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NECESSARY AND SUFFICIENT CONDITIONS FOR
WEIGHTED ORLICZ CLASS INEQUALITIES FOR

MAXIMAL FUNCTIONS AND SINGULAR INTEGRALS. II

A. GOGATISHVILI AND V. KOKILASHVILI

Abstract. This paper continues the investigation of weight problems
in Orlicz classes for maximal functions and singular integrals defined
on homogeneous type spaces considered in [1].

§ 1. Weak Type Weighted Inequalities for Singular Integrals

Our further discussion will involve singular integrals with kernels which
in homogeneous type spaces are analogues of Calderon–Zygmund kernels.

It will be assumed that k : X×X\{(x, x) : x ∈ X} → R1 is a measurable
function satisfying the conditions

|k(x, y)| ≤ c1

µB(x, d(x, y))
(1.1)

and there exists positive constants c2 and b0 such that
∣

∣k(x′, y)− k(x, y)
∣

∣ +
∣

∣k(y, x′)− k(y, x)
∣

∣ ≤

≤ c2ω
(d(x, x′)

d(x, y)

) 1
µB(x, d(x, y))

(1.2)

for arbitrary x, y and x′ with the condition d(x, y) > b0d(x′, x). Here
ω : (0, 1) → R1 is a nondecreasing function with the condition ω(0) = 0,
ω(2t) ≤ cω(t) and

∫ 1

0

ω(t)
t

dt < ∞.
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Definition 1.1. A kernel k will be said to belong to the class CZ, (k ∈
CZ), if conditions (1.1), (1.2) are fulfilled and the singular integral

Kf(x) = lim
ε→0

Kεf(x) = lim
ε→0

∫

d(x,y)>ε

k(x, y)f(y) dµ

generates a continuous operator in Lp0(X, µ) for some p0, 1 < p0 < ∞.

Singular integrals with such kernels were treated in [2–6]. We set

K∗f(x) = sup
ε>0

∣

∣Kεf(x)
∣

∣.

The following theorem is well known.

Theorem B [5]. If k ∈ CZ, then for an arbitrary w ∈ Ap (1 < p < ∞)
we have the inequality

∫

X

(

K∗f(x)
)p

w(x) dµ ≤ c3

∫

X
|f(x)|pw(x) dµ, (1.3)

where the constant c3 is independent of f .

We shall begin our investigation of weighted problems for singular inte-
grals of the above-mentioned kind with weak type inequalities.

Theorem 1.1. Let ϕ ∈ Φ ∩∆2 and k ∈ CZ. If there exists a constant
c4 > 0 such that

∫

B
ϕ̃

(
∫

B ϕ(λw1(y))w2(y)dµ
λµBw1(x)w2(x)

)

w2(x) dµ ≤

≤ c4

∫

B
ϕ
(

λw1(x)
)

w2(x) dµ (1.4)

for an arbitrary λ > 0 and any ball B, then we have the inequality
∫

{x:|Kf(x)|>λ}

ϕ
(

λw1(x)
)

w2(x) dµ ≤ c5

∫

X
ϕ
(

f(x)w1(x)
)

w2(x) dµ, (1.5)

where the constant c5 is independent of λ and f .

Proof. Let λ > 0 and f : X → R1 be a µ-measurable function with a
compact support. We set

˜Mf(x) = sup
r>0

1
µB(x, r)

∫

B(x,r)
|f(y)| dµ

to be a centered maximal function.
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Let further Ω = {x : ˜Mf(x) > λ}. One can easily verify that the set Ω
is open and bounded. If X = Ω, then

∫

{x:|Kf(x)|>λ}

ϕ
(

λw1(x)
)

w2(x) dµ ≤
∫

{x:M̃f(x)>λ}

ϕ
(

λw1(x)
)

w2(x) dµ

and the validity of Theorem 1.1 follows from Theorem 3.1 from [1].
Assume that Ω 6= X. By virtue of Lemma 4.1 from Part I for the set Ω

and the constant C = a1(1 + b0a0) there exists a sequence of balls Bj =
B(xj , rj) such that

Ω =
∞
⋃

j=1

CBj ,
∞
∑

j=1

χCBj
(x) ≤ η,

˜Bj = B(xj , 3Ca1rj) ∩ (X\Ω) 6= ∅, j = 1, 2, . . . ,

where the constant b0 is from the definition of k while the numbers a0 and
a1 are from the definition of X.

Set F = X\Ω. Since ˜Bj ∩ F 6= ∅, we have

|f |Bj ≤ c|f |
B̃j
≤ cλ, (1.6)

where the constant c is independent of λ and j.
Let

g(x) = f(x)χF (x) +
∑

j

(

f
)

Bj
χBj

(x),

ψ(x) = f(x)− g(x) =
∑

j

(

f(x)−
(

f
)

Bj

)

χBj
(x) =

∑

j

ψj(x).

By virtue of

|Kf(x)| ≤ |Kg(x)|+ |Kψ(x)|,

we have
∫

{x:|Kf(x)|>λ}

ϕ
(

λw1(x)
)

w2(x) dµ ≤
∫

{x:|Kg(x)|> λ
2 }

ϕ
(

λw1(x)
)

w2(x) dµ +

+
∫

{x:|Kψ(x)|> λ
2 }

ϕ
(

λw1(x)
)

w2(x) dµ. (1.7)

Since by Proposition 3.5 of Part I the function ϕ(λw1)w2 ∈ A∞ uniformly
with respect to λ, there exists p such that ϕ(λw1)w2 ∈ Ap uniformly with
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respect to λ. Therefore by Theorem B and inequality (1.6) we have
∫

{x:|Kg(x)|> λ
2 }

ϕ
(

λw1(x)
)

w2(x)dµ≤cλ−p
∫

X
|Kg(x)|pϕ

(

λw1(x)
)

w2(x)dµ≤

≤cλ−p
∫

X
|g(x)|pϕ

(

λw1(x)
)

w2(x)dµ≤ cλ−p
∫

F
|f(x)|pϕ

(

λw1(x)
)

w2(x)dµ+

+c
∫

X
ϕ
(

λw1(x)
)

w2(x) dµ. (1.8)

Next, due to the fact that |f(x)| < λ almost everywhere on F , in the
sense of the µ-measure, using (2.2) from [1] and (1.8) we conclude that

λ−p|f(x)|pϕ
(

λw1(x)
)

≤ cϕ
(

f(x)w1(x)
)

(1.9)

holds for almost all x ∈ F and sufficiently large p.
Thus (1.8) and (1.9) give the estimate

∫

{x:|Kg(x)|> λ
2 }

ϕ
(

λw1(x)
)

w2(x)dµ≤c
∫

X
ϕ
(

f(x)w1(x)
)

w2(x)dµ. (1.10)

Now we shall estimate |Kψ(x)| on the set F . We have

Kψ(x) =
∑

j

∫

Bj

k(x, y)ψj(y) dµ.

From the definition of ψj we obtain
∫

Bj
ψj(x) dµ = 0. Therefore

Kψj(x) =
∫

Bj

(

k(x, y)− k(x, xj)
)

ψj(y) dµ. (1.11)

Choosing balls Bj appropriately we have x 6∈ B(xj , a1(1+b0a0)rj) if x ∈ F .
Hence for an arbitrary x ∈ F we have d(xj , x) > a1(1 + b0a0)rj .

By the last inequality we have

a0(1+b0a0)rj <d(xj , x)≤a1
(

d(xj , y)+d(y, x)
)

≤
≤ a1rj +a1a0d(x, y) (1.12)

for an arbitrary y ∈ Bj .
From (1.12) we conclude that d(x, y) > b0rj , i.e., b0d(xj , y) ≤ d(x, y) for

x ∈ F and y ∈ B(xj , rj).
Using the above reasoning for x ∈ F and condition (1.2), we write the

kernel in the form

|Kψj(x)| ≤ c
∑

j

|ψj(y)|ω
(d(xj , y)

d(xj , x)

) 1
µB(xj , d(xj , x))

dµ ≤
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≤ cω
( rj

d(xj , x)

) 1
µB(xj , d(xj , x))

∫

Bj

|ψj(y)| dµ.

On the other hand, by virtue of (1.6)

|ψj |Bj ≤ 2|f |Bj ≤ 2cλ.

Hence from the preceding inequality for x ∈ F we obtain

|Kψj(x)| ≤ cλω
( rj

d(xj , x)

) µB(xj , rj)
µB(xj , d(xj , x))

(j = 1, 2, . . . ).

On summing these inequalities, we find

|Kψ(x)| ≤ cλIω(x) (1.13)

for x ∈ F .
Now, applying Theorem 4.1 of [1], from (1.13) we derive

∫

{x∈X:|Kψ(x)|> λ
2 }

ϕ
(

λw1(x)
)

w2(x)dµ≤
∫

{x∈F :|Kψ(x)|> λ
2 }

ϕ
(

λw1(x)
)

w2(x)dµ+

+
∫

Ω
ϕ
(

λw1(x)
)

w2(x) dµ. (1.14)

By virtue of Proposition 3.5 (see Part I) the condition of the theorem implies
that ϕ(λw1)w2 ∈ A∞ uniformly with respect to λ. Therefore, as said above,
there exists p > 1 such that ϕ(λw1)w2 ∈ Ap uniformly with respect to λ.
Thus using (1.13) and Corollary 4.2 from [1] we obtain

∫

{x∈F :|Kψ(x)|> λ
2 }

ϕ
(

λw1(x)
)

w2(x) dµ ≤ c
∫

F

(

Iω(x)
)p

ϕ
(

λw1(x)
)

w2(x) dµ ≤

≤ c
∫

Ω
ϕ
(

λw1(x)
)

w2(x) dµ.

Therefore (1.14) gives the estimate
∫

{x∈F :|Kψ(x)|> λ
2 }

ϕ
(

λw1(x)
)

w2(x) dµ ≤ c
∫

Ω
ϕ
(

λw1(x)
)

w2(x) dµ.

Taking into account the definition of the set Ω and Theorem 3.1 of [1], we
obtain the estimate

∫

{x∈F :|Kψ(x)|> λ
2 }

ϕ
(

λw1(x)
)

w2(x) dµ ≤ c
∫

X
ϕ
(

λw1(x)
)

w2(x) dµ.

Finally, the last inequality together with (1.7) and (1.10) imply that the
theorem is valid.
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Theorem 1.2. Let ϕ ∈ Φ ∩ ∆2, k ∈ CZ. Then from condition (1.4) it
follows that there exists a constant c1 > 0 such that the inequality

∫

{x∈X:K∗f(x)>λ}

ϕ
(

λw1(x)
)

w2(x) dµ≤c1

∫

X
ϕ
(

f(x)w1(x)
)

w2(x) dµ(1.15)

is fulfilled for any λ > 0 and µ-measurable function f : X → R1.

Proof. This theorem, which is more general than Theorem 1.1, is proved
quite similarly to the latter provided that we show that the inequality

K∗ψ(x) ≤ cλIω(x) + cMf(x) (1.16)

holds for x ∈ F .
We have

Kεψ(x)=
∑

j

∫

{y∈Bj :d(x,y)>ε}

ψj(y)k(x, y)dµ=
∑

{j:dist(x,Bj)>ε}

∫

Bj

ψ(y)k(x, y)dµ+

+
∑

{j:dist(x,Bj)≥ε}

∫

{y∈Bj :d(x,y)>ε}

ψj(y)k(x, y) dµ = Aε(x) + Bε(x).

In proving Theorem 1.1, it was shown that

sup
ε>0

|Aε(x)| ≤ cλIω(x)

for x ∈ F .
Further for x ∈ F , y ∈ Bj and z ∈ Bj we have

d(x, y) ≤ a1
(

d(x, z) + d(z, y)
)

≤ a1
(

d(x, z) + a1(d(z, xj) + d(xj , y)
))

≤
≤ a1

(

d(x, z) + a1(a0 + 1)rj
)

.

Since z is an arbitrary point from Bj , for dist(x,Bj) ≤ ε the last inequal-
ity implies

d(x, y) ≤ a1 dist(x,Bj) + a2
1(a0 + 1)rj ≤ c0ε,

where c0 = a1 + 2a0a2
1b
−1
0 .

Therefore, due to (1.1), for x ∈ F we have

|Bε(x)| ≤
∫

ε<d(x,y)<c0ε

∑∞
j=1 |ψj(y)|

µB(x, d(x, y))
dµ ≤

≤ c
µB(x, ε)

∫

ε<d(x,y)≤c0ε

|ψ(y)| dµ ≤ cMψ(x).

Now repeating the arguments from the proof of Theorem 1.1 and using
inequalities (1.16), (1.17) and Theorem 3.1 from [1], we arrive at (1.14).
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§ 2. Criteria of Weak Type Weighted Inequalities for
Singular Integrals

In this section, from the class of Calderon–Zygmund kernels we single
out a subclass of kernels such that for the corresponding singular integrals
we succeed in obtaining necessary and sufficient conditions ensuring the
validity of weak type inequalities.

Definition 2.1. A kernel k : X × X\{(x, x), x ∈ X} → R1 belongs to
the class S1 if for an arbitrary ball B = B(z, r) there is a ball B′ = B(z′, r)
such that B ∩B′ = ∅, d(z, z′) ≤ c1r and for any x ∈ B and y ∈ B′ we have
the inequality

k(x, y) ≥ c2

µB(x, d(x, y))
, (2.1)

where the constant c2 is independent of the ball B, x and y.

It is easy to see that in the above condition the ball B′ can be chosen so
that dist(B, B′) > r.

Indeed, in addition to the ball B(z, r) let us consider the ball B(z, mr),
where m = a1 + a2

1(1 + a0). By assumption, there exists a ball B(z0, mr)
such that B(z,mr) ∩ B(z0,mr) = ∅ and (2.1) is fulfilled for arbitrary x ∈
B(z, mr) and y ∈ B(z0,mr). Now for a given ball B(z, r) we shall take
B(z0, r) as B′. Then already dist(B, B′) > r. Indeed, for arbitrary x ∈ B
and y ∈ B′ we have

a1
(

1 + a1(1 + a0)
)

r ≤ d(z, z0) ≤ a1
(

d(z, x) + d(x, z0)
)

≤
≤ a1

(

r + a1
(

d(x, y) + d(y, z0)
))

≤ a1r + a2
1d(x, y) + a2

1a0d(z0, y) ≤
≤ (a1 + a2

1a0)r + a2
1d(x, y).

Hence it follows that d(x, y) ≥ r and therefore r < dist(B, B′).

Definition 2.2. We shall say that k ∈ S2 if for an arbitrary ball B(z, r)
there exists a ball B′ = B(z′, r) such that B ∩ B′ = ∅, d(z, z′) < c2r and
for arbitrary y ∈ B and x ∈ B′ we have the inequality

k(x, y) ≥ c4

µB(x, d(x, y))
, (2.1′)

where the constant c4 is independent of x and y.

It is easy to verify that if k ∈ S1, then ˜k ∈ S2, where ˜k(x, y) = k(y, x).
When X is compact, condition (2.1) is to be fulfilled for balls with a

sufficiently small radius.
Further assume

˜Kf(x) =
∫

X
k(y, x)f(y) dµ.
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We have

Theorem 2.1. Let ϕ ∈ Φ and the kernel k ∈ S1 ∪S2. If the inequalities
∫

{x:|Kf(x)|>λ}

ϕ
(

λw1(x)
)

w2(x) dµ ≤ c
∫

X
ϕ
(

cf(x)w1(x)
)

w2(x) dµ, (2.2)

∫

{x:|K̃f(x)|>λ}

ϕ
(

λw1(x)
)

w2(x) dµ ≤ c
∫

X
ϕ
(

cf(x)w1(x)
)

w2(x) dµ,(2.2′)

where the constant c is independent of λ > 0 and f , are fulfilled, then
ϕ ∈ ∆2, ϕ is quasiconvex, and the following condition holds: there exists a
constant c0 such that

∫

B
ϕ̃

(
∫

B ϕ(λw1(y)w2(y)dµ
λµBw1(x)w2(x)

)

w2(x) dµ ≤ c0

∫

B
ϕ
(

λw1(x)
)

w2(x) dµ

for any λ > 0 and ball B.

In §1 the last inequality figured as formula (1.4). In what follows by
referring to this condition we shall mean (1.4).

The proof of the theorem is based on

Proposition 2.1. Let E be a set of positive µ-measure not containing
atoms. Assume that k ∈ S1 ∪ S2.

If there exists a constant c > 0 such that the inequality

ϕ(λ)µ
{

x ∈ E\E1 : |Kf(x)| > λ
}

≤ c
∫

E1

ϕ
(

cf(x)
)

dµ (2.3)

holds for any λ > 0, µ-measurable E1 ⊆ E and µ-measurable function f ,
supp f ⊂ E1, then ϕ is quasiconvex and satisfies the condition ∆2.

Proof. Let first k ∈ S1. Assume that z0 is a density point of the set E. From
the property of the kernel it follows that for each B(z0, r) there exists a ball
B(z′0, r) such that B(z0, r) ∩ B(z′0, r) = ∅, d(z0, z′0) < c1r, and condition
(2.1) is fulfilled for x ∈ B(z0, r) and y ∈ B(z′0, r).

We shall show that the number r can be chosen so small that

µB(z′0, r) ∩ E ≥ 1
2

µB(z′0, r).

First note that the condition d(z0, z′0) < c1r implies

B(z′0, r) ⊂ B(z0, a1(c1 + 1)r).

Indeed, if x ∈ B(z′0, r), then d(z0, x) ≤ a1
(

d(z0, z′0) + d(z′0, x)
)

≤ a1(c1 +
1)r. On the other hand,

B(z0, a1(c1 + 1)r) ⊂ B(z′0, c3r),
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where c3 = a1(a0c1 + a1(c1 + 1)).
Therefore

B(z′0, r) ⊂ B(z0, a1(c1 + 1)r) ⊂ B(z′0, c3r).

Since z0 is a density point of E, for ε > 0 there exists δ > 0 such that if
r < δ then

µB(z0, a1(c1 + 1)r)\E ≤ εµB(z0, a1(c1 + 1)r).

Therefore

µB(z′0, r)\E ≤ µB(z0, a1(c1 + 1)r)\E ≤ εµB(z0, a1(c1 + 1)r) ≤
≤ εµB(z0, c3r) ≤ εbµB(z′0, r),

where the constant b is from the doubling condition.
If εb < 1

2 , the last inequality implies

µB(z′0, r) ∩ E > (1− εb)µB(z′0, r) ≥
1
2
µB(z′0, r).

Fix some ball B(z0, r) with the condition 0 < r < δ. Let B(z′0, r) be the
ball existing by virtue of the condition k ∈ S1. Now if f ≥ 0, supp f ⊂
B(z′0, r) ∩ E, for any x ∈ B(z0, r) we obtain

Tf(x) =
∫

X
k(x, y)f(y) dy ≥ c2

∫

B(z′0,r)

f(y)dµ
µB(x, d(x, y))

. (2.4)

Moreover, if x ∈ B(z0, r), y ∈ B(z′0, r) and z ∈ B(x, d(x, y)), we have

d(z′0, z) ≤ a1
(

d(z′0, x) + d(x, z)
)

≤ a2
1

(

d(z′0, z0) + d(z0, x) + a1d(x, y)
)

≤
≤ a2

1c1r + a2
1r + a2

1

(

d(x, z0) + d(z0, y)
)

≤
≤ a2

1(c1 + 1)r + a2
1a0r + a3

1

(

d(z0, z′0) + d(z′0, y)
)

≤ c4r.

Thus B(x, d(x, y)) ⊂ B(z′0, c4r). Hence by the doubling condition we find
that µB(x, d(x, y)) ≤ c5µB(z′0, r). Therefore (2.4) implies that if r < δ, then
for B(z0, r) there exists a ball B(z′0, r) such that for x ∈ B(z0, r) we obtain
the estimate

Tf(x) ≥ c2

c5

1
µB(z′0, r)

∫

B(z′0,r)
f(y) dµ. (2.5)

Moreover, µB(z′0, r) ∩ E > 1
2µB(z0, r), d(z0, z′0) < c1r and

dist(B(z′0, r), B(z0, r)) > r.
Let now rk = δ

ak
1 (c1+1)k and B(zk

0 , rk) be a ball corresponding to the ball
B(z0, rk) in condition (2.5).
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For x ∈ B(zk
0 , rk) we have

d(z0, x) ≤ a1
(

d(z0, zk
0 ) + d(zk

0 , x)
)

≤ a1(c1 + 1)rk = rk − 1,

which implies B(zk
0 , rk)⊂B(z0, rk−1). Also, B(z0, rk−1) ∩ B(zk−1

0 , rk−1)=
∅. Therefore B(zk

0 , rk)∩B(zk−1
0 , rk−1)=∅. Similarly, B(zj

0, rj)∩B(zi
0, ri)=

∅, i 6= j. Further B(z0, rk) ⊆ B(z0, ri), i = 1, 2, . . . , k, and B(z0, ri) ∩
B(zi

0, ri) = ∅. Thus B(z0, rk) ∩B(zi
0, ri) = ∅ (i = 1, 2, . . . , k).

We set
f(x) =

λ
c
χ

k
∪

i=1
B(zi

0
,ri)∩E

,

where the constant is from (2.3) and k is chosen so that kc2
2cc5

> 2. Then by
(2.5) for x ∈ B(z0, rk) we obtain

Tf(x) =
∫

X
k(x, y)f(y) dµ =

k
∑

i=1

∫

B(zi
0,ri)

k(x, y)f(y) dµ ≥

≥ λc2

cc5

k
∑

i=1

µB(zi
0, ri) ∩ E

µB(zi
0, ri)

≥ λc2

2cc5
> 2λ. (2.6)

Now substituting E1 =
k
∪

i=1
B(zi

0, ri) ∩ E in (2.3) and taking into account

that by virtue of the above reasoning B(z0, rk) ∩ E ⊂ E\E1, by (2.6) we
have

ϕ(2λ)µB(z0, rk) ∩ E ≤ cϕ(λ)
k

∑

i=1

µB(zi
0, ri) ∩ E

which implies the fulfillment of the condition ∆2.
Next we want to prove that the function ϕ is quasiconvex. Let z0 ∈ E

be a density point of this set. As shown above, there exists a ball B(z′0, r0)
such that dist(B(z0, r0), B(z′0, r0)) > r0,

µB(z0, r0) ∩ E ≥ 1
2

µB(z0, r0),

µB
(

z′0,
r0

2a1

)

∩ E >
1
2

µB
(

z′0,
r0

2a1

)

,

and for arbitrary x ∈ B(z0, r0), f ≥ 0, supp f ⊂ B(z′0, r0) we have

Tf(x) ≥ c2

c5

1
µB(z′0, r0)

∫

B(z′0,r0)
f(y) dµ. (2.7)

Let z1 ∈ B(z′0,
r

2a1
) ∩ E be a density point of the set E.

One can readily verify that

B
(

z1,
r0

2a1

)

⊂ B(z′0, r0) ⊂ B
(

z1,
(a0

2
+ a1

)

r0

)

.
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Let r1 be a positive number so small that r1 < r0
2a1

and for any r ≤ r1

we have

µB(z1, r) ∩ E ≥ 1
2

µB(z0, r).

Let further 0 ≤ t1 < t2 < ∞ and

r2 = sup
{

r : µB(z1, r) ≤
t1
t2

µB(z1, r1)
}

.

Then

µB(z1, r2) ≤ bµB
(

z1,
r2

2

)

≤ b
t1
t2

µB(z1, r1) ≤

≤ bµB(z1, 2r2) ≤ b2µB(z1, r2). (2.8)

We write

f(x) =
2c5bµB

(

z1,
(a0

2 + a1
)

r0
)

c2µB(z1, r1)
· t2χB(z1,r2)∩E .

For x ∈ B(z0, r0) inequalities (2.7) and (2.8) give

Tf(x) ≥ c2

c5µB
(

z1,
(a0

2 + a1
)

r0
)

∫

B(x,r2)
f(x) dµ =

=
2bt2µB(z1, r2) ∩ E

µB(z1, r1)
> t1. (2.9)

Set

c6 =
2c5bµB

(

z1,
(a0

2 + a1
)

r0
)

c2µB(z1, r1)
.

Taking into account that B(z1, r1) ⊂ B(z0, r0), B(z′0, r0)∩B(z0, r0) = ∅,
we obtain B(z1, r1) ∩ B(z0, r0) = ∅. On the other hand, by the definition
of the number r2 we have r2 < r1 and therefore B(z1, r2) ∩ B(z0, r0) = ∅.
Now putting E1 = B(z1, r2) ∩ E in (2.3), by (2.9) we obtain

ϕ(t1)µB(z0, r0) ∩ E ≤ cϕ(cc6t2)µB(z1, r2) ∩ E ≤ cϕ(cc6t2)b
t1
t2

µB(z1, r1)

which implies that the function ϕ(t)
t quasiincreases and thus by Lemma 2.1

from [1] ϕ is quasiconvex.
The case with k ∈ S2 is proved similarly and hence omitted.

Proof of Theorem 2.1. By Proposition 2.1 either of conditions (2.2) and
(2.2′) guarantees the quasiconvexity of ϕ and the fulfillment of the con-
dition ϕ ∈ ∆2. Indeed, choose a number such that E = {x : k−1 ≤ w1(x),
k−1 ≤ w2(x)} has a positive measure. Then for any set E1 ⊂ E, µE1 > 0,
and function f , supp f ⊂ E1, say from (2.2), we find that (2.3) is fulfilled
and therefore by Proposition 2.1 ϕ is quasiconvex and ϕ ∈ ∆2.
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It remains to show that condition (1.4) holds. Under the condition of the
theorem for an arbitrary ball B = B(z0, r) there exists a ball B′ = B(z′0, r)
such that d(z0, z′0) < c1r and for x ∈ B(z0, r) and y ∈ B(z′0, r) (2.1) holds.
Therefore if g ≥ 0 and supp g ⊂ B(z′0, r), then for x ∈ B(z0, r) we have

Kg(x) ≥ c
µB′

∫

B′
g(y) dµ.

For such functions (2.2) gives the estimate
∫

B
ϕ
(

g
B′w1(x)

)

w2(x) dµ ≤ c
∫

B′
ϕ
(

cg(x)w1(x)
)

w2(x) dµ. (2.10)

On the other hand, for g̃ ≥ 0, supp g̃ ⊂ B(z0, r), and x ∈ B(z′0, r) we have

˜Kg̃(x) ≥ c
µB

∫

B
g̃(y) dµ.

Therefore (2.2′) implies
∫

B
ϕ
(

g̃Bw1(x)
)

w2(x) dµ ≤ c
∫

B′
ϕ
(

cg̃(x)w1(x)
)

w2(x) dµ. (2.11)

Let now f ≥ 0 be an arbitrary locally summable function. Substituting
g = χ

B′ fB in (2.10), we obtain
∫

B
ϕ
(

fBw1(x)
)

w2(x) dµ ≤ c
∫

B′
ϕ
(

fBw1(x)
)

w2(x) dµ. (2.12)

Substituting the function fχB in (2.11) gives
∫

B′
ϕ
(

fBw1(x)
)

w2(x) dµ ≤ c
∫

B
ϕ
(

f(x)w1(x)
)

w2(x) dµ. (2.13)

From (2.12) and (2.13) we conclude that the inequality
∫

B
ϕ
(

fBw1(x)
)

w2(x) dµ ≤ c
∫

B
ϕ
(

f(x)w1(x)
)

w2(x) dµ

holds for any locally summable function f , supp f ⊂ B.
By virtue of Theorem 3.1 from [1] the last inequality implies that (1.4)

is valid.

In the concrete cases the necessary and sufficient conditions for weak
type weighted inequalities for singular integrals acquire a rather transparent
form. Namely, by virtue of Theorem 3.2 of Part I, from Theorems 1.1 and
2.1 we immediately conclude that the statements below are valid.
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Theorem 2.2. Let ϕ ∈ Φ and the kernel k ∈ CZ∩S1 ∪ S2. Then the
following statements are equivalent:

(i) ϕ is quasiconvex, ϕ ∈ ∆2, and w ∈ Ap(ϕ);
(ii) there exists a positive constant c1 > 0 such that for any λ > 0 and

µ-measurable function we have

ϕ(λ)w
{

x : |Kf(x)| > λ
}

≤ c1

∫

X
ϕ
(

cf(x)
)

w(x) dµ,

ϕ(λ)w
{

x : | ˜Kf(x)| > λ
}

≤ c1

∫

X
ϕ
(

cf(x)
)

w(x) dµ.

Theorem 2.3. Let ϕ ∈ Φ, k ∈ CZ∩S1 ∪ S2. Then the following state-
ments are equivalent:

(i) ϕ is quasiconvex, ϕ ∈ ∆2, wp(ϕ) ∈ Ap(ϕ), w−p(ϕ̃) ∈ Ap(ϕ̃);
(ii) we have the inequalities

∫

{x:|Kf(x)|>λ}

ϕ
(

λw(x)
)

dµ ≤ c
∫

X
ϕ
(

cf(x)w(x)
)

dµ,

∫

{x:|K̃f(x)|>λ}

ϕ
(

λw(x)
)

dµ ≤ c
∫

X
ϕ
(

cf(x)w(x)
)

dµ,

where the constant c is independent of f and λ > 0.

Theorem 2.4. Let ϕ ∈ Φ and k ∈ CZ∩S1 ∪ S2. Then the following
conditions are equivalent:

(i) ϕ is quasiconvex, ϕ ∈ ∆2, and w ∈ Ap(ϕ̃);
(ii) there exists a constant c > 0 such that for any λ > 0 and µ-measurable

function f : X → R1 we have the inequalities
∫

{x:|Kf(x)|>λ}

ϕ
( λ

w(x)

)

w(x) dµ ≤ c
∫

X
ϕ
(

c
f(x)
w(x)

)

w(x) dµ,

∫

{x:|K̃f(x)|>λ}

ϕ
( λ

w(x)

)

w(x) dµ ≤ c
∫

X
ϕ
(

c
f(x)
w(x)

)

w(x) dµ.

§ 3. Criteria for Strong Type Weighted Inequalities for
Maximal Functions and Singular Integrals

Using the previous results as well as the general interpolation theorem
to be given below, in this section we are able to obtain a solution of the
problem, to give a full description of classes of the function ϕ and weights
w ensuring the validity of strong type weighted inequalities for maximal
functions and singular integrals defined on homogeneous type spaces.
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For maximal functions we have

Theorem 3.1. Let ϕ ∈ Φ. Then the following statements are equivalent:
(i) ϕα is quasiconvex for some α, 0 < α < 1, wp(ϕ) ∈ Ap(ϕ), and w−p(ϕ̃) ∈

Ap(ϕ̃);
(ii) there exists c1 > 0 such that the inequality

∫

X
ϕ
(

Mf(x)w(x)
)

dµ ≤ c1

∫

X
ϕ
(

c1f(x)w(x)
)

dµ (3.1)

is fulfilled for any locally µ-summable function f : X → R1.

For singular integrals the solution of one-weighted problems is given by
the statements as follows.

Theorem 3.2. Let ϕ ∈ Φ and k ∈ CZ. If ϕ ∈ ∆2, ϕα is quasiconvex
for some α, 0 < α < 1, and w ∈ Ap(ϕ), then there is c2 > 0 such that the
following inequalities hold:

∫

X
ϕ
(

Kf(x)
)

w(x) dµ ≤ c2

∫

X
ϕ
(

f(x)
)

w(x) dµ, (3.2)
∫

X
ϕ̃
(Kf(x)

w(x)

)

w(x) dµ ≤ c3

∫

X
ϕ̃
( f(x)

w(x)

)

w(x) dµ. (3.3)

Similar statements hold for the operator ˜K as well.

Theorem 3.3. Let ϕ ∈ Φ and k ∈ CZ∩S1 ∪ S2. Then the following
conditions are equivalent:

(i) the inequality (3.2) is fulfilled for K and ˜K;
(ii) the inequality (3.3) is fulfilled for K and ˜K;
(iii) ϕ ∈ ∆2, ϕα is quasiconvex for some α, 0 < α < 1, and w ∈ Ap(ϕ).

Theorem 3.4. If ϕ ∈ Φ∩∆2 and k ∈ CZ, ϕα is quasiconvex for some α,
0 < α < 1, wp(ϕ) ∈ Ap(ϕ), and w−p(ϕ̃) ∈ Ap(ϕ̃), then there exists a constant
c4 > 0 such that the following inequalities are fulfilled:

∫

X
ϕ
(

Kf(x)w(x)
)

dµ ≤ c4

∫

X
ϕ
(

f(x)w(x)
)

dµ, (3.4)
∫

X
ϕ
(

˜Kf(x)w(x)
)

dµ ≤ c4

∫

X
ϕ
(

f(x)w(x)
)

dµ. (3.5)

Theorem 3.5. Let ϕ ∈ Φ and k ∈ CZ∩S1 ∪ S2. Then the following
conditions are equivalent:

(i) ϕ ∈ ∆2, ϕα is quasiconvex for some α, 0 < α < 1, wp(ϕ) ∈ Ap(ϕ) and

w−p(ϕ̃) ∈ Ap(ϕ̃);
ii) inequalities (3.4) and (3.5) hold.
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To prove the above-formulated theorems we next give the interpolation
theorem.

Let (M,S, ν) be a space with measure. Let further the subadditive
operator T be the one mapping the space D of functions measurable on
(M, S, ν) into the space of functions measurable and defined on another
space (M1, S1, ν1) with measure.

Theorem 3.6. Let ϕ ∈ Φ and be quasiconvex. Let further 1 ≤ r <
p(ϕ) ≤ p′(ϕ̃) < s < ∞ and for the case s = ∞ assume that p′(ϕ̃) ≤ ∞.

Let there exist constants c1 and c2 such that for any λ > 0 and f ∈ Lr ·+Ls

we have the inequalities
∫

{x∈M1:|Tf(x)|>λ}

dν1 ≤ c1λ−r
∫

M
|f(x)|r dν, (3.6)

∫

{x∈M1:|Tf(x)|>λ}

dν1 ≤ c2λ−s
∫

M
|f(x)|s dν (3.7)

and for s = ∞ we have

‖Tf‖L∞ ≤ c2‖f‖L∞ .

Then there exists a constant c3 > 0 such that the following inequality holds:
∫

M1

ϕ
(

Tf(x)
)

dν1 ≤ c3

∫

M
ϕ
(

f(x)
)

dν. (3.8)

Proof. The theorem is proved by the standard arguments. Let s < ∞.
By virtue of the definition of p(ϕ) there exists p1, r < p1 < p(ϕ), such
that t−p1ϕ(t) almost increases. Similarly, there exists ε > 0 such that
t−(p(ϕ̃)−ve)ϕ̃(t) almost increases, which by virtue of Lemma 2.5 from [1]
means that t−(p(ϕ̃)−ε)′ϕ(t) almost decreases. Therefore there exists p2 such
that p̃′(ϕ̃) < p2 < s so that the function t−p2ϕ(t) will almost decrease.
Based on these facts, we readily conclude that

∫ t

0

dϕ(τ)
τ r ≤ c

ϕ(t)
tr

and
∫ ∞

t

dϕ(τ)
τs ≤ c

ϕ(t)
ts

. (3.9)

For each λ > 0 we put

f1(x) =

{

f(x) if |f(x)| ≥ λ
2c2

,
0 if |f(x)| < λ

2c2
,

f2(x) =

{

f(x) if |f(x)| ≤ λ
2c2

,
0 if |f(x)| > λ

2c2
.

Further we have
∫

M1

ϕ
(

Tf(x)
)

dν1 =
∫ ∞

0
ν1

{

x ∈ M1 : |Tf(x)| > λ
}

dϕ(λ) ≤
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≤ c
(∫ ∞

0
ν1

{

x ∈ M : |Tf1(x)| > λ
2c2

}

dϕ(λ)+

+
∫ ∞

0
ν1

{

x ∈ M1 : |Tf2(x)| > λ
2c2

}

dϕ(λ)
)

= I1 + I2.

On account of (3.6) and the first inequality of (3.9) we have

I1 ≤ c
∫ ∞

0

2rc1

λr

(

∫

M
|f1(x)|rdν

)

dϕ(λ) =

= c
∫ ∞

0

2rc1

λr

(

∫

{x:2c2|f(x)|>λ}

|f(x)|rdν
)

dϕ(λ) =

= cc1

∫

M
|f(x)|r

(

∫ 2c2|f(x)|

0

dϕ(λ
λr

)

dν ≤ c3

∫

M
ϕ
(

f(x)
)

dν.

Similarly, (3.7) and the second inequality of (3.9) imply

I2 ≤ c3

∫

M
ϕ
(

f(x)
)

dν

and as a result we have (3.8).
If s = ∞, then ‖f‖∞ < λ

2c2
and therefore I2 = 0.

Proof of Theorem 3.1. Let us show that the implication (i)⇒(ii) holds. From
the condition wp(ϕ) ∈ Ap(ϕ) it follows that wp(ϕ)−ε ∈ Ap(ϕ)−ε. If p(ϕ̃) > 1,

then the condition w−p(ϕ̃) ∈ Ap(ϕ̃) implies w−(p(ϕ̃)−ε) ∈ Ap(ϕ̃)−ε for ε > 0.

Therefore w(p(ϕ̃)−ε)′ ∈ A(p(ϕ̃)−ε)′ .
Consider the operator

Tf = wM
( f

w

)

.

Then due to Proposition 3.2 from [1] we obtain the inequalities
∫

X
|Tf(x)|p(ϕ)−εdµ ≤ c1

∫

X
|f(x)|p(ϕ)−εdµ,

∫

X
|Tf(x)|(p(ϕ̃)−ε)′dµ ≤ c2

∫

X
|f(x)|(p(ϕ̃)−ε)′dµ.

For p(ϕ̃) = 1 the function w−1 belongs to the class A1 and it is clear that

‖Tf‖∞ ≤ c2‖f‖∞.

Since p(ϕ) − ε < p(ϕ) < p′(ϕ) < (p(ϕ̃) − ε)′, by Theorem 3.6 the above
inequalities imply that (3.1) is valid.

As to the implication (ii)⇒(i), note that by virtue of the second part of
Theorem 3.2 from [1] we find from the condition of the theorem that ϕ is
quasiconvex, wp(ϕ) ∈ Ap(ϕ), and w−p(ϕ̃) ∈ Ap(ϕ̃).
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To show that condition (ii) implies the quasiconvexity of ϕα for some α,
0 < α < 1, we have to prove the following propositions.

Proposition 3.1. Let k ∈ S1 ∪ S2, ϕ ∈ Φ, and µE > 0. If we have the
inequality

∫

E
ϕ
(

Kf(x)
)

dµ ≤ c
∫

E
ϕ
(

cf(x)
)

dµ, supp f ⊂ E, (3.10)

with constant c independent of f , then ϕα is qusiconvex for some α, 0 <
α < 1, i.e., ϕ̃ ∈ ∆2.

Proof. (3.10) implies (2.3) and hence ϕ is quasiconvex and satisfies the
condition ∆2. Therefore by (2.10) from [1] there exists c1 > 0 such that

ϕ
(

c
ϕ̃(t)

t

)

≤ c1ϕ̃(t), t > 0. (3.11)

Assume now that E1 is any µ-measurable subset of E and supp f ⊂ E1.
Applying the Young inequality, (3.11) and (3.10), we obtain the chain of
inequalities

∫

E\E1

ϕ̃
(

˜Kf(x)
)

dµ =
∫

E\E1

ϕ̃( ˜Kf(x))
˜Kf(x)

˜Kf(x) dµ =

=
∫

E\E1

K
( ϕ̃(˜Kf(x))

˜Kf(x)

)

(x)f(x) dµ ≤

≤ 1
2c1c

∫

E\E1

ϕ

(

K
( ϕ̃(˜Kf(x))

˜Kf(x)
χE\E1

)

(x)

)

dµ+
1

2cc1

∫

E1

ϕ̃
(

2cc1f(x)
)

≤

≤ 1
2c1

∫

E\E1

ϕ

(

c
ϕ̃(˜Kf(x))

˜Kf(x)

)

dµ +
1

2cc1

∫

E1

ϕ̃
(

2cc1f(x)
)

dµ ≤

≤ 1
2

∫

E\E1

ϕ̃
(

˜Kf(x)
)

dµ +
1

2cc1

∫

E1

ϕ̃
(

2cc1f(x)
)

dµ,

which allow us to conclude that
∫

E\E1

ϕ̃
(

˜Kf(x)
)

dµ ≤ 1
cc1

∫

E1

ϕ̃
(

2cc1f(x)
)

dµ.

Since E1 is an arbitrary measurable subset of E, from the last inequality
we find by Proposition 2.1 that ϕ̃ ∈ ∆2, i.e., ϕα is quasiconvex for some α,
0 < α < 1.
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Proposition 3.2. Let k satisfy condition (2.1) or (2.1′), ϕ ∈ Φ. If for
some weight functions wi (i = 1, 2, 3, 4) we have the inequality

∫

X
ϕ
(

Kf(x)w1(x)
)

w2(x) dµ ≤ c
∫

X
ϕ
(

cf(x)w3(x)
)

w4(x) dµ

with the constant c independent of f , then ϕ̃ ∈ ∆2.

Proof. It is sufficient to choose the number m such that the set E = {x ∈
X : m−1 ≤ w1(x), m−1 ≤ w2(x), w3(x) ≤ m, w4(x) ≤ m} has a positive
measure and to apply Proposition 3.1 for the set E.

Proof of Theorem 3.2. From the condition w ∈ Ap(ϕ) it follows that w ∈
Ap(ϕ)−ε for some ε, and since p(ϕ) ≤ p′(ϕ̃) we have w ∈ Ap′(ϕ̃)+ε. Next,
applying interpolation Theorem 3.6 for the operator T = K, we obtain (3.2).

Now we shall prove (3.3). Note that the condition w ∈ Ap(ϕ)−ε implies
w1−(p(ϕ)−ε)′ ∈ A(p(ϕ)−ε)′ . Since p(ϕ) < p′(ϕ̃) ≤ (p(ϕ̃) − ε)′, we have w ∈
A(p(ϕ̃)−ε)′ . Hence it follows that w1−(p(ϕ̃)−ε) ∈ Ap(ϕ̃)−ε. Consider the
operator

Tf =
1
w

˜K(fw).

By Theorem B we have the inequalities
∫

X
|Tf(x)|p(ϕ̃)−εw(x) dµ ≤ c1

∫

X
|f(x)|p(ϕ̃)−εw(x) dµ,

∫

X
|Tf(x)|(p(ϕ)−ε)′w(x) dµ ≤ c2

∫

X
|f(x)|(p(ϕ)−ε)′w(x) dµ.

On the other hand, since p(ϕ̃) − ε < p(ϕ̃) < (p(ϕ) − ε)′ we conclude by
Theorem 3.2 that inequality (3.3) holds.

Proof of Theorem 3.3. The validity of this theorem follows from the preced-
ing theorem, Theorems 2.2, 2.3 and Proposition 3.2.

Proof of Theorem 3.4. This theorem is proved similarly to the proof of The-
orem 3.1 using Theorem B.

Proof of Theorem 3.5. The validity of this theorem follows from the preced-
ing theorem, Theorem 2.3, and Proposition 3.2.

Remark 1. In establishing the criteria for weak and strong type inequal-
ities, we virtually used the following property of the operator: for any ball
B there exists a ball B′ of the same volume such that the distance between
these balls does not exceed c1 rad B. For any f ≥ 0, supp f ⊆ B′, the
inequality

Kf(x) ≥ c
νB′

∫

B′
f(y) dµ
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holds for any x ∈ B′.

§ 4. Applications to Classical Singular Integrals

First we shall consider the Hilbert transform

Hf(x) =
∫ ∞

−∞

f(y)
x− y

dy.

Given X = R1, µ is the Lebesgue measure and d is the Euclidean metric,
we conclude from Theorem 3.3 that the statements below are valid.

Theorem 4.1. Let ϕ ∈ Φ. In order that there exist a constant c1 > 0
such that either of the inequalities

∫ ∞

−∞
ϕ
(

Hf(x)
)

w(x) dx ≤ c1

∫ ∞

−∞
ϕ
(

f(x)
)

w(x) dx, (4.1)
∫ ∞

−∞
ϕ̃
(Hf(x)

w(x)

)

w(x) dx ≤ c1

∫ ∞

−∞
ϕ̃
( f(x)

w(x)

)

w(x) dx (4.2)

is fulfilled, it is necessary and sufficient that ϕ ∈ ∆2, ϕα be quasiconvex for
some α, 0 < α < 1, and w ∈ Ap(ϕ).

The validity of our next statement follows from Theorem 3.1.

Theorem 4.2. Let ϕ ∈ Φ. In order that there exist a constant c2 > 0
such that the inequality

∫ ∞

−∞
ϕ
(

Hf(x)w(x)
)

dx ≤ c2

∫ ∞

−∞
ϕ
(

f(x)w(x)
)

dx (4.3)

is fulfilled, it is necessary and sufficient that ϕ ∈ ∆2, ϕα be quasiconvex for
some α, 0 < α < 1, wp(ϕ) ∈ Ap(ϕ), and w−p(ϕ̃) ∈ Ap(ϕ̃).

Let now X = [0,∞), d(x, y) = |x2 − y2|, the measure dµ = x dx. It can
be easily seen that intervals will be balls in X and µB(x, r) ∼ r.

The kernel

k(x, y) =
1

x2 − y2

satisfies conditions (1.1), (1.2), and (2.1).
For odd and even functions the Hilbert transforms are respectively writ-

ten as

Hof(x) =
2
π

∫ ∞

0

yf(y)
x2 − y2 dy,

Hef(x) =
2
π

∫ ∞

0

xf(y)
x2 − y2 dy.
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Obviously, Hof = Kf and Hef(x) = xK
( f
·
)

(x). Also note that the
function w(x) = |x| ∈ A2 and therefore the operator K is bounded in
L2(X, x dx). Now we are able to apply Theorems 3.3 and 3.5 and to conclude
that the statements below are valid.

Theorem 4.3. Let ϕ ∈ Φ. Then the following conditions are equivalent:
(i) ϕ ∈ ∆2, ϕα is qusiconvex for some α, 0 < α < 1, and

sup
( 1

b2 − a2

∫ b

a
w(x) dx

)( 1
b2 − a2

∫ b

a
w1−p′(ϕ)xp′(ϕ)dx

)p(ϕ)−1
, (4.4)

where the exact upper bound is taken with respect to all intervals [a, b] ⊂
[0,∞);

(ii) there exists c > 0 such that
∫ ∞

0
ϕ
(

Hof(x)
)

w(x) dx ≤ c
∫ ∞

0
ϕ
(

f(x)
)

w(x) dx; (4.5)

(iii) there exists c > 0 such that
∫ ∞

0
ϕ̃
(xHof(x)

w(x)

)

w(x) dx ≤ c
∫ ∞

0
ϕ̃
(xf(x)

w(x)

)

w(x) dx. (4.6)

On the other hand, since

Hef(x) = xHo
(f
y

)

(x),

by Theorem 4.2 we conclude that the following theorem is valid.

Theorem 4.4. Let ϕ ∈ Φ. Then the following two conditions are equiv-
alent:

(i) the inequality
∫ ∞

0
ϕ
(Hef(x)

w(x)

)

w(x) dx ≤ c
∫ ∞

0
ϕ
( f(x)

w(x)

)

w(x) dx (4.7)

holds;
(ii) ϕ ∈ ∆2, ϕα is quasiconvex for some α, 0 < α < 1, and we have

sup
( 1
b2−a2

∫ b

a
w(x)dx

)( 1
b2−a2

∫ b

a
w1−p′(ϕ̃)xp′(ϕ̃)dx

)p(ϕ̃)−1
<∞, (4.8)

where the exact upper bound is taken with respect to all intervals [a, b] ⊂
[0,∞).

For Calderon–Zygmund singular integrals in Rn we conclude by Theo-
rem 3.1 that the following statement is true.
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Theorem 4.5. Let

Kf(x) =
∫

Rn
k(x− y)f(y) dy,

where the kernel k satisfies the conditions:

‖̂k‖∞ < c, |k(x)| ≤ c|x|−n

|k(x)− k(x− y) ≤
cω

(

|y|
|x|

)

|x|n
for |y| < |x|

2
,

where ω is an increasing function satisfying the condition
∫ 1

0

ω(s)
s

ds < ∞.

If ϕ ∈ ∆2, ϕα is quasiconvex for some α, 0 < α < 1, w ∈ Ap(ϕ), then we
have the inequalities

∫

Rn
ϕ
(

Kf(x)
)

w(x) dx ≤ c
∫

Rn
ϕ
(

f(x)
)

w(x) dx, (4.9)
∫

Rn
ϕ̃
(Kf(x)

w(x)

)

w(x) dx ≤ c
∫

Rn
ϕ̃
( f(x)

w(x)

)

w(x) dx (4.10)

with the constant c independent of f .
Further, if ϕ ∈ ∆2, ϕα is quasiconvex for some α, 0 < α < 1, wp(ϕ) ∈

Ap(ϕ), w−p(ϕ̃) ∈ Ap(ϕ̃), then we have the inequality

∫ ∞

−∞
ϕ
(

Kf(x)w(x)
)

dx ≤ c
∫ ∞

−∞
ϕ
(

f(x)w(x)
)

dx. (4.11)

Theorem 4.6. If

k(x) =
Ω(x)
|x|n

,

where Ω : Rn → R1 is a homogeneous function of degree zero not vanishing
identically on the sphere Sn−1 and satisfying the Lipschitz condition of order
α, 0 < α ≤ 1, on the sphere Sn−1,

∫

Sn−1
Ω(x′) dx′ = 0.

Then the simultaneous fulfillment of inequality (4.9) for K and ˜K is equiv-
alent to that of the combination of conditions: ϕ ∈ ∆2, ϕα is quasiconvex
for some α, 0 < α < 1, and w ∈ Ap(ϕ).

An analogous statement holds for (4.10).
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Theorem 4.7. Under the conditions of Theorem 4.6 for the kernel k
the simultaneous fulfillment of (4.11) for K and ˜K is equivalent to that of
the combination of conditions: ϕ ∈ ∆2, ϕα is quasiconvex for some α,
0 < α < 1, wp(ϕ) ∈ Ap(ϕ) and w−p(ϕ̃) ∈ Ap(ϕ̃).

In particular, the above-formulated theorems are valid for Riesz trans-
forms

Rjf(x) =
∫

Rn

xj − yj

|x− y|n+1 f(y) dy,

j = 1, . . . , n, where x = (x1, . . . , xn).
Let now Γ ⊂ C be a connected rectifiable curve and ν be an arc-length

measure on Γ. By definition, Γ is regular if

ν
(

Γ ∩B(z, r)
)

≤ cr

for every z ∈ C and r > 0.
For r less than half the diameter of Γ we have the reverse inequality

ν
(

Γ ∩B(z, r)
)

≥ r

for all z ∈ Γ. When equipped with ν and the Euclidean metric, a regular
curve becomes a homogeneous type space. Then k(z1, w) = (z−w)−1 is the
standard kernel and the Cauchy integral

SΓf(t) =
∫

Γ

f(t)
t− τ

dν

is defined as the Calderon–Zygmund singular operator on a homogeneous
type space.

G. David [7] has shown that the operator SΓ is bounded in Lp(Γ, ν) iff Γ
is regular.

Theorem 4.8. Let Γ be a regular curve. The following conditions are
equivalent:

(i) ϕ ∈ ∆2, ϕα is quasiconvex for some α, 0 < α < 1, and

sup
(1

r

∫

B(z,r)∩Γ

w(x) dx
)(1

r

∫

B(z,r)∩Γ

w1−p′(ϕ)dν
)p(ϕ)−1

< ∞, (4.12)

where the supremum is taken over all balls;
(ii) there exists a positive constant c > 0 such that

∫

Γ
ϕ
(

SΓf(t)
)

w(t) dν ≤ c
∫

Γ
ϕ
(

f(t)
)

w(t) dν (4.13)

with the constant independent of f .

An analogue of Theorem 4.2 also holds for the operator SΓ.
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Proof of Theorem 4.8. The implication (4.12)⇒(4.13) follows from David’s
result, Theorem 3 from [8], and Theorem 3.2 above.

On the other hand, for an arbitrary point z ∈ Γ fix a ball B(z0, r) of
sufficiently small radius r. Let a point z′0 be chosen such that |z′0−z0| = 3r.
For any z ∈ B(z0, r) and z′ ∈ B(z′0, r) we have |z − z′| > r and, as one can
easily see, Re (z− z′) or Im (z− z′) preserve their sign and are greater than
r. Therefore condition (2.1) is fulfilled for the kernel Re 1

z−z′ or Im 1
z−z′ .

Since the inequality

|SΓf(t)| ≥ |Re (SΓf)(t)|+ |Im (SΓf)(t)| ≥ c
r

∫

B(z′,r)∩Γ

f(τ) dν

is fulfilled for f ≥ 0, supp f ⊂ B(z′0, r)∩Γ, and t ∈ B(z0, r)∩Γ, the validity
of the implication (ii)⇒(i) follows from Theorem 3.4 and Remark 3.1.

§ 5. Appendix

The above-described methods of investigation make it possible to extend
the results of §§2, 3, and 4 to vector-valued functions as well.

Let X be a homogeneous type space. Consider the kernels k(x, y) defined
on X ×X with values in L(A,B) which is a space of all bounded operators
from the Banach space A to the Banach space B. Introduce the operator
norm | · | = | · |L(A,B). It is assumed that |k(x, ·)| is locally integrable apart
from x and the standard conditions (1.1) and (1.2) with the norm | · | for
Calderon–Zygmund kernels are satisfied. Moreover, the operator

Kf(x) =
∫

X
k(x, y)f(y) dµ

will be assumed to be bounded from Lp0
A (X, µ) into Lp0

B (X, µ) for some p0,
1 < p0 < ∞.

To illustrate the above we give

Theorem 5.1. Let ϕ ∈ Φ∩∆2, ϕα be quasiconvex for some α, 0<α< 1.
Then the inequality

∫

X
ϕ
(

|Kf(x)|B
)

w(x) dµ ≤ c
∫

X
ϕ
(

|f(x)|A
)

w(x) dµ

is fulfilled.

An analogue of Theorem 3.4 also holds.
Let us further consider the case where sufficient conditions convert to

criteria. Assume that A = B is a Banach space with an unconditional
base (bj)j∈N. Then a B-valued measurable function f(x) is the same as a
sequence of measurable functions (fj(x))j∈N such that

∑

j fj(x)bj ∈ B for
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every x ∈ X. If B is reflexive, then the dual base (b∗j )j∈N is an unconditional
base of B∗.

Define
Tf(x) =

∑

j

kfj(x)bj

If the kernel k : X × X → R1, then by condition (2.1) (or (2.1′)) we
have criteria of weighted inequalities similar to Theorems 3.3 and 3.1. It
is obvious that conversions of theorems of type 5.1 are obtained from the
corresponding theorems for scalar-valued functions.
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