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ON PROPER OSCILLATORY AND VANISHING AT
INFINITY SOLUTIONS OF DIFFERENTIAL EQUATIONS

WITH A DEVIATING ARGUMENT

I. KIGURADZE AND D. CHICHUA

Abstract. Sufficient conditions are found for the existence of mul-
tiparametrical families of proper oscillatory and vanishing-at-infinity
solutions of the differential equation

u(n)(t) = g
(

t, u(τ0(t)), . . . , u(m−1)(τm−1(t))
)

,

where n ≥ 4, m is the integer part of n
2 , g : R+ × Rm → R is a

function satisfying the local Carathéodory conditions, and τi : R+ →
R (i = 0, . . . , m− 1) are measurable functions such that τi(t) → +∞
for t → +∞ (i = 0, . . . , m− 1).

Introduction

In this paper we consider the differential equation

u(n)(t) = g
(

t, u(τ0(t)), . . . , u(m−1)(τm−1(t))
)

(0.1)

and its particular cases

u(n)(t) = p(t)
∣

∣u(τ(t))
∣

∣

λ
sgnu(τ(t)), (0.2)

u(n)(t) = p(t)u(τ(t)), (0.3)

u(n)(t) =
m−1
∑

i=0

pi(t)u(i)(τi(t)). (0.4)

Throughout the paper it will be assumed that n ≥ 4, m is integer part of the
number n

2 , g : R+×Rm → R is a function satisfying the local Carathéodory
conditions, p : R+ → R and pi : R+ → R (i = 0, . . . , m − 1) are locally
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summable functions, while τi : R+ → R (i = 0, . . . ,m− 1) and τ : R+ → R
are measurable functions such that

lim
t→+∞

τi(t) = +∞ (i = 0, . . . , m− 1) (0.5)

and

lim
t→+∞

τ(t) = +∞. (0.6)

Let t0 ∈ R+. A function u : [t0,+∞[→ R is called a solution of equa-
tion (0.1) if it is locally absolutely continuous together with its derivatives
up to order n− 1 inclusive and if there exists an m− 1 times continuously
differentiable function u : R → R such that u(t) = u(t) for t ≥ t0 and the
equality

u(n)(t) = g
(

t, u(τ0(t)), . . . , u(m−1)(τm−1(t))
)

.

is fulfilled almost everywhere on [t0, +∞[.
A solution u of equation (0.1) determined on the interval [t0,+∞[ is

called proper if it is not identically zero in anyone of the neighborhoods of
+∞ and is called vanishing-at-infinity if u(t) → 0 for t → +∞.

A proper solution is called oscillatory if it has a sequence of zeros con-
verging to +∞, and nonoscillatory otherwise.

In the papers dealing with oscillatory properties of differential equations
with deviating arguments it is always assumed a priori that the considered
equation has proper solutions and sufficient conditions are established for
these solutions to be oscillatory (see, for example, [1–9] and the references
cited therein). However, the problem of the existence of proper solutions is
far from being trivial and has not yet been investigated for a wide class of
equations.1

Therefore the question as to the existence of at least one oscillatory so-
lution of such equations remains open. We do not know, for example, of a
single result on the existence of oscillatory solutions of equations like (0.1),
(0.2), or (0.3) when

τi(t) > t (i = 0, . . . , m− 1), τ(t) > t for t ≥ t0, (0.7)

though such equations occur rather frequently in the oscillation theory. Fur-
ther, it is not likewise clear for us whether (0.1), (0.2) or (0.3) have at least
one proper solution vanishing-at-infinity. Hence this paper deals with these
two open problems.

In §1 we prove, by means of the results of [10], theorems on the existence
and uniqueness of two auxiliary boundary value problems with integral con-
ditions for differential equations with a deviating argument. Using these

1Equations with a delay for which this problem is studied in [1] are an exception.
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theorems and the oscillation theorems from [11], in §§2 and 3 we estab-
lish sufficient conditions for equations (0.1)–(0.4) to have multiparametric
families of proper oscillatory and vanishing-at-infinity solutions.2

Throughout the paper the following notation will be used.
µk

i (i = 0, 1, . . . ; k = 2i, 2i + 1, . . . ) are the numbers given by the recur-
rent relations

µi+1
0 =

1
2
, µ2i

i = 1, µk
i+1 = µk−1

i+1 + µk−2
i (i = 0, 1, . . . ; k = 2i + 3, . . . ).

m is the integer part of n
2 ; m0 is the integer part of n

4 ;

γn =
m0−1
∑

j=0

n!
(2m− 2− 4j)!

µn
m−1−2j ;

γ0n =
m− 1

4

[ (2m)!γn

n!µn
m

+
(m− 2)(4m2 −m− 3)

3
+ 4

]m−1
− (−1)m n!

2
.

§ 1. Auxiliary Boundary Value Problems

For the differential equations

u(n)(t) = h(t, u(t), u(τ0(t)), . . . , u(m−1)(τm−1(t))), (1.1)

u(n)(t) =
m−1
∑

i=0

pi(t)u(i)(τi(t)) + q(t) (1.1′)

we consider the boundary value problems

u(i)(0) = ci (i = 0, . . . , m− 1),
∫ +∞

0

∣

∣u(m)(t)
∣

∣

2
dt < +∞; (1.2)

u(i)(0) = ci (i = 0, . . . , m− 1),
∫ +∞

0
t2j

∣

∣u(j)(t)
∣

∣

2
dt < +∞ (j = 0, . . . , m),

(1.3)

where n ≥ 4, ci ∈ R (i = 0, . . . , m− 1),

h : R+ ×Rm+1 → R satisfies the local

Carathéodory conditions, (1.4)

pi : R+ → R (i = 0, . . . , m− 1) and q : R+ → R are the locally summable
functions, and τi : R+ → R+ (i = 0, . . . , m − 1) are measurable functions
satisfying condition (0.5).

2When τi(t) ≡ t (i = 0, . . . , m − 1) and τ(t) ≡ t, sufficient conditions for equations
(0.1)–(0.4) to have proper oscillatory and vanishing-at-infinity solutions are obtained in
[11–15].
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Alongside with the notation listed in the Introduction we shall need in
this section the following notation as well:

τ0∗(t) = min{t, τ0(t)}, τ∗0 (t) = max{t, τ0(t)}.

L is the space of locally Lebesgue integrable functions v : R+ → R with
a topology of convergence in the mean on each segment from R+.

Cn−1 is the topological space of (n− 1)-times continuously differentiable
real functions given on R+. By the convergence of the sequence (uk)+∞k=1
of elements from this space we mean the uniform convergence of sequences
(u(i)

k )+∞k=1 (i = 0, . . . , n− 1) on each finite segment from R+.

Cn−1,m
0 =

{

u ∈ Cn−1 :
∫ +∞

0
|u(m)(t)|2dt < +∞

}

;

Cn−1,m =
{

u ∈ Cn−1 :
∫ +∞

0
t2i|u(i)(t)|2dt < +∞ (i = 0, . . . , m)

}

;

‖u‖0,m =
[

m−1
∑

i=0

|u(i)(0)|2 +
∫ +∞

0
|u(m)(t)|2dt

] 1
2
;

‖u‖m =
[

∫ +∞

0
(1 + t)2m|u(m)(t)|2dt

] 1
2
.

Theorem 1.1. Let on R+ ×Rm+1 the conditions

|h(t, x, x0, x1, . . . , xm−1)− h(t, x, x, 0, . . . , 0)| ≤

≤ a10(t)|x− x0|λ0 +
m−1
∑

i=1

a1i(t)|xi|λi , (1.5)

(−1)n−m−1h(t, x, x, 0, . . . , 0)x ≥ −a(t), (1.6)

be fulfilled, where λi ∈ [0, 1] (i = 0, . . . , m − 1), a1i : R+ → R+ (i =
0, . . . ,m− 1), and a : R+ → R+ are measurable functions such that

∫ +∞

0
(1 + t)n−m− 1

2
[

a10(t)
(

1 + τ∗0 (t)
)(m− 3

2 )λ0 |τ0(t)− t|λ0 +

+
m−1
∑

i=1

a1i(t)
(

1 + τi(t)
)(m−i− 1

2 )λi
]

dt < µn
m, (1.7)

∫ +∞

0
(1 + t)n−2ma(t)dt < +∞. (1.8)

Then problem (1.1), (1.2) has at least one solution.
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Proof. Let r =
∑m−1

i=0 |ci|. By (1.7) and (1.8) there is a positive number ε
such that the functions

a1(t) = (1 + ε)(1 + t)m− 1
2

[

a10(t)
(

1 + τ∗0 (t)
)(m− 3

2 )λ0 |τ0(t)− t|λ0 +

+
m−1
∑

i=1

a1i(t)
(

1 + τi(t)
)(m−i− 1

2 )λi
]

,

a2(t) =
(

1 +
1
ε

)

(1 + r)2a1(t) + a(t)

(1.9)

will satisfy the inequalities
∫ +∞

0
(1+t)n−2ma1(t)dt<µn

m,
∫ +∞

0
(1+t)n−2ma2(t)dt<+∞. (1.10)

For any u ∈ Cn−1 we set

χ(u) =











































1 for
m−1
∑

i=0

|u(i)(0)| ≤ r

r + 1−
m−1
∑

i=0

|u(i)(0)| for r <
m−1
∑

i=0

|u(i)(0)| ≤ 1 + r

0 for
m−1
∑

i=0

|u(i)(0)| > 1 + r

,

f(u)(t) = χ(u)h
(

t, u(t), u(τ0(t)), . . . , u(m−1)(τm−1(t))
)

.

The operator f : Cn−1 → L is continuous on account of (1.4). On the other
hand, it is obvious that problem (1.1),(1.2) is solvable if and only if the
functionally differential equation

u(n)(t) = f(u)(t) (1.11)

has at least one solution satisfying the boundary conditions (1.2).
Using Theorem 1.1 from [10], we shall prove below that problem (1.11),

(1.2) is solvable.
If u ∈ Cn−1,m, then by (1.5) and (1.6) we obtain

(−1)n−m−1u(t)f(u)(t) =

= (−1)n−m−1χ(u)
[

h(t, u(t), u(τ0(t)), . . . , u(m−1)(τm−1(t)))−
−h(t, u(t), u(t), 0, . . . , 0)

]

u(t) +

+(−1)n−m−1χ(u)h(t, u(t), u(t), 0, . . . , 0)u(t) ≥

≥ −a10(t)χ(u)|u(τ0(t))− u(t)|λ0 |u(t)| −
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−
m−1
∑

i=1

a1i(t)χ(u)|u(i)(τi(t))|λi |u(t)| − a(t), (1.12)

|f(u)(t)| ≤ |h(t, u(t), u(t), 0, . . . , 0)|+ χ(u)a10(t)|u(τ0(t))− u(t)|λ0 +

+χ(u)
m−1
∑

i=1

a1i(t)|u(τi(t))|λi ≤

≤ b0(t, |u(t)|) + χ(u)
m−1
∑

i=0

a1i(t)|u(i)(τi(t))|, (1.13)

where

b0(t, x) =
m−1
∑

i=0

a1i(t) + a10(t)x +

+ max
{

|h(t, s, s, 0, · · · , 0)| : 0 ≤ s ≤ x
}

. (1.14)

On the other hand, for an arbitrary i ∈ {0, . . . ,m− 1} we have

|u(i)(t)| =
∣

∣

∣

m−1
∑

j=i

tj−i

(j − i)!
u(j)(0) +

1
(m− i− 1)!

∫ t

0
(t− s)m−i−1u(m)(s)ds

∣

∣

∣ ≤

≤ (1 + t)m−1−i
m−1
∑

j=0

|u(j)(0)|+

+
1

(m− i− 1)!

(

∫ t

0
(t− s)2m−2i−2ds

) 1
2
(

∫ t

0
|u(m)(s)|2ds

) 1
2 ≤

≤ (1 + t)
m−i− 1

2
[

m−1
∑

j=0

|u(j)(0)|+
(

∫ +∞

0
|u(m)(s)|2ds

) 1
2
]

≤

≤ (1 + t)
m−i− 1

2
[

m−1
∑

i=0

|u(i)(0)|+ ‖u‖0,m
]

≤

≤ (1 + t)m−i− 1
2

[(

1 +
1
ε

)(
m−1
∑

i=0

|u(i)(0)|
)2

+ (1 + ε)‖u‖20,m

] 1
2
. (1.15)

Therefore

χ(u)|u(i)(τi(t))|λi |u(t)| ≤

≤ (1 + τi(t))(m−i− 1
2 )λi(1 + t)m− 1

2

[(

1 +
1
ε

)

(1 + r)2 +

+(1 + ε)‖u‖20,m

]
1+λi

2 ≤
(

1 + τi(t)
)(m−i− 1

2 )λi(1 + t)m− 1
2 ×
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×
[

1 +
(

1 +
1
ε

)

(1 + r)2 + (1 + ε)‖u‖20,m

]

(1.16)

and

χ(u)|u(τ0(t))− u(t)|λ0 |u(t)| = χ(u)
∣

∣

∣

∫ τ0(t)

t
u′(s)ds

∣

∣

∣

λ0

|u(t)| ≤

≤ (1 + τ∗0 (t))(m−
3
2 )λ0 |τ0(t)− t|λ0(1 + t)m− 1

2 ×

×
[

1 +
(

1 +
1
ε

)

(1 + r)2 + (1 + ε)‖u‖20,m

]

. (1.17)

By (1.9) and (1.15)–(1.17) it follows from (1.12) and (1.13) that

(−1)n−m−1u(t)f(u)(t) ≥ −a1(t)‖u‖20,m − a2(t),
∣

∣f(u)(t)
∣

∣ ≤ b
(

t, |u(t)|, ‖u‖0,m
)

, (1.18)

where

b(t, x, y) = b0(t, x) +

+
m−1
∑

i=0

a1i(t)
(

1 + τi(t)
)m−i− 1

2
[(

1 +
1
ε

)

(1 + r)2 + (1 + ε)y2
] 1

2
.

Moreover, the functions a1 and a2 satisfy inequalities (1.10) and b the con-
dition

lim
t→0

y→+∞

(

y−2
∫ t

0
b(s, x, y)ds

)

= 0 for x ∈ R+. (1.19)

Thus all the conditions of Theorem 1.1 from [10] are fulfilled, thereby guar-
anteeing the solvability of problem (1.11),(1.2).

Similarly to Theorem 1.1 we prove

Theorem 1.1′. Let on R+ ×Rm+1 the conditions
∣

∣h(t, x, x0, x1, ..., xm−1)−h(t, x, x, x1, ..., xm−1)
∣

∣≤a1(t)|x−x0|λ0 , (1.5′)

(−1)n−m−1h(t, x, x, x1, . . . , xm−1)x ≥ −a(t), (1.6′)

be fulfilled, where λ0 ∈ [0, 1], a1 : R+ → R+ and a : R+ → R+ are measur-
able functions such that

∫ +∞

0
(1 + t)n−m− 1

2
(

1 + τ∗0 (t)
)(m− 3

2 )λ0
∣

∣τ0(t)− t
∣

∣

λ0a1(t)dt < µn
m (1.7′)
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and inequality (1.8) is fulfilled. Besides, let for some t0 > 0 on the set
[0, t0]×Rm+1 the inequality

∣

∣h(t, x, x, x1, . . . , xm−1)
∣

∣ ≤ b0
(

t, |x|
)

m−1
∑

i=1

(1 + x2
i )

hold, where b0 : [0, t0] × R+ → R+ is the function summable with respect
to the first argument and nondecreasing with respect to the second. Then
problem (1.1), (1.2) has at least one solution.

Theorem 1.2. Let on R+ ×Rm the conditions

|h(t, x, x0, ..., xm−1)−h(t, x, x0, ..., xm−1)|≤
m−1
∑

i=0

a1i(t)|xi−xi|, (1.20)

(−1)n−m−1[h(t, x, x0, . . . , xm−1)−
−h(t, x, x0, . . . , xm−1)

]

(x− x) ≥ a00(t)(x− x)2, (1.21)

(−1)n−m−1[h(t, x, x0, x1, . . . , xm−1)−
−h(t, x, x0, x1, . . . , xm−1)

]

(x0 − x0) ≥ a01(t)(x0 − x0)2, (1.22)

be fulfilled, where a1i : R+ → R+ (i = 0, · · · ,m − 1) and a0j : R+ → R
(j = 0, 1) are measurable functions satisfying inequality (1.7) for λi = 1
(i = 0, . . . ,m− 1) and

a0(t) = a00(t) + a01(t) ≥ 0 for t > 0. (1.23)

Then problem (1.1), (1.2) has at most one solution. If, however, in addition
to (1.7) and (1.20)–(1.23) we have the conditions

h2(t, 0, · · · , 0) ≤ l(t)a0(t) for t > 0,
∫ +∞

0
(1 + t)n−2m l(t)dt < +∞ , (1.24)

then problem (1.1), (1.2) has one and only one solution.

Proof. First we shall prove the uniqueness of the solution. Let u and u be
two arbitrary solutions of problem (1.1), (1.2). It is assumed that v(t) =
u(t)− u(t),

∆0(t) = h
(

t, u(t), u(τ0(t)), . . . , u(m−1)(τm−1(t))
)

−

−h
(

t, u(t), u(τ0(t)), . . . , u(m−1)(τm−1(t))
)

, (1.25)

∆1(t) = h
(

t, u(t), u(τ0(t)), u′(τ1(t)), . . . , u(m−1)(τm−1(t))
)

−

−h
(

t, u(t), u(τ0(t)), u′(τ1(t)), . . . , u(m−1)(τm−1(t))
)

, (1.26)

∆(t) = h
(

t, u(t), u(τ0(t)), u′(τ1(t)), . . . , u(m−1)(τm−1(t))
)

−
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−h
(

t, u(t), u(τ0(t)), u′(τ1(t)), . . . , u(m−1)(τm−1(t))
)

, (1.27)

l1(t) =

{

∆1(t)
v(τ0(t))

for v(τ0(t)) 6= 0

0 for v(τ0(t)) = 0
. (1.28)

It is clear that

v(i)(0) = 0 (i = 0, . . . ,m− 1), v ∈ Cn−1,m
0 .

Therefore
∣

∣v(i)(t)
∣

∣ ≤ (1 + t)m−i− 1
2 ‖v‖0,m (i = 0, . . . ,m− 1),

∣

∣v(τ0(t))− v(t)
∣

∣ ≤
(

1 + τ∗0 (t)
)m− 3

2
∣

∣τ0(t)− t
∣

∣‖v‖0,m.

On the other hand, on account of (1.20)–(1.23) and (1.25)–(1.28) we have

(−1)n−m−1∆0(t)v(t) ≥ a00(t)v2(t), (−1)n−m−1l1(t) ≥ a01(t),

|l1(t)| ≤ a10(t), |∆(t)| ≤
m−1
∑

i=1

a1i(t)|v(i)(τi(t))|
(1.29)

and

(−1)n−m−1v(t)v(n)(t) = (−1)n−m−1∆0(t)v(t) + (−1)n−m−1l1(t)v2(t) +

+(−1)n−m−1l1(t)
[

v(τ0(t))− v(t)
]

v(t) + +(−1)n−m−1∆(t)v(t) ≥
≥ a0(t)v2(t)− |l1(t)||v(τ0(t))− v(t)||v(t)| − |∆(t)||v(t)| ≥

≥ −a10(t)|v(τ0(t))− v(t)||v(t)| −
m−1
∑

i=1

a1i(t)|v(i)(τi(t))||v(t)|.

Therefore

(−1)n−m(1 + t)n−2mv(t)v(n)(t) ≤ (1 + t)n−2ma(t)‖v‖0,m, (1.30)

where

a(t)=(1+t)m− 1
2

[

a10(t)
(

1+τ∗0 (t)
)m− 3

2 |τ0(t)−t|+
m−1
∑

i=1

a1i(t)
(

1+τi(t)
)m−i− 1

2
]

.

On integrating inequality (1.30) from 0 to t and applying Lemmas 4.1
and 4.4 from [11], we obtain

µn
m

∫ t

0

∣

∣v(m)(s)
∣

∣

2
ds ≤ w(t) + ‖v‖20,m

∫ t

0
(1 + s)n−2ma(s)ds,



404 I. KIGURADZE AND D. CHICHUA

where

w(t) = (n− 2m)
n−m−1

∑

i=0

(−1)n−m−i(i + 1)v(i)(t)v(n−2−i)(t)−

−(1 + t)n−2m
n−m−1

∑

i=0

(−1)n−m−iv(i)(t)v(n−1−i)(t);

moreover,
lim inf
t→+∞

|w(t)| = 0.

It is therefore clear that

µn
m‖v‖20,m ≤ ‖v‖20,m

∫ +∞

0
(1 + t)n−2ma(s)ds.

Hence by (1.7) we find that ‖v‖0,m = 0. Thus problem (1.1), (1.2) has at
most one solution.

To complete the proof of the theorem it remains to show that if in addition
to (1.7) and (1.20)–(1.23) condition (1.24) is fulfilled, too, then problem
(1.1), (1.2) is solvable.

By virtue of (1.21)–(1.24)

(−1)n−m−1h(t, x, x, 0, . . . , 0)x =

= (−1)n−m−1[h(t, x, x, 0, . . . , 0)− h(t, 0, x, . . . , 0)
]

x +

+(−1)n−m−1[h(t, 0, x, . . . , 0)−h(t, 0, . . . , 0)
]

x+(−1)n−m−1h(t, 0, . . . , 0)x≥

≥ a0(t)x2 − l
1
2 (t)a

1
2
0 (t)|x| ≥ −a(t),

where a(t) = 1
4 l(t) satisfies condition (1.8). Thus all the conditions of

Theorem 1.1 are fulfilled, thereby guaranteeing the solvability of problem
(1.1), (1.2).

When h(t, x, x0, x1, . . . , xm−1) =
∑m−1

i=0 pi(t)xi + q(t) Theorem 1.2 im-
plies

Corollary 1.1. Let (−1)n−m−1p0(t) ≥ 0 for t ∈ R+,
∫ +∞

0
(1 + t)n−m− 1

2
[

|p0(t)|
(

1 + τ∗0 (t)
)m− 3

2 |τ0(t)− t|+

+
m−1
∑

i=1

|pi(t)|(1 + τi(t))m−i− 1
2
]

dt < µn
m,

q2(t) ≤ l(t)|p0(t)| for t ∈ R+,
∫ +∞

0
(1 + t)n−2ml(t)dt < +∞.

Then problem (1.1′), (1.2) has one and only one solution.
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Theorem 1.3. Let on R+ ×Rm+1 condition (1.5) and

(−1)n−m−1h(t, x, x, 0, . . . , 0)x ≥ γ(1 + t)−nx2 − a2(t) (1.31)

be fulfilled, where λi ∈ [0, 1] (i = 0, . . . , m − 1), γ is a positive constant,
a1i : R+ → R+ (i = 0, . . . , m − 1), and a2 : R+ → R+ are measurable
functions such that

δ =
n!

(2m)!
µn

m −
∫ +∞

0
(1 + t)n− 1

2
[

a10(t)
(

1 + τ0∗(t)
)− 3

2 λ0 |τ0(t)− t|λ0 +

+
m−1
∑

i=1

a1i(t)(1 + τi(t))−(i+ 1
2 )λi

]

dt > 0, (1.32)

∫ +∞

0
(1 + t)na2(t)dt < +∞, (1.33)

γ>
m− 1

4
γn

[γn

δ
+

(m−2)(4m2−m−3)
3

+4
]m−1

−(−1)m n!
2

. (1.34)

Then problem (1.1), (1.3) has at least one solution.

Proof. Problem (1.1), (1.3) is equivalent to problem (1.11), (1.3), where
f(u)(t) = h(t, u(t), u(τ0(t)), . . . , u(m−1)(τm−1(t))). Using Theorem 1.3 from
[10], we shall prove that problem (1.11), (1.2) is solvable. First of all we
would like to note that the operator f : Cn−1 → L is continuous on account
of (1.4). On the other hand, for any u ∈ Cn−1,m inequalities (1.5) and
(1.31) imply

(−1)n−m−1u(t)f(u)(t) =

= (−1)n−m−1[h(t, u(t), u(τ0(t)), . . . , u(m−1)(τm−1(t)))−
−h(t, u(t), u(t), 0, . . . , 0)

]

u(t) + (−1)n−m−1h(t, u(t), u(t), 0, . . . , 0)u(t) ≥

≥ −a10(t)|u(τ0(t))− u(t)|λ0 |u(t)| −
m−1
∑

i=1

a1i(t)|u(i)(τi(t))|λi |u(t)|+

+γ(1 + t)−n|u(t)|2 − a2(t). (1.35)

However, for any u ∈ Cn−1,m and i ∈ {0, . . . ,m− 1} we have the represen-
tation

u(i)(t) =
1

(m− 1− i)!

∫ t

+∞
(t− s)m−1−iu(m)(s)ds,

Therefore

|u(i)(t)| ≤
∫ +∞

t
(1 + s)m−1−i|u(m)(s)|ds ≤
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≤
[
∫ +∞

t
(1 + s)−2−2ids

] 1
2
[

∫ +∞

t
(1 + s)2m|u(m)(s)|2ds

] 1
2 ≤

≤ (1 + t)−i− 1
2 ‖u‖m (i = 0, . . . ,m− 1) , (1.36)

|u(τ0(t))− u(t)|λ0 |u(t)| =
∣

∣

∣

∫ τ0(t)

t
u′(s)ds

∣

∣

∣

λ0

|u(t)| ≤

≤ (1 + τ0∗(t))−
3
2 λ0(1 + t)−

1
2 |τ0(t)− t|λ0‖u‖1+λ0

m ≤

≤
(

1 + τ0∗(t)
)− 3

2 λ0(1 + t)−
1
2
∣

∣τ0(t)− t
∣

∣

λ0
(

1 + ‖u‖2m
)

. (1.37)

On account of (1.36) and (1.37) inequality (1.35) implies

(−1)n−m−1u(t)f(u)(t) ≥ γ(1 + t)−n|u(t)|2 − a1(t)‖um‖2 − ã2(t),

where

a1(t) = (1 + t)
− 1

2
[

a10(t)
(

1 + τ0∗(t)
)− 3

2 λ0 |τ0(t)− t|λ0 +

+
m−1
∑

i=1

a1i(t)
(

1 + τi(t)
)−(i+ 1

2 )λi
]

, ã2(t) = a1(t) + a2(t). (1.38)

Moreover, by virtue of (1.5), (1.14), and (1.36), inequality (1.18) holds,
where

b(t, x, y) = b0(t, x) +
m−1
∑

i=0

a1i(t)
(

1 + τi(t)
)−i− 1

2 y (1.39)

and b0 is the function given by equality (1.14). On the other hand, by
(1.32), (1.38) it is obvious that

δ =
n!

(2m)!
µn

m −
∫ +∞

0
(1 + t)na1(t)dt > 0 (1.40)

and the function b satisfies condition (1.19).
Thus all the conditions of Theorem 1.3 from [10] are satisfied, thereby

guaranteeing the solvability of problem (1.11), (1.3).

Similarly to Theorem 1.3 we prove

Theorem 1.3′. Let on R+ ×Rm+1 the conditions (1.5′) and

(−1)n−m−1h(t, x, x, x1, . . . , xm−1)x ≥ γ(1 + t)−nx2 − a2(t)

be fulfilled, where λ0 ∈ [0, 1], γ is a positive constant and ai : R+ → R+

(i = 1, 2) are measurable functions such that

δ =
n!

(2m)!
µn

m −
∫ +∞

0
(1 + t)n− 1

2
(

1 + τ0∗(t)
)− 3

2 λ0
∣

∣τ0(t)− t
∣

∣

λ0a1(t)dt > 0
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and inequalities (1.33) and (1.34) are fulfilled. Moreover, let for some t0 > 0
on [0, t0]×Rm+1 the inequality

∣

∣h(t, x, x, x1, . . . , xm−1)
∣

∣ ≤ b0
(

t, |x|
)

m−1
∑

i=1

(1 + x2
i )

hold, where b0 : [0, t0]×R+ → R+ is a function summable with respect to the
first argument and nondecreasing with respect to the second. Then problem
(1.1), (1.3) has at least one solution.

Theorem 1.4. Let on R+×Rm+1 conditions (1.20)− (1.22) be fulfilled,
where a1i : R+ → R+ (i = 0, . . . , m − 1) and a0j : R+ → R (j = 0, 1) are
measurable functions, and there exists a positive number γ such that

a0(t) = a00(t) + a01(t) > γ(1 + t)−n for t ∈ R+ (1.41)

and inequalities (1.32) and (1.34) hold for λi = 1 (i = 0, . . . , m− 1). Then
problem (1.1), (1.3) has at least one solution. If in addition to (1.20)−(1.22),
(1.32), (1.34), and (1.41) the condition

∫ +∞

0
(1 + t)n h2(t, 0, . . . , 0)

a0(t)
dt < +∞ (1.42)

is fulfilled, too, then problem (1.1), (1.3) has one and only one solution.

Proof. As noted above, problem (1.1), (1.3) is equivalent to problem (1.11),
(1.3), where f(u)(t) = h(t, u(t), u(τ0(t)), . . . , u(m−1)(τm−1(t))). Let us show
that (1.11), (1.3) has at most one solution.

Let u and u be arbitrary functions from Cn−1,m and v(t) = u(t)− u(t).
Then the representation

(−1)n−m−1(u(t)− u(t)
)(

f(u)(t)− f(u)(t)
)

=

= (−1)n−m−1l1(t)v2(t) + (−1)n−m−1l1(t)
[

v(τ0(t))− v(t)
]

v(t) +

+(−1)n−m−1∆0(t)v(t) + (−1)n−m−1∆(t)v(t) (1.43)

is valid, where ∆0, ∆, and l1 are functions given by equalities (1.25)–(1.28).
Inequalities (1.29) are fulfilled by (1.20)–(1.22). On the other hand,

|v(i)(t)| ≤ (1 + t)−i− 1
2 ‖v‖m = (1 + t)−i− 1

2 ‖u− u‖m (i = 0, . . . , m− 1),

∣

∣v(τ0(t))− v(t)
∣

∣ =
∣

∣

∣

∫ τ0(t)

t
v′(s)ds

∣

∣

∣ ≤
(

1 + τ0∗(t)
)− 3

2 |τ0(t)− t|‖u− u‖m.

Therefore (1.41) and (1.43) imply

(−1)n−m−1(u(t)− u(t)
)(

f(u)(t)− f(u)(t)
)

≥

≥ γ(1 + t)−n(

u(t)− u(t)
)2 − a1(t)‖u− u‖2m,
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where a1 is the function given by equality (1.38) for λi = 1 (i = 0, . . . ,m−1)
and satisfying condition (1.40). Therefore by Theorem 1.3 from [10] problem
(1.1), (1.3) has at most one solution.

Now let condition (1.42) be fulfilled. Without loss of generality it can be
assumed that the inequality (1− ε)a0(t) > γ(1 + t)−n, where ε is a positive
constant, holds instead of (1.41). Then (1.21) and (1.22) imply

(−1)n−m−1h(t, x, x, 0, . . . , 0)x ≥ a0(t)x2 − |h(t, 0, . . . , 0)||x| ≥

≥ γ(1 + t)−nx2 + εa0(t)x2 − 2ε
1
2 a

1
2
0 (t)|x|a

1
2
2 (t) ≥ γ(1 + t)−nx2 − a2(t),

where a2(t) = h2(t,0,...,0)
4εa0(t)

. Moreover, since on account of (1.42) condition
(1.33) is satisfied, by Theorem 1.3 problem (1.1), (1.3) is solvable.

The proven theorem immediately implies

Corollary 1.2. Let (−1)n−m−1p0(t) > γ(1 + t)−n for t ∈ R+,

δ =
n!

(2m)!
µn

m −
∫ +∞

0
(1 + t)n− 1

2
[

|p0(t)|
(

1 + τ0∗(t)
)− 3

2 |τ0(t)− t|+

+
m−1
∑

i=1

|pi(t)|(1 + τi(t))−i− 1
2
]

dt > 0,

∫ +∞

0
(1 + t)n q2(t)

|p0(t)|
dt < +∞,

where γ is a positive constant satisfying inequality (1.34). Then problem
(1.1′), (1.3) has one and only one solution.

§ 2. Oscillatory Solutions

2.1. Equations with Property Om. We introduce

Definition 2.1. Equation (0.1) has property Om if each proper solution
u : [t0, +∞[→ R of this equation, satisfying the condition

∫ +∞

t0

∣

∣u(m)(t)
∣

∣

2
dt < +∞, (2.1)

is oscillatory when m is even, and either oscilatory or satisfying, on some
interval [t∗,+∞[⊂ [t0,+∞[, the inequalities

(−1)iu(i)(t)u(t) > 0 (i = 0, . . . , n− 1) (2.2)

when m is odd.

Before we proceed to formulating the theorem on equation (0.1) having
property Om we shall give the following auxiliary statement.
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Lemma 2.1. Let the function u : [t0, +∞[→ R be locally absolutely
continuous together with its derivatives up to order n − 1 inclusive and
satisfy the inequalities

u(t) 6= 0, mes
{

s ∈ [t, +∞[: u(n)(s) 6= 0
}

> 0 for t ≥ t0, (2.3)

(−1)n−m−1u(n)(t)u(t) ≥ 0 for t ≥ t0. (2.4)

Then there are k ∈ {0, . . . , n} and t∗ ∈ [t0,+∞[ such that k + m is odd and

u(i)(t)u(t) > 0 (i = 0, . . . , k − 1),

(−1)i−ku(i)(t)u(t) > 0 (i = k, . . . , n− 1) for t ≥ t∗.
(2.5)

Moreover, if k = 0, then t∗ = t0 and therefore

(−1)iu(i)u(t) > 0 (i = 0, . . . , n− 1) for t ≥ t0. (2.6)

The above lemma immediately follows from Lemma 1.1 in the mono-
graph [11].

For an arbitrary ε > 0 and an arbitrary positive λ 6= 1 we set

Dε(τ0, . . . , τm−1) =

=
{

(t, x0, . . . , xm−1) : t ≥ 1
ε
, |xi| ≤ ε[τi(t)]m−

1
2−i (i = 0, . . . , m− 1)

}

,

σ(λ) =











n−m + (m− 1)λ for 0 < λ < 1
n− 1 for λ > 1 and m is even
n + λ− 2 for λ > 1 and m is odd

.

Theorem 2.1. Let for some ε > 0

τi(t) ≥ t for t ≥ ε−1 (i = 0, . . . , m− 1) (2.7)

and on the set Dε(τ0, . . . , τm−1) the inequality

(−1)n−m−1g(t, x0, . . . , xm−1) sgn x0 ≥ p0(t)|x0|λ (2.8)

hold, where λ 6= 1 is a positive constant and p0 : R+ → R+ is a locally
summable function such that

∫ +∞

0
tσ(λ)p0(t)dt = +∞. (2.9)

Then equation (0.1) has property Om.
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Proof. Assume the contrary, i.e., that equation (0.1) has no property Om.
Then there is a proper nonoscillatory solution u : [t0, +∞[→ R of this
equation satisfying condition (2.1). Moreover, if m is odd, then on each
interval [t∗, +∞[⊂ [t0,+∞[ at least one of inequalities (2.2) does not hold.

By condition (2.1) it can be assumed without loss of generality that
t0≥ ε−1, u(t) 6=0 and (t, u(τ0(t)), . . . , u(m−1)(τm−1(t))) ∈ Dε(τ0, . . . , τm−1)
for t ≥ t0. Then inequalities (2.3) and (2.4) are fulfilled on account of
(2.7)–(2.9). By Lemma 2.1 there is t∗ ≥ t0 such that we have

u′(t)u(t) > 0 for t ≥ t∗, (2.10)

but if m is odd, then

u′(t)u(t) > 0, u′′(t)u(t) > 0 for t ≥ t∗. (2.11)

Let g0(t) = g(t, u(τ0(t)), . . . , u(m−1)(τm−1(t)))|u(t)|−λ sgn u(t). Then

u(n)(t) = g0(t)
∣

∣u(t)
∣

∣

λ
sgnu(t). (2.12)

On the other hand, due to (2.8) and the fact that the function u has a
constant sign we have

(−1)n−m−1g0(t) ≥ η(t)p0(t) for t ≥ t0, (2.13)

where η(t) = |u(τ0(t))|λ|u(t)|−λ. Moreover, by (2.7) and (2.10) we have
η(t) ≥ 1 for t ≥ t∗. Therefore (2.9) and (2.13) imply

(−1)n−m−1g0(t)≥0 for t≥ t0,
∫ +∞

0
tσ(λ)

∣

∣g0(t)
∣

∣dt=+∞. (2.14)

By virtue of condition (2.14) and Theorems 15.1, 15.2, and 15.4 from the
monograph [11] we conclude that for the even m (odd m), equation (2.12)
has no proper nonoscillatory solution satisfying condition (2.1) (conditions
(2.1) and (2.11)). The obtained contradiction proves the theorem.

Quite similarly, using Theorems 1.6 and 1.7 from [11] we shall prove

Theorem 2.2. Let inequalities (2.7) be fulfilled for some ε > 0 and on
the set Dε(τ0, . . . , τm−1) the condition

(−1)n−m−1g(t, x0, . . . , xm−1) sgn x0 ≥ p0(t)|x0| (2.15)

hold, where p0 : R+ → R+ is a locally summable function such that

lim sup
t→+∞

(

t
∫ +∞

t
sn−2p0(s)ds

)

> (n− 1)! . (2.16)

Then equation (0.1) has property Om.
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2.2. Theorem on the Existence of Proper Oscillatory Solutions of
Equation (0.1).

Theorem 2.3. Let for some ε > 0

τi(t) ≥ t + ∆(t) for t ≥ ε−1 (i = 0, . . . , m− 1) (2.17)

and on the Dε(τ0, . . . , τm−1) the conditions

(−1)n−m−1g(t, x0, . . . , xm−1)x0 ≥ 0, (2.18)
∣

∣g(t, x, x1, ..., xm−1)−g(t, x0, x1, ..., xm−1)
∣

∣≤ l(t)|x−x0|λ0 (2.19)

hold, where λ0 ∈ [0, 1], ∆ : R+ →]0, +∞[ is a continuous function and
l : R+ → R+ is a measurable function such that

∫ +∞

ε−1
(1+t)n−m− 1

2
(

1+τ0(t)
)(m− 3

2 )λ0
(

τ0(t)−t
)λ0 l(t)dt<+∞. (2.20)

Moreover, let equation (0.1) have property Om. Then for the even m (odd
m) this equation has an m-parametric ((m−1)-parametric) family of proper
oscillatory solutions.

Proof. Choose t0 ≥ 1
ε such that

∫ +∞

t0
(1+t)n−m− 1

2
(

1+τ0(t)
)(m− 3

2 )λ0
(

τ0(t)−t
)λ0 l(t)dt<µn

m. (2.21)

It can be assumed without loss of generality that τi(t) = t for 0 ≤ t ≤ t0
(i = 0, . . . ,m− 1). We set

χi(t, x) =

{

x for |x| ≤ ε[τi(t)]m−
1
2−i

ε[τi(t)]m−
1
2−i sgn x for |x| > ε[τi(t)]m−

1
2−i ,

h(t, x, x0, x1, . . . , xm−1) =

=

{

0 for 0 ≤ t ≤ t0
g
(

t, χ0(t, x0), . . . , χm−1(t, xm−1)
)

for t ≥ t0
(2.22)

and for any c0, . . . , cm−1 which are not simultaneously equal to zero we
consider problem (1.1), (1.2).

Due to (2.17)–(2.19), (2.21), and (2.22), conditions (1.5′), (1.6′), and
(1.7′) are fulfulled with a1(t) = 0 for a ≤ t ≤ t0, a1(t) = l(t) for t ≥ t0, and
a(t) = 0 for t ≥ 0.

By Theorem 1.1′, problem (1.1), (1.2) has a solution u. From (2.17),
(2.18), and (2.22) it follows that u is a proper solution. On the other hand,
by condition (2.1) there is t∗ ≥ t0 such that (t, u(τ0(t)), . . . , u(m−1)(τm−1(t))) ∈
Dε(τ0, . . . , τm−1) for t ≥ t∗. Hence due to (2.22) it is obvious that u is a
solution of equation (0.1) on [t∗, +∞[.
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However, by our assumption equation (0.1) has property Om. Therefore,
when m is even, u is the oscillatory solution, and when m is odd, it is
either oscillatory or satisfies inequalities (2.2) on the interval [t∗,+∞[. If u
satisfies (2.2), then by (1.2), (2.18), and (2.22) we shall have

(−1)icicj > 0 (i = 0, . . . ,m− 1). (2.23)

Thus if at least one of inequalities (2.23) is not fulfilled, say, cm−1 = 0, then
u will be an oscillatory solution. We have thereby shown that when m is
even (m is odd), to arbitrary numbers c0, . . . , cm−2 (c0, . . . , cm−1), which are
not simultaneously equal to zero, there corresponds at least one oscillatory
solution of equation (0.1).

By Theorems 2.1 and 2.2, Theorem 2.3 gives rise to the following propo-
sitions.

Corollary 2.1. Let inequalities (2.17) be fulfilled for some ε > 0 and on
the set Dε(τ0, . . . , τm−1) conditions (2.8) and (2.19) hold, where λ 6= 1 is
a positive constant λ0 ∈ [0, 1], ∆ : R+ →]0, +∞[ is a continuous function,
while p0 : R+ → R+ and l0 : R+ → R+ are locally summable functions
satisfying conditions (2.9) and (2.20). Then for the even m (odd m) equation
(0.1) has a m-parametric ((m− 1)-parametric) family of proper oscillatory
solutions.

Corollary 2.2. Let inequalities (2.17) be fulfilled for some ε > 0 and on
the set Dε(τ0, . . . , τm−1) conditions (2.15) and (2.19) hold, where λ0 ∈ [0, 1],
∆ : R+ →]0, +∞[ is a continuous function, while p0 : R+ → R+ and
l : R+ → R+ are locally integrable functions satisfying conditions (2.16)
and (2.20). Then for even m (odd m) equation (0.1) has an m-parametric
((m− 1)-parametric) family of proper oscillatory solutions.

2.3. Sufficient Conditions for the Existence of Proper Oscillatory
Solutions of Equations (0.2) and (0.3). Conditions 2.1 and 2.2 imply
the following propositions.

Corollary 2.3. Let for some t0 > 0 the inequalities

τ(t) ≥ t + ∆(t), (−1)n−m−1p(t) ≥ 0 for t ≥ t0 (2.24)

hold, where ∆ : [t0,+∞[→]0,+∞[ is a continuous function. Moreover, let
∫ +∞

t0
tσ(λ)|p(t)|dt = +∞

and
∫ +∞

t0
(1 + t)n−m− 1

2
(

1 + τ(t)
)(m− 1

2 )λ−λ0
(

τ0(t)− t
)λ0 |p(t)|dt < +∞,
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where λ0 = λ for 0 < λ < 1 and λ0 = 1 for λ > 1. Then for even m (odd m)
equation (0.2) has an m-parametric ((m − 1)-parametric) family of proper
oscillatory solutions.

Corollary 2.4. Let for some t0 > 0 inequalities (2.24) hold, where ∆ :
[t0, +∞[→]0,+∞[ is a continuous function. Moreover, let

lim sup
t→+∞

(

t
∫ +∞

t
sn−2|p(s)|ds

)

> (n− 1)!

and
∫ +∞

t0
(1 + t)n−m− 1

2
(

1 + τ(t)
)m− 3

2
(

τ(t)− t
)

|p(t)|dt < +∞.

Then for even m (odd m) equation (0.3) has an m-parametric ((m − 1)-
parametric) family of proper oscillatory solutions.

§ 3. Vanishing-at-Infinity Solutions

3.1. Existence Theorem for Equation (0.1). For any s ∈ R and ε > 0
we set

[s]+ =
1
2
(

|s|+ s
)

,

D∗
ε(τ1, . . . , τm−1) =

{

(t, x0, x1, . . . , xm−1) : t ≥ 1
ε
,

|x0| ≤ εt−
1
2 , |xi| ≤ [τi(t)]−i− 1

2 (i = 0, . . . ,m− 1)
}

.

Theorem 3.1. Let for some ε > 0

τi(t) ≥ t + ∆(t) for t ≥ ε−1 (i = 0, . . . , m− 1) (3.1)

and on the set D∗
ε(τ1, . . . , τm−1) the inequalities

(−1)n−m−1g(t, x0, . . . , xm−1)x0 ≥
[

γ(1 + t)−nx2
0 − l0(t)

]

+, (3.2)
∣

∣g(t, x, x1, . . . , xm−1)− g(t, x0, x1, . . . , xm−1)
∣

∣ ≤ l(t)|x− x0|λ0 (3.3)

hold, where

γ > γ0n, (3.4)

λ0 ∈ [0, 1], ∆ : R+ →]0, +∞[ is a continuous function, and l : R+ → R+

are measurable functions such that
∫ +∞

ε−1
tnl0(t)dt<+∞,

∫ +∞

ε−1
tn−

1
2−

3
2 λ0

(

τ0(t)−t
)λ0 l(t)dt<+∞. (3.5)

Then for even m (odd m) equation (0.1) has an m-parametric ((m − 1)-
parametric) family of vanishing-at-infinity proper oscillatory solutions.
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Proof. By the definition of γ0n and condition (3.5) there is t0 > 1
ε such that

δ =
n!

(2m)!
µn

m −
∫ +∞

t0
(1 + t)n− 1

2−
3
2 λ0

(

τ0(t)− t
)λ0 l(t)dt > 0 (3.6)

and inequality (1.34) is fulfilled. It can be assumed without loss of generality
that τi(t) = t for 0 ≤ t ≤ t0 (i = 0, . . . ,m− 1).

Let

χ0(t, x) =

{

x for |x| ≤ εt−
1
2

εt−
1
2 sgn x for |x| > εt−

1
2

,

χ(t, x) =

{

1 for x = 0
χ0(t,x)

x for x 6= 0
.

If i ∈ {1, . . . , m− 1}, then

χi(t, x) =

{

x for |x| ≤ ε[τi(t)]−
1
2−i

ε[τi(t)]−
1
2−i sgn x for |x| > ε[τi(t)]−

1
2−i .

We set

h(t, x, x0, . . . , xm−1) = γ(1 + t)−nx for 0 ≤ t ≤ t0, (3.7)

h(t, x, x0, . . . , xm−1) = γ(1 + t)−nx +

+χ(t, x)
[

g(t, χ0(t, x1), . . . , χm−1(t, xm−1))−γ(1+t)−nχ0(t, x)
]

(3.8)

for t > t0.

Let c0, . . . , cm−1 be arbitrary numbers which are not simultaneously equal
to zero. Moreover, if m is odd, then cm−1 = 0. We shall consider problem
(1.1), (1.3).

By virtue of (3.1)–(3.8) all the conditions of Theorem 1.3′ are fulfilled,
where ai(t) = 0 for 0 ≤ t ≤ t0 (i = 1, 2), a1(t) = l(t) and a2(t) = l0(t)
for t ≥ t0, b0(t, x) ≡ γ(1 + t)−nx. Therefore problem (1.1), (1.3) has a
solution u which due to (3.1), (3.2), (3.7), and (3.8) is proper and satisfies
the inequalities

(−1)n−m−1u(n)(t)u
(

τ0(t)
)

≥ 0,

mes
{

s ∈ [t, +∞[: u(n)(s) 6= 0
}

> 0 for t ≥ 0.
(3.9)

On the other hand, by Lemma 4.5 from [11],

lim
t→+∞

(

tt+
1
2 u(i)(t)

)

= 0 (i = 0, . . . ,m− 1). (3.10)
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By Lemma 2.1 it follows from (3.9) and (3.10) that for even m the so-
lution u is oscillatory and for odd m it is either oscillatory or satisfies the
inequalities

(−1)iu(i)(t)u(t) > 0 for t ≥ 0 (i = 0, . . . , n− 1).

The latter assertion, however, can be discarded because when m is odd,
then u(m−1)(0) = cm−1 = 0. Therefore u is an oscillatory solution for odd
m as well.

By (3.10) there is t∗ > t0 such that (t, u(τ0(t)), . . . , u(m−1)(τm−1(t))) ∈
D∗

ε(τ1, . . . , τm−1) for t > t∗. Hence on account of (3.8) it is clear that u is a
solution of equation (0.1) on [t∗, +∞[. We have thereby shown that when m
is even (m is odd), to arbitrary numbers c0, . . . , cm−1 (c0, . . . , cm−2) which
are not simultaneously zero, there corresponds at least one vanishing-at-
infinity proper oscillatory solution of equation (0.1).

3.2. Corollaries for Equation (0.2).

Corollary 3.1. Let λ > 1 and the conditions

τ(t) ≥ t + ∆(t), (−1)n−m−1p(t) > 0, (3.11)
∫ +∞

t0

∣

∣tnp(t)
∣

∣

− 2
λ−1 dt < +∞,

∫ +∞

t0
tn−

3+λ
2

(

τ(t)− t
)

|p(t)|dt < +∞
(3.12)

be fulfilled for some t0 > 0 and a continuous function ∆ : [t0,+∞[→]0,+∞[.
Then for the even m (odd m) equation (0.2) has the m-parametric ((m−1)-
parametric) family of proper oscillatory solutions.

Proof. Let γ be an arbitrary positive number satisfying inequality (3.4).
Then by the Young inequality we obtain

|p(t)||x0|λ+1 ≥ γx2
0 − l0(t) for t ≥ t0, (3.13)

where
l0(t) = γ

λ+1
λ−1 (1 + t)−

n(n+1)
λ−1 |p(t)|−

2
λ−1 .

We set ε = 1
t0

, τ0(t) = τ(t), τi(t) = t + ∆(t) (i = 1, . . . , m − 1), and
g(t, x0, . . . , xm−1) = p(t)|x0|λ sgnx0. By (3.11)–(3.13) inequalities (3.1) are
now fulfilled and on the set D∗

ε(τ1, . . . , τm−1) conditions (3.2) and (3.3) hold,
where λ0 = 1 and l(t) = λt−

λ−1
2 |p(t)|. Moreover, l0 and l satisfy conditions

(3.5). Thus all the conditions of Theorem 3.1 are fulfilled.

The propositions below are proved quite similarly.
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Corollary 3.2. Let 0 < λ < 1 and the conditions

τ(t) ≥ t + ∆(t), (−1)n−m−1tn+ 1−λ
2 p(t) ≥ η for t ≥ t0,

∫ +∞

t0
tn−

1+3λ
2

∣

∣τ(t)− t
∣

∣

λ|p(t)|dt < +∞

hold for some t0 > 0, η > 0 and a continuous function ∆ : [t0,+∞[→
]0, +∞[. Then for even m (odd m) equation (0.2) has an m-parametric
((m− 1)-parametric) family of vanishing-at-infinity proper oscillatory solu-
tions.

3.3. Biernacki’s Problem for Equations (0.3) and (0.4). ByZ(n)(p; τ)
and Z(n)(p0, . . . , pm−1; τ0, . . . , τm−1) we denote respectively the spaces of
vanishing-at-infinity solutions of equations (0.3) and (0.4), and by dim Z
we denote the dimension of the space Z. For the case τ(t) ≡ t we set
Z(n)(p) = Z(n)(p; τ). M. Biernacki [12] showed that if p is continuously
differentiable and p(t) ↓ −∞ for t → +∞, then dim Z(4)(p) ≥ 1, and he put
forward the hypothesis that the inequality dim Z(4)(p) ≥ 2 holds under the
same restrictions on p. This hypothesis was later substantiated by M. Švec
[13]. More exactly, he proved a more general proposition: if p is continuous
and for some t0 > 0 and η > 0 satisfies the inequality p(t) ≤ −η for
t ≥ t0, then dim Z(4)(p) ≥ 2. The question about dimension of the space of
vanishing-at-infnity solutions of linear homogeneous differential equations
of an arbitrary order was initially treated in [14]. 3 In particular, it is
shown there that if p is locally summable and (−1)n−m−1tnp(t) → +∞ for
t → +∞, then dim Z(n)(p) ≥ m. The problem of dimensions of the spaces
Z(n)(p; τ) and Z(n)(p0, . . . , pm−1; τ0, . . . , τm−1) has never been studied for
the cases τ(t) 6≡ 0 and τi(t) 6≡ t (i = 0, . . . ,m− 1).

Theorem 3.2. If

lim inf
t→+∞

[

(−1)n−m−1tnp0(t)
]

>γ0n,
∫ +∞

0
tn−

1
2 p̃(t)dt<+∞, (3.14)

where p̃(t) = (1 + τ0∗(t))−
3
2 |τ0(t) − t||p0(t)| +

∑m−1
i=1 (1 + |τi(t)|)−i− 1

2 |pi(t)|
and τ0∗(t) = min{t, |τ0(t)|}, then

dim Z(n)(p0, . . . , pm−1; τ0, . . . , τm−1) ≥ m. (3.15)

Proof. By (0.5) and (3.14) there are positive numbers t0 and γ such that
τi(t) > 0 (i = 0, . . . , m− 1), (−1)n−m−1p0(t) > γ(1 + t)−n for t ≥ t0,

δ =
n!

(2m)!
µn

m −
∫ +∞

t0
tn−

1
2 p̃(t)dt > 0

3See also §§4 and 5 of [11] where a detailed account of the results connected with this
problem is given.
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and inequality (1.34) holds. It can be assumed without loss of generality
that p0(t) = 2γ(1 + t)−n, pi(t) = 0 (i = 1, . . . , m − 1), and τi(t) = t
(i = 0, . . . , m − 1) for 0 ≤ t ≤ t0. Now, obviously, all the conditions of
Corollary 1.2 will be fulfilled. Therefore problem (0.2), (1.3) has one and
only one solution for any c0, . . . , cm−1. However, as mentioned above, this
solution is vanishing at infinity, and therefore inequality (3.15) is valid.

The theorem proved for equation (0.3) gives rise to

Corollary 3.3. If

lim inf
t→+∞

[

(−1)n−m−1tnp(t)
]

> γ0n,
∫ +∞

0
tn−

1
2 p̃(t)dt < +∞,

where p̃(t) = (1 + τ∗(t))−
3
2 |τ(t)− t||p(t)| and τ∗(t) = min{t, |τ(t)|}, then

dim Z(n)(p; τ) ≥ m.
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