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ON THE SOLVABILITY OF A SPATIAL PROBLEM OF
DARBOUX TYPE FOR THE WAVE EQUATION

S. KHARIBEGASHVILI

Abstract. The question of the correct formulation of one spatial
problem of Darboux type for the wave equation has been investigated.
The correct formulation of that problem in the Sobolev space has been
proved for surfaces having a quite definite orientation on which are
given the boundary value conditions of the problem of Darboux type.

In the space of variables x1, x2, t we consider the wave equation

�u ≡ ∂2u
∂t2

− ∂2u
∂x2

1
− ∂2u

∂x2
2

= F, (1)

where F is the known and u is the unknown function.
Denote by D+ : 0 < x2 < t, 0 < t < t0, the domain lying in a half-space

t > 0 bounded by a time-type plane surface S0 : x2 = 0, 0 ≤ t ≤ t0, a
characteristic surface S1 : t − x2 = 0, 0 ≤ t ≤ t0, of equation (1), and a
plane t = t0.

Consider the problem of Darboux type formulated as follows: find in
the domain D+ the solution u(x1, x2, t) of equation (1) by the following
boundary conditions:

u
∣

∣

S1
= f1 (2)

and
∂u
∂n

∣

∣

∣

S0

= 0, (3)

where f1 is a given real function and ∂
∂n is the derivative with respect to

the outer normal to S0.
Note that in the case where S0 is either a characteristic surface S2 :

t + x2 = 0, 0 ≤ t ≤ t0 or a plane surface S2 : kt + x2 = 0, 0 ≤ t ≤ t0,
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|k| < 1 of timetype, the problem (1)-(3) in which the boundary condition
(3) is replaced by the condition

u
∣

∣

S2
= f2 (4)

is studied in [1-4]. Other multidimensional analogues of the Darboux prob-
lem are considered in [5-7].

Denote by C∞∗ (D+) the space of functions in the class C∞(D+) having
bounded supports, i.e.,

C∞∗ (D+) =
{

u ∈ C∞(D+) : diam supp u < +∞
}

.

The spaces C∞∗ (Si), i = 0, 1, 2, are defined in a similar manner.
It is known that the spaces C∞∗ (D+), C∞∗ (Si), i = 0, 1, 2, are dense

everywhere in the Sobolev spaces W k
2 (D+), W k

2 (Si), i = 0, 1, 2, where k ≥ 0
is integer [8].

Lemma 1. For any u ∈ W 2
2 (D+), satisfying the homogeneous boundary

condition (3), the a priori estimate

‖u‖W 1
2 (D+) ≤ C

(

‖f1‖W 1
2 (S1) + ‖F‖L2(D+)

)

(5)

is valid, where f1 = u|S1 , F = �u, and C is a positive constant not depend-
ing on u.

Proof. Denote by D− : −t < x2 < 0, 0 < t < t0, the domain symmetric to
D+ with respect to the plane x2 = 0 and by D : −t < x2 < t, 0 < t < t0,
the domain which is the union of the domains D+ and D− with a part of a
plane surface x2 = 0, 0 < t < t0.

It is easy to verify that if one continue evenly the function satisfying the
boundary condition (3), then the function u0 obtained in D

u0(x1, x2, t) =

{

u(x1, x2, t), x2 ≥ 0,
u(x1,−x2, t), x2 < 0

(6)

will belong to the class W 2
2 (D). According to the results in [3], the function

u0 ∈ W 2
2 (D) satisfies the following a priori estimate:

‖u0‖W 1
2 (D) ≤ C

(

‖f1‖W 1
2 (S1) + ‖f2‖W 1

2 (S2) + ‖F0‖L2(D)
)

, (7)

where fi = u0|Si , i = 1, 2, F0 = �u0, and S2 : t + x2 = 0, 0 ≤ t ≤ t0, is a
part of a boundary of D, appearing in the boundary condition (4).

It remains only to note that in virtue of (6) in the estimate (7)

‖u0‖W 1
2 (D) = 2‖u‖W 1

2 (D+), ‖f2‖W 1
2 (S2) = ‖f1‖W 1

2 (S1),

‖F0‖L2(D) = 2‖F‖L2(D+).

Below we shall prove the following
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Lemma 2. For any f1 ∈ C∞∗ (S1) and F ∈ C∞∗ (D+) satisfying the con-
ditions

∂kF
∂nk

∣

∣

∣

S0

= 0, k = 1, 3, 5, . . . , (8)

the problem (1)–(3) can be solved uniquely in the class C∞∗ (D+).

If one continues evenly the function F ∈ C∞∗ (D+) in D−, then in virtue
of (8) the function F0 obtained in D

F0(x1, x2, t) =

{

F (x1, x2, t), x2 ≥ 0,
F (x1,−x2, t), x2 < 0

will belong to the class C∞∗ (D). Denote by f2 the function defined on
S2 : t + x2 = 0, 0 ≤ t ≤ t0, by the equality

f2
∣

∣

S2
= f2(x1, x2,−x2) = f1(x1,−x2,−x2) = f1

∣

∣

S1
. (9)

Consider now in D the problem of determining the solution u0(x1, x2, t)
of the equation

�u0 ≡
∂2u0

∂t2
− ∂2u0

∂x2
1
− ∂2u0

∂x2
2

= F0 (10)

belonging to the class C∞∗ (D) by the boundary conditions

u0
∣

∣

Si
= fi, i = 1, 2. (11)

Note that the integral representation for regular solutions of the problem
(10),(11) is obtained in [3]. On the basis of this representation the conclu-
sion on the solvability of the problem in the class C∞∗ (D) is made without
proof. To prove the conclusion completely, below we shall reduce the spatial
problem (10),(11) to the plane Goursat problem with a parameter. For the
solution of the problem, necessary estimates depending on the parameter
will be obtained.

If u0 is a solution of the problem (10),(11) of the class C∞∗ (D), then after
the Fourier transform with respect to the variable x1, equation (10) and the
boundary conditions (11) take the form

∂2v
∂t2

− ∂2v
∂x2

2
+ λ2v = Φ, (12)

v
∣

∣

`i
= gi, i = 1, 2, (13)

where

v(λ, x2, t) =
1√
2π

∞
∫

−∞

u0(x1, x2, t)e−ix1λ dx1
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is the Fourier transform of the function u0(x1, x2, t) and Φ, g1, g2 is the
Fourier transform of the functions F0, f1, f2 with respect to x1. Here `1 :
t − x2 = 0, 0 ≤ t ≤ t0, `2 : t + x2 = 0, 0 ≤ t ≤ t0, are segments of rays
lying in the plane of variables x2, t and coming from the origin O(0, 0).

Thus after the Fourier transform with respect to x1 the spatial problem
(10),(11) is reduced to the plane Goursat problem (12),(13) with a param-
eter λ in the domain D0 : −t < x2 < t, 0 < t < t0, of the plane of variables
x2, t.

Remark 1. If u0(x1, x2, t) is the solution of problem (10),(11) of the class
C∞∗ (D), then v(λ, x2, t) will be the solution of the problem (12),(13) of the
class C∞(D0) which at the same time according to Paley–Wiener theorem is
an entire analytic function with respect to λ satisfying the following growth
condition: for an integer N ≥ 0 there is a constant KN such that [8,9]

|v(λ, x0
2, t

0)| ≤ KN (1 + |λ|2)−Ned| Im λ|, (14)

where
d = d(x0

2, t
0) = max

(x1,x0
2,t0)∈supp u0

|x1|;

moreover, as the constant KN one can take the value [9]

KN = KN (x0
2, t

0) =
1√
2π

∫

|x1|<d

∣

∣

∣

(

1− ∂2

∂x2
1

)N
u0(x1, x0

2, t
0)

∣

∣

∣ dx1.

According to the same theorem, if v(λ, x2, t) belongs to the class C∞(D0)
with respect to the variables x2, t for fixed λ, while with respect to λ it is an
entire analytic function satisfying the estimate (14) for some d = const > 0,
then the function u0(x1, x2, t), being the inverse Fourier transform of the
function v(λ, x2, t), belongs to the class C∞∗ (D).

According to our assumptions, estimates analogous to (14) are valid for
the functions Φ, g1, g2 which belong respectively to the classes C∞(D0),
C∞(`1), C∞(`2) and are entire analytic functions with respect to λ.

In the new variables

ξ =
1
2
(t + x2), η =

1
2
(t− x2), (15)

retaining the same notations for the functions v, Φ, gi, the problem (12),(13)
takes the form

∂2v
∂ξ∂η

+ λ2v = Φ, (16)

v
∣

∣

γi
= gi, i = 1, 2. (17)
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Here the solution v = v(λ, ξ, η) of equation (16) is considered in the domain
Ω0 of the plane of variables ξ, η being the image of the domain D0 for linear
transform (15), and γi being the image of `i for the same transform. Obvi-
ously, the domain Ω0 is a triangle OP1P2 witha vertices O(0, 0), P1(t0, 0),
P2(0, t0) and

γ1 : η = 0, 0 ≤ ξ ≤ t0, γ2 : ξ = 0, 0 ≤ η ≤ t0

are the sides of OP1, OP2.
As is well known, under the assumptions with respect to the functions

Φ, gi the problem (16),(17) has a unique solution of the class C∞(Ω0) which
can be represented in the form [10]

v(λ, ξ, η) = R(ξ, 0; ξ, η)g1(λ, ξ) + R(0, η; ξ, η)g2(λ, η)−

−R(0, 0; ξ, η)g1(λ, 0)−
ξ

∫

0

∂R(σ, 0; ξ, η)
∂σ

g1(λ, σ) dσ −

−
η

∫

0

∂R(0, τ ; ξ, η)
∂τ

g2(λ, τ) dτ +

+

ξ
∫

0

dσ

η
∫

0

R(σ, τ ; ξ, η)Φ(λ, σ, τ) dτ, (18)

where g1(λ, ξ) = v(λ, ξ, 0), 0 ≤ ξ ≤ t0, g2(λ, η) = v(λ, 0, η), 0 ≤ η ≤ t0
are the Goursat data for v and R(ξ1, η1; ξ, η) are the Riemann functions for
equation (16).

The Riemann function R(ξ1, η1; ξ, η) for equation (16), as is known, can
be expressed in terms of the Bessel function I0 of zero order as [11]

R(ξ1, η1; ξ, η) = I0
(

2λ
√

(ξ − ξ1)(η − η1)
)

. (19)

Remark 2. Since the Bessel function I0(z) of the complex argument z is
an entire analytic function, the formula (18) in virtue of the equality (19)
gives the solution of equation (16) satisfying the Goursat data

v(λ, ξ, 0) = g1(ξ), 0 ≤ ξ ≤ t0,

v(λ, 0, η) = g2(η), 0 ≤ η ≤ t0.
(20)

The solution is an entire analytic function with respect to the complex
parameter λ.
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From the known representation of the Bessel function [12]

I0(z) =
1
2π

π
∫

−π

exp(iz sin θ) dθ (21)

we can easily get that

I ′0(z) = − z
2π

π
∫

−π

cos2 θ exp(iz sin θ) dθ,

whence

dI0(2λ
√

νx )
dx

= −λ2ν
π

π
∫

−π

cos2 θ exp(i2λ
√

νx sin θ) dθ. (22)

Now, from (19),(21) and (22) we immediately get the following equalities
and estimates

R(ξ, 0; ξ, η) = R(0, η; ξ, η) = 1,

R(0, 0; ξ, η) ≤ exp(2
√

ξη | Im λ|) ≤ exp(2t0| Im λ|),
∣

∣

∣

∂R(σ, 0; ξ, η)
∂σ

∣

∣

∣ ≤ 2|λ|2η exp(2
√

ξη | Im λ|) ≤ 2|λ|2t0 exp(2t0| Im λ|),
∣

∣

∣

∂R(0, τ ; ξ, η)
∂τ

∣

∣

∣ ≤ 2|λ|2ξ exp(2
√

ξη | Imλ|) ≤ 2|λ|2t0 exp(2t0| Im λ|),

|R(σ, τ ; ξ, η)| ≤ exp(2
√

ξη | Imλ|) ≤ exp(2t0| Im λ|).

From this, without loss of generality and assuming the the estimate (14)
with respect to λ and the same constants KN and d are valid in virtue of
our assumptions for the functions Φ, g1, g2, for the solution v(λ, ξ, η) of the
problem (16),(17) representable in the form of (18)m we obtain the following
estimates:

|v(λ, ξ, η)| ≤ |g1(λ, ξ)|+ |g2(λ, η)|+ |g1(λ, 0)| exp(2t0| Im λ|) +

+ 2|λ|2t0 exp(2t0| Im λ|)
ξ

∫

0

|g1(λ, σ)|dσ +

+ 2|λ|2t0 exp(2t0| Im λ|)
η

∫

0

|g2(λ, τ)|dτ +

+ exp(2t0| Im λ|)
ξ

∫

0

dσ

η
∫

0

|Φ(λ, σ, τ)|dτ ≤
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≤ 2KN (1 + |λ|2)−N exp(d| Im λ|) +

+ exp(2t0| Im λ|)KN (1 + |λ|2)−N exp(d| Imλ|) +

+ 2|λ|2t0 exp(2t0| Im λ|)ξKN (1 + |λ|2)−N exp(d| Im λ|) +

+ 2|λ|2t0 exp(2t0| Im λ|)ηKN (1 + |λ|2)−N exp(d| Im λ|) +

+ exp(2t0| Im λ|)ξηKN (1 + |λ|2)−N exp(d| Im λ|) ≤

≤ ˜KN−1(1 + |λ|2)N−1 exp(˜d| Imλ|). (23)

Here

˜KN−1 = (3 + 5t20)KN , ˜d = 2t0 + d,
d = max

(x1,x2,t)∈I
|x1|, I = supp F0 ∪ supp f1 ∪ supp f2,

KN =
1
2π

∫

|x1|<d

max
0≤i≤2

max
(x0

2,t0)∈D0

|ϕi(x1, x0
2, t

0)| dx1,

ϕ0 =
(

1− ∂2

∂x2
1

)N
F0, ϕi =

(

1− ∂2

∂x2
1

)N
fi, i = 1, 2.

In virtue of the estimate (23), the function v(λ, ξ, η) according to the
Paley–Wiener theorem, turning to the original variables x2, t, by the for-
mula (15) will be the Fourier transform of a function u0(x1, x2, t) of the class
C∞∗ (D); moreover, in virtue of (12),(13) the function u0(x1, x2, t) ∈ C∞∗ (D)
will be the solution of the problem (10),(11). Let us show now that the
restriction of that function to the domain D+, i.e., u = u0|D+ , is the so-
lution of the problem (1)–(3) of the class C∞∗ (D+). To this end let us
prove that the function u0(x1, x2, t) is even with respect to x2. Because
the function F0 is even with respect to x2 and the functions f1 and f2

are connected by the equality (9), we can easily verify that the function
ũ(x1, x2, t) = u0(x1,−x2, t) is also the solution of the problem (10),(11)
of the class C∞∗ (D). But in virtue of a priori estimate (7) the problem
(10),(11) cannot have more than one solution of the above-mentioned class.
Therefore ũ(x1, x2, t) ≡ u0(x1, x2, t), i.e., the solution u0(x1, x2, t) of equa-
tion (10) is an even function with respect to x2. From this it immediately
follows that ∂u0

∂n

∣

∣

x2=0 = 0, i.e., the boundary condition (3) is fulfilled for
u = u0|D+ . Thus the function u = u0|D+ ∈ C∞∗ (D+) is the solution of
the problem (1)-(3). The uniqueness of the solution follows from a priori
estimate (5).

Definition. Let f1 ∈ W 1
2 (S1), F ∈ L2(D+). The function u ∈ W 1

2 (D)
will be called a strong solution of the problem (1)–(3) of the class W 1

2 , if
there exists a sequence un ∈ C∞∗ (D+) such that ∂un

∂n

∣

∣

S0
= 0, un → u in the
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space W 1
2 (D+) and �u → F in the space L2(D+), i.e., for n →∞

‖un − u‖W 1
2 (D+) → 0, ‖�un − F‖L2(D+) → 0,

‖un|S1 − f1‖W 1
2 (S1) → 0.

We have the following

Theorem 1. For any f1 ∈ W 1
2 (S1), F ∈ L2(D+) there exists a unique

strong solution u of the problem (1)–(3) of the class W 1
2 for which the esti-

mate (5) is valid.

Proof. It is known that the space C∞0 (D+) ⊂ C∞∗ (D+) of infinitely differen-
tiable finite functions in D+ is everywhere dense in L2(D+), while the space
C∞∗ (S1) is dense in W 1

2 (S1). Therefore there exist sequences Fn ∈ C∞0 (D+)
and f1n ∈ C∞∗ (S1) such that

lim
n→∞

‖F − Fn‖L2(D+) = lim
n→∞

‖f1 − f1n‖W 1
2 (S1) = 0. (24)

Since the functions Fn ∈ C∞0 (D+) satisfy the conditions (8), according to
Lemma 2 there exists a sequence un ∈ C∞∗ (D+) of solutions of the problem
(1)–(3) for F = Fn, f1 = f1n.

In virtue of the inequality (5) we have

‖un − um‖W 1
2 (D+) ≤ C

(

‖f1n − f1m‖W 1
2 (S1) +

+ ‖Fn − Fm‖L2(D+)
)

. (25)

It follows from (24) and (25) that the sequence of functions un is funda-
mental in the space W 1

2 (D+). Therefore because the space W 1
2 (D+) is com-

plete, there exists a function u ∈ W 1
2 (D+) such that ∂un

∂n

∣

∣

S0
= 0, un → u

in W 1
2 (D+), �un → F in L2(D+) and un|S1 → f1 in W 1

2 (S1) for n → ∞.
Hence the function u is a strong solution of the problem (1)–(3) of the class
W 1

2 . The uniqueness of the strong solution of the problem (1)–(3) of the
class W 1

2 follows from the inequality (5).

Consider now the case where in equation (1) we have the lowest terms

Lu ≡ �u + aux1 + bux2 + cut + du = F, (26)

where the coefficients a, b, c, and d are the given bounded measurable func-
tions in the domain D+.

In the space W 1
2 (D+) let us introduce an equivalent norm

‖u‖2D+,1,γ =
∫

D+

e−γt(u + u2
t + u2

x1
+ u2

x2
) dx dt, γ > 0,

depending on the parameter γ. The norms ‖F‖D+,0,γ and ‖f1‖S1,1,γ in the
spaces L2(D+) and W 1

2 (S1) are introduced analogously.
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Arguments similar to those given in [4] allow us to prove the validity of
the following

Lemma 3. For any u ∈ W 1
2 (D+) satisfying the boundary condition (3),

the a priori estimate

‖u‖D+,1,γ ≤
C
√

γ
(

‖f1‖S1,1,γ + ‖F‖D+,0,γ
)

(27)

holds, where f1 = u|S1 , F = �u, and the positive constant C does not
depend on u and the parameter γ.

In virtue of the estimate (27), the lowest term of the above-introduced
equivalent norms of spaces L2(D+), W 1

2 (D+), W 1
2 (S1) in equation (26) for

sufficiently large parameter γ give arbitrarily small perturbations which on
the basis of Theorem 1 and the results of [4] allow us to prove that the
problems (26),(2),(3) are uniquely solvable in the class W 1

2 .
The following theorem holds.

Theorem 2. For any f1 ∈ W 1
2 (S1), F ∈ L2(S+) there exists a unique

strong solution u of the problem (26), (2), (3) of the class W 1
2 for which the

estimate (5) is valid.
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