1

b2
nω(n) < ∞,

but the series
∞
∑

n=1

bnΦn(x)

diverges a.e. on (0, 1).

Remark 1. The application of the proven theorem to orthonormal sys-
tems allows us to formulate the Menshov-Rademacher theorem as follows:

In order that a positive nondecreasing sequence {ω(n)} be the Weyl mul-
tiplier for the convergence a.e. of series with respect to any orthonormal
systems, it is necessary and sufficient that the equality

log2
2 n = O

(

ω(n)
)

as n →∞

be fulfilled.

Remark 2. If

ω(n) = log2
2 n,

then condition (b) of Theorem 1 is fulfilled and we obtain Gaposhkin’s
theorem [1, Proposition 1].
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Remark 3. If

Nk =
[

2kα]

, 0 < α ≤ 1
2
, 1

then log2
2 n will be the Weyl multiplier for the convergence a.e. not for each

∆k-ONS. From Theorem 1 it follows that in that case

ω(n) = log
1
α +ε
2 n, ε > 0,

is the Weyl multiplier.
Analogously, if

Nk =
[

kα]

, α ≥ 1,

then
ω(n) = n

1
α log1+ε

2 n, ε > 0.

Also note that in both cases one should not take ε = 0.

3. Here a necessary and sufficient condition is established to be imposed
on the sequence {Nk} so that the well-known Kacmarz theorem on the (c, 1)-
summability a.e. of series with respect to orthonormal systems (see [5], p.
223, theorem [5.8.6]) remains valid also with respect to block-orthonormal
systems. Moreover, a generalization of the Kacmarz theorem is given for a
∆k-ONS.

In what follows we shall use the notation

σn(x) =
1
n

n
∑

i=1

Si(x), k(n) = max
{

k : Nk < n
}

.

Lemma 1. Let the sequence {Nk} be fixed, {ϕn} be an arbitrary ∆k-
ONS and for a positive nondecreasing sequence {ω(n)} let there be given

min
{

k : Nk ≥ n
}

+ n2
∑

k:Nk≥n

1
N2

k
= O

(

ω(n)
)

for n →∞. (3)

Then the condition
∞
∑

n=1

a2
nω(n) < ∞ (4)

implies the convergence a.e. of the series

∞
∑

n=2

n
(

σn(x)− σn−1(x)
)2

,

1[p] denotes the integer part of the number p.
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Proof. Let conditions (3) and (4) be fulfilled. Then

∫ 1

0
n
(

σn(x)− σn−1(x)
)2

dx =
1

n(n− 1)2

∫ 1

0

(

n
∑

i=1

ai(i− 1)ϕi(x)

)2

dx ≤

≤ 4
n3

∫ 1

0





Nk(n)
∑

i=1

ai(i− 1)ϕi(x) +
n

∑

i=Nk(n)+1

ai(i− 1)ϕ(x)





2

dx ≤

≤ 8
n3







∫ 1

0





k(n)−1
∑

j=0

Nj+1
∑

i=Nj+1

ai(i− 1)ϕi(x)





2

dx+

+
∫ 1

0





n
∑

i=Nk(n)+1

ai(i− 1)ϕi(x)





2




 ≤

≤ 8
n3





k(n)
k(n)−1
∑

j=0

∫ 1

0





Nj+1
∑

i=Nj+1

ai(i− 1)ϕi(x)





2

dx+
n

∑

i=Nk(n)+1

a2
i (i− 1)2





=

=
8
n3



k(n)
Nk(n)
∑

i=1

a2
i (i− 1)2 +

n
∑

i=Nk(n)+1

a2
i (i− 1)2



 ≤

≤ 8
n3



k(n)
Nk(n)
∑

i=1

a2
i i

2 +
n

∑

i=Nk(n)+1

a2
i i

2



 , n ≥ 2.

Therefore

∞
∑

n=2

∫ 1

0
n
(

σn(x)− σn−1(x)
)2

dx ≤ 8
∞
∑

k=0

Nk+1
∑

n=Nk+1

1
n3



k(n)
Nk(n)
∑

i=1

a2
i i

2+

+
n

∑

i=Nk(n)+1

a2
i i

2



=8
∞
∑

k=0





Nk+1
∑

n=Nk+1

Nk
∑

i=1

k
n3 a2

i i
2+

Nk+1
∑

n=Nk+1

n
∑

i=Nk+1

1
n3 a2

i i
2



=

= 8
∞
∑

i=1

a2
i i

2
∑

k:Nk≥i

k
Nk+1
∑

n=Nk+1

1
n3 + 8

∞
∑

k=0

Nk+1
∑

i=Nk+1

a2
i i

2
Nk+1
∑

n=i

1
n3 ≤

≤ 8
∞
∑

i=1

a2
i i

2
∑

k=k(i)+1

k
( 1

N2
k
− 1

N2
k+1

)

+ c
∞
∑

k=0

Nk+1
∑

i=Nk+1

a2
i =
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= 8
∞
∑

i=1

a2
i i

2





(

k(i) + 1
) 1
N2

k(i)+1
+

∞
∑

k=k(i)+2

1
N2

k



 + c
∞
∑

i=1

a2
i <

< c
∞
∑

i=1

a2
i



min
{

k : Nk ≥ i
}

+ i2
∑

k:Nk≥i

1
N2

k



 ≤ c
∞
∑

i=1

a2
i ω(i) < ∞,

from which by the Levy theorem we obtain

∞
∑

n=2

n
(

σn(x)− σn−1(x)
)2

< ∞ a.e.

Lemma 2. Let {Nk} be a given sequence, {ϕn(x)} be an arbitrary ∆k-
ONS, and conditions (3), (4) be fulfilled. Then for the corresponding series
(1) the convegence a.e. of the sequence {S2n(x)} is equivalent to the con-
vergence a.e. of the sequence {σ2n(x)}.

Proof. Let conditions (3) and (4) be fulfilled. We have

Sn(x)− σn(x) =
1
n

n
∑

i=1

ai(i− 1)ϕi(x).

Then

∫ 1

0

(

S2n(x)− σ2n(x)
)2

dx =
∫ 1

0

1
4n





Nk(2n)
∑

i=1

ai(i− 1)ϕi(x)+

+
2n
∑

i=Nk(2n)+1

ai(i− 1)ϕi(x)





2

dx ≤ 2
4n



k(2n)
Nk(2n)
∑

i=1

a2
i (i− 1)2+

+
2n
∑

i=Nk(2n)+1

a2
i (i− 1)2



 ≤ 2
4n



k(2n)
Nk(2n)
∑

i=1

a2
i i

2 +
2n
∑

i=Nk(2n)+1

a2
i i

2



 .

Therefore

∞
∑

n=1

∫ 1

0

(

S2n(x)− σ2n(x)
)2

dx ≤ 2





∞
∑

n=1

k(2n)
4n

Nk(2n)
∑

i=1

a2
i i

2+

+
∞
∑

n=1

1
4n

2n
∑

i=Nk(2n)+1

a2
i i

2



 = 2(J1 + J2).
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We have

J1 =
∞
∑

n=1

k(2n)
4n

Nk(2n)
∑

i=1

a2
i i

2 =
∞
∑

k=1

∑

log2 Nk<n≤log2 Nk+1

k(2n)
4n

Nk(2n)
∑

i=1

a2
i i

2 =

=
∞
∑

k=1

∑

log2 Nk<n≤log2 Nk+1

k
4n

Nk
∑

i=1

a2
i i

2 =

=
∞
∑

k=1





∑

log2 Nk<n≤log2 Nk+1

k
4n





Nk
∑

i=1

a2
i i

2 =

=
∞
∑

i=1

a2
i i

2
∞
∑

k=k(i)+1





∑

log2 Nk<n≤log2 Nk+1

k
4n



 =

=
∞
∑

i=1

a2
i i

2





(

k(i) + 1
)

∑

n>log2 Nk(i)+1

1
4n +

∞
∑

k=k(i)+2

∑

n>log2 Nk

1
4n



 ≤

≤
∞
∑

i=1

a2
i i

2





(

k(i) + 1
)4
3

1
N2

k(i)+1
+

4
3

∞
∑

k=k(i)+2

1
N2

k



 ≤

≤ 4
3

∞
∑

i=1

a2
i i

2





1
i2

min
{

k : Nk ≥ i
}

+
∑

k:Nk≥i

1
N2

k



 ≤ c
∞
∑

i=1

a2
i ω(i) < ∞

and

J2 =
∞
∑

n=1

1
4n

∑

i=Nk(2n)+1

a2
i i

2 ≤
∞
∑

n=1

1
4n

2n
∑

i=1

a2
i i

2 =

=
∞
∑

i=1

a2
i i

2
∑

2n≥i

1
4n ≤ c

∞
∑

i=1

a2
i < ∞.

Therefore
∞
∑

n=1

∫ 1

0

(

S2n(x)− σ2n(x)
)2

< ∞

from which it follows that
∞
∑

n=1

∫ 1

0

(

S2n(x)− σ2n(x)
)2

< ∞ a.e.

and therefore

lim
n→∞

∫ 1

0

(

S2n(x)− σ2n(x)
)2

= 0 a.e.
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Theorem 2. Let {Nk} be a given sequence, {ϕn(x)} be an arbitrary ∆k-
ONS, and conditions (3), (4) be fulfilled. Then for series (1) to be (c, 1)-
convergent a.e. it is necessary and sufficient that the subsequence of partial
sums {S2n(x)} of (1) be convergent a.e.

Proof. Sufficiency. Let conditions (3), (4) be fulfilled and the subsequence
{S2n(x)} of the corresponding series (1) converge a.e. Then by Lemma 3
the subsequence {σ2n(x)} also converges a.e. and we have

sup
k∈(2n,2n+1]

(

σk(x)− σ2n(x)
)2

=

(

sup
k∈(2n,2n+1]

k
∑

i=2n+1

(

σi(x)− σi−1(x)
)

)2

≤

≤
2n+1
∑

i=2n+1

i
(

σi(x)− σi−1(x)
)2

,

which by Lemma 1 implies that {σn(x)} converges a.e., i.e., series (1) is
(c, 1)-summable a.e.

Necessity. Let conditions (3), (4) be fulfilled and series (1) be (c, 1)-
summable a.e. Then {σ2n(x)} converges almost everywhere and by Lem-
ma 2 {S2n(x)}, too, converges almost everywhere.

Lemma 3. If
∞
∑

k=3

1
(log2 log2 Nk)2

< ∞,

then

min
{

k : Nk ≥ n
}

+ n2
∑

k:Nk≥n

1
N2

k
= O

(

(log2 log2 n)2
)

for n →∞.

Proof. Let
∞
∑

k=2

1
(log2 log2 Nk)2

< ∞.

Then

lim
k→∞

k
(log2 log2 Nk)2

= 0

and therefore for sufficiently large k’s we have

22
√

k
< Nk.

By definition, n ∈ (Nk(n), Nk(n)+1]. Putting

q(n) =

{

k(n) + 1, if 22
√

k(n)+1 ≥ n,

m, if 22
√

k(n)+1
< n and 22

√
m−1 ≤ n < 22

√
m

,
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for sufficiently large n’s we have

∑

k:Nk≥n

1
N2

k
=

∑

k=k(n)+1

1
N2

k
=

q(n)−1
∑

k=k(n)+1

1
N2

k
+

∞
∑

k=q(n)

1
N2

k
≤

≤ q(n)− k(n)− 1
Nk(n)+1

+
∞
∑

k=q(n)

1

(22
√

k)2
≤ q(n)− k(n)− 1

n2 +

+
c

(22
√

q(n))2
≤ q(n)− k(n)− 1

n2 +
c
n2 ≤ c

(log2 log2 n)2

n2 .

Therefore for sufficiently large n’s

min
{

k : Nk ≥ n
}

+ n2
∑

k:Nk≥n

1
N2

k
≤ k(n) + 1 + n2c

(log2 log2 n)2

n2 ≤

≤ c
(

log2 log2 n
)2

.

Theorem 3. Let the sequence {Nk} be fixed. In order that the condition

∞
∑

n=2

a2
n

(

log2 log2 n
)2

< ∞ (5)

guarantee the convergence a.e. of the sequence {S2k(x)} for series (1) with
respect to any ∆k-ONS {ϕn(x)}, it is necessary and sufficient that the con-
dition

∞
∑

k=3

1
(log2 log2 Nk)2

< ∞ (6)

be fulfilled.

Proof. Sufficiency. Let conditions (5) and (6) be fulfilled. Define the se-
quence of natural numbers {Mi} by the recurrent formula

M1 =N1 = 1,

Mi =min
{

min{Nk : Mk > Mi−1, k ∈ N},
min{2m : 2m > Mi−1, m ∈ N}

}

, i ≥ 2,

(7)

i.e., {Mi} is the increasing sequence whose terms have the form Nk or 2m,
k ≥ 1, m ≥ 1.

Assume that Ni = Mki , i ≥ 1, and k0 = 0. Clearly,

Mi < 2i, i ≥ 1, (8)
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and

log2 Mp + i + 1 ≥ p for p ∈ (ki, ki+1], i ≥ 0. (9)

Now, applying condition (6) and inequality (9), for sufficiently large i’s and
p ∈ (ki, ki+1] we have

p ≤ log2 Mp + i + 1 ≤ log2 Mp + log2 22
√

i
≤ log2 Mp + log2 Ni =

= log2 Mp + log2 Mki ≤ 2 log2 Mp. (10)

Set

bn =





Mn+1
∑

j=Mn+1

a2
j





1
2

, ψn(x)=















1
bn

Mn+1
∑

j=Mn+1

ajϕj(x), for bn 6= 0,

ϕMn+1(x), for bn = 0,

n≥1.

Clearly, {ψn(x)} is a (ki, ki+1]-ONS. Moreover, by condition (6) and in-
equality (8) we have

∞
∑

i=3

1
log2

2 ki
≤

∞
∑

i=3

1
(log2 log2 Mki)2

=
∞
∑

i=3

1
(log2 log2 Ni)2

< ∞

and by (5) and (10)

∞
∑

n=1

b2
n log2

2 n =
∑

n=1





Mn+1
∑

j=Mn+1

a2
j



 log2
2 n ≤ c

∞
∑

n=1





Mn+1
∑

j=Mn+1

a2
j



×

×
(

log2 log2 Mn
)2 ≤ c

∞
∑

n=1

Mn+1
∑

j=Mn+1

a2
j

(

log2 log2 j
)2

< ∞.

Thus the conditions of V. Gaposhkin’s theorem (see [1], Proposition 1) are
fulfilled for (ki, ki+1]-ONS {ψn(x)} and the sequence {bn}. Therefore the
series

∞
∑

n=1

bnψn(x)

converges almost everywhere, which, in particular, guarantees the conver-
gence a.e. of the sequence {S2k(x)} for the corresponding series (1).

Necessity. Let
∞
∑

k=3

1
(log2 log2 Nk)2

= ∞.

Then there exist numbers ck > 0 such that
∞
∑

k=2

c2
k

(

log2 log2 Nk
)2

< ∞,
∞
∑

k=1

ck = ∞.
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Take ΦNk(x) ≡ 1 (k ≥ 1) and as other functions Φn(x) (n 6= N1, N2, . . . )
choose an arbitrary ONS orthogonal to 1. The system {Φn(x)} is a ∆k-ONS.
Let bNk = ck (k ≥ 1) and bn = 0 (n 6= N1, N2, . . . ). Then

∞
∑

n=2

b2
n

(

log2 log2 n
)2

=
∞
∑

k=2

c2
k

(

log2 log2 Nk
)2

< ∞,

but
∞
∑

n=1

bnΦn(x) =
∞
∑

k=1

bNk =
∞
∑

k=1

ck = ∞, x ∈ (0, 1),

i.e., for the series
∞
∑

n=1

bnΦn(x)

the sequence {S2k(x)} diverges everywhere.

Theorem 4. Let the sequence {Nk} be fixed. In order that the sequence
{(log2 log2 n)2} be the Weyl multiplier for the (c, 1)-summability a.e. of se-
ries with respect to any ∆k-ONS, it is necessary and sufficient that condition
(6) be fulfilled.

Proof. Sufficiency. Let conditions (5) and (6) be fulfilled. Then by Theorem
3 the sequence {S2k(x)} converges a.e. for series (1), while by Lemma 3

min
{

k : Nk ≥ n
}

+ n2
∑

k:Nk≥n

1
N2

k
= O

(

(log2 log2 n)2
)

, n →∞,

holds and therefore series (1) is (c, 1)-summable by Theorem 2.
Necessity. Let

∞
∑

k=3

1
(log2 log2 Nk)2

= ∞.

Construct the ∆k-ONS {Φn(x)} and {bn} as we did when proving the ne-
cessity in Theorem 3. Then the series

∞
∑

n=1

bnΦn(x)

will not be (c, 1)-summable anywhere.

Remark 4. If

Nk =
[

22kα ]

, α >
1
2
,

then the above-mentioned Kacmarz theorem will hold for all ∆k-ONS
{ϕn(x)}.
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Theorem 5. Let the sequence {Nk} be fixed. In order that the condition
∞
∑

n=1

a2
nω(n) < ∞ (11)

guarantee the convergence almost everywhere of the subsequence of partial
sums {S2k(x)} of series (1) with respect to any ∆k-ONS {ϕn(x)}, it is
necessary and sufficient that the following two conditions be fulfilled:

(a)
∞
∑

k=1

1
ω(Nk)

< ∞; (12)

(b) log2
2 k = O

(

ω(Mk)
)

for k →∞, (13) where the sequence {Mk} is
defined by the recurrent formula (7).

Proof. Sufficiency. Let conditions (11), (12), (13) be fulfilled. Construct
the system {ψn(x)} and the sequence {bn} as we did when proving the
sufficiency in Theorem 3. Set

v(k) = ω(Mk), k ≥ 1.

Then we obtain

∞
∑

k=1

b2
kv(k) =

∞
∑

k=1





Mk+1
∑

j=Mk+1

a2
j



 v(k) =
∞
∑

k=1





Mk+1
∑

j=Mk+1

a2
j



ω(Mk) ≤

≤
∞
∑

k=1

Mk+1
∑

j=Mk+1

a2
jω(j) < ∞,

∞
∑

i=1

1
v(ki)

=
∞
∑

i=1

1
ω(Mki)

=
∞
∑

i=1

1
ω(Ni)

< ∞.

By condition (b) of Theorem 5 we have

log2
2 k = O

(

ω(Mk)
)

= O
(

v(k)
)

for k →∞.

Hence we conclude that {ψn(x)} is an (ki, ki+1]-ONS and
∞
∑

i=1

1
v(ki)

< ∞,
∞
∑

k=1

b2
kv(k) < ∞, log2

2 k = O
(

v(k)
)

for k →∞.

Now by Theorem 1 the series
∞
∑

n=1

bnψn(x)

converges a.e. and therefore, in particular, it follows that the subsequence
of partial sums {S2k(x)} of the corresponding series (1) converges a.e.

Necessity.
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(1) Let
∞
∑

k=1

1
ω(Nk)

= ∞.

Construct {Φn(x)} and {bn} as we did in proving the necessity of condition
(a) of Theorem 1. Then the sequence {S2k(x)} diverges a.e. for series (1).

(2) Let
∞
∑

k=1

1
ω(Nk)

< ∞

but
log2

2 k = ckω(Mk), k ≥ 1,

where
lim

k→∞
ck = ∞.

Let v(k) = ω(Mk). Then

log2
2 k = ckv(k) and lim

k→∞
ck = ∞.

Therefore there exist a {Φn(x)}-ONS and a sequence {bk} (see Remark 1)
such that

∞
∑

k=1

b2
kv(k) < ∞

but the series
∞
∑

k=1

bkΦk(x)

diverges a.e.
Construct the system {ψn(x)} and the sequence {an}. Namely, let

aMi
= bi, ψMi

(x) = Φi(x), i = 1, 2, . . . .

For the rest of n ∈ (Ni, Ni+1] assume that an = 0 and as ψn(x) take anyone
of the functions Φk(x), k 6∈ (ki, ki+1], so that ψi(x) 6= ψj(x) for i 6= j and
i, j ∈ ∆k. In that case we obtain an ∆k-ONS {ψn(x)} for which

∞
∑

n=1

a2
nω(n) =

∞
∑

i=1

a2
Mi

ω(Mi) =
∞
∑

i=1

b2
i v(i) < ∞

but the series
∞
∑

n=1

anψn(x)
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diverges a.e. Then, following the construction of the terms of this series,
the subsequence of partial sums {SMk(x)}, where {Mk} is defined by (7),
diverges a.e. But since

∞
∑

k=1

1
ω(Nk)

< ∞,

the subsequence of partial sums {SNk(x)} of the series
∞
∑

n=1

anψn(x)

converges alsmost everywhere. Let the {S2n(x)} converge on a set E ⊂
(0, 1), m(E) > 0.

It is clear that from the sequences {Nm} and {2n} we must obtain sub-
sequences {Nmk} and {2nk} such that

S2nk (x)− SNmk
(x) = a2nk ψ2nk (x), k ≥ 1.

Then
∞
∑

k=1

∫ 1

0

(

S2nk (x)− SNmk
(x)

)2
dx ≤

∞
∑

k=1

a2
2nk < ∞

and therefore
lim

k→∞

(

S2nk (x)− SNmk
(x)

)

= 0 a.e.,

i.e.,

lim
n→∞

S2n(x) = lim
k→∞

S2nk (x) = lim
k→∞

SNmk
(x) = lim

m→∞
SNm(x)

almost every x ∈ E,

which contradicts the divergence a.e. of the sequence {SNk(x)}.

Theorem 6. Let the sequence {Nk} be given and the equality

∞
∑

k=n

1
N2

k
= O

( n
N2

n

)

for n →∞ (14)

be fulfilled.
In order that the positive nondecreasing sequence {ω(n)} be the Weyl

multiplier for the (c, 1)-summability a.e. of series with respect to any ∆k-
ONS, it is necessary and sufficient that conditions (12), and (13) be fulfilled.

Proof. Let condition (14) be fulfilled.
Sufficiency. Let conditions (11), (12) and (13) be fulfilled. Then for

sufficiently large k’s we have

k < ω(Nk)
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and therefore for sufficiently large n’s

min
{

k : Nk ≥ n
}

+ n2
∑

k:Nk≥n

1
N2

k
= k(n) + 1 + n2

∞
∑

k=k(n)+1

1
N2

k
≤

≤ 2k(n) + n2 c · k(n)
N2

k(n)+1
≤ ck(n) ≤ cω

(

Nk(n)
)

< cω(n)

which yields

min
{

k : Nk ≥ n
}

+ n2
∑

k:Nk≥n

1
N2

k
= O

(

ω(n)
)

for n →∞. (15)

Then by Theorem 5 the sequence {S2k(x)} converges a.e. for series (1),
while by Theorem 2 series (1) is (c, 1)-summable slmost everywhere.

Necessity.
(a) Let

∞
∑

k=1

1
ω(Nk)

= ∞.

Construct {Φn(x)} and {bn} as we did when proving the necessity of con-
dition (a) of Theorem 1. Then we have

∞
∑

n=1

b2
nω(n) < ∞

and
∞
∑

n=1

bnΦn(x) =
∞
∑

k=1

bNk = ∞, x ∈ (0, 1),

which imply that the series
∞
∑

n=1

bnΦn(x)

is nowhere (c, 1)-summable.
(b) Let

∞
∑

k=1

1
ω(Nk)

< ∞

but condition (13) be not fulfilled. Then by Theorem 5 there exist a ∆k-
ONS {ψn(x)} and a sequence {an} such that

∞
∑

n=1

a2
nω(n) < ∞
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but the corresponding subsequence of partial sums {S2k(x)} diverges a.e.
Moreover, if equality (15) is fulfilled, then by Theorem 2 the series

∞
∑

n=1

anψn(x)

is not (c, 1)-summable almost everywhere.

Remark 5. From the proof of Theorem 6 it is clear that condition (14)
in this theorem can be replaced by condition (15). Then, assuming that
ω(n) = (log2 log2 n)2 and condition (12) is fulfilled, by inequality (10) we
have

log2
2 k = O

(

(log2 log2 Mk)2
)

for k →∞,

and by Lemma 3

min
{

k : Nk ≥ n
}

+ n2
∑

k:Nk≥n

1
N2

k
= O

(

(log2 log2 n)2
)

for n →∞,

and we obtain Theorem 4 as a corollary.

Remark 6. Theorem 6 implies that in the typical cases given below the
Weyl multipliers for the (c, 1)-summability a.e. of series with respect to any
∆k-ONS are:

(a) if

Nk =
[

22kα ]

, 0 < α ≤ 1
2
,

then
ω(n) =

(

log2 log2 n
) 1

α +ε
, ε > 0;

(b) if

Nk =
[

2kα
]

, α > 0,

then
ω(n) =

(

log2 n
) 1

α +ε
, ε > 0;

(c) if
Nk = [kα], α ≥ 1,

then
ω(n) = n

1
α
(

log2 n
)1+ε

, ε > 0.

Note that if ε = 0, then in cases (a), (b) and (c) {ω(n)} will be the Weyl
multiplier not for each ∆k-ONS.

Remark 7. Condition (14) is fulfulled, in particular, if

Nk = kΦ(k),

where Φ(k) does not decrease.
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