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GEOMETRY OF POISSON STRUCTURES

Z. GIUNASHVILI

Abstract. The purpose of this paper is to consider certain mecha-
nisms of the emergence of Poisson structures on a manifold. We shall
also establish some properties of the bivector field that defines a Pois-
son structure and investigate geometrical structures on the manifold
induced by such fields. Further, we shall touch upon the dualism
between bivector fields and differential 2-forms.

1. Schoten Bracket: Definition and Some Properties

1.1. Let L be any Lie algebra over the field of real numbers and F be
any commutative real algebra with unity. It is assumed that L acts on F
and this action has the following properties:

(a) F is an L-modulus: for each (u, v, a, b) ∈ L × L × F × F we have
[u, v]a = uva− vua;

(b) Leibnitz’ rule: u(a · b) = (ua) · b + a · (ub).
1.2. Let us consider the spaces:
Ck(L,F ) = {α : L×· · ·×L −→ F | α is an antisymmetric and polylinear

form}, k ≥ 0;
C0(L,F ) = F ;
Ck(L,F ) = {0} for k < 0.
The space C(L,F ) =

∑

k∈Z Ck(L,F ) is an antisymmetric graded algebra
with the operation of exterior multiplication (see [1]).
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1.3. We have two endomorphisms on the space C(L,F ):

(∂1α)(u1, . . . , uk+1) =
∑

i<j

(−1)i+j−1α([ui, uj ], u1, . . . , ûi, . . . , ûj , . . . , uk+1),

(∂2α)(u1, . . . , uk+1) =
k+1
∑

i=1

(−1)i−1uiα(u1, . . . , ûi, . . . , uk+1),

where α is an element of Ck(L, F ).
The endomorphism d = ∂2 − ∂1 is the coboundary operator defining the

cohomology algebra of L (see [1]).
1.4. It is easy to check that the operators ∂1 and ∂2 are antidifferentia-

tions, i.e., for each α ∈ Cm(L,F ) and β ∈ C(L, F ) we have

∂1(α ∧ β)− (∂1α ∧ β + (−1)mα ∧ ∂1β) = 0,

∂2(α ∧ β)− (∂2α ∧ β + (−1)mα ∧ ∂2β) = 0.

Therefore the operator d is an antidifferentiation, too.
1.5. For each k ∈ Z the space Ck(L,F ) = End(F )⊗(∧kL), where End(F )

is the algebra of endomorphisms of F and ∧kL is the exterior degree of
L, is a subspace of Hom(Ck(L,F ), F ): for ϕ ⊗ u ∈ End(F ) ⊗ (∧kL) and
ω ∈ Ck(L,F ), we have (ϕ⊗ u)(ω) = ϕ(ω(u)).

The multiplication in C∗(L,F ) =
∑

k∈Z Ck(L,F ) is defined by the equa-
tion (ϕ⊗ u) · (ψ ⊗ v) = (ϕ ◦ ψ)⊗ (u ∧ v).

1.6. Define the operators:

∂1 = (∂1)∗, ∂2 = (∂2)∗ : Hom(Ck(L,F ), F ) −→ Hom(Ck−1(L,F ), F )

(∂i(ϕ))(α) = ϕ(∂i(α)), i = 1, 2, ϕ ∈ Hom(Ck(L,F ), F ),

α ∈ Ck−1(L,F ), n ∈ Z.

The subspace C∗(L,F ) ⊂
∑

k∈ZHom(Ck(L, F ), F ) is invariant with re-
spect to the operators ∂1 and ∂2:

∂1(ϕ⊗ (u1 ∧ · · · ∧ um)) = ϕ⊗
∑

i<j

(−1)i+j−1[ui, uj ] ∧

∧u1 ∧ · · · ∧ ûi ∧ . . . ∧ ûj ∧ . . . ∧ um,

∂2(ϕ⊗ (u1 ∧ · · · ∧ um)) =
m

∑

i=1

(−1)i−1(ϕ ◦ ui)⊗

⊗u1 ∧ · · · ∧ ûi ∧ . . . ∧ um.

The operator ∂2 − ∂1 will be denoted by d∗.
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1.7. Let us consider the exterior algebra of L : ∧(L) =
∑∞

k=0 ∧kL which
is a subalgebra of C∗(L,F ). The space ∧(L) is an invariant subspace with
respect to the action of the operator ∂1:

∂1(u1 ∧ · · · ∧ um) =
∑

i<j

(−1)i+j−1[ui, uj ]∧ u1 ∧ · · · ∧ ûi ∧ . . .∧ ûj ∧ . . .∧ um.

1.8. Generally speaking, the operator ∂1 is not an antidifferentiation.

Definition. We define the map (Schoten bracket [2]) [ , ] : ∧(L) ×
∧(L) −→ ∧(L) as follows: let [u, v] = ∂1(u∧v)−(∂1(u)∧v+(−1)mu∧∂1(v))
for u ∈ ∧mL and v ∈ ∧(L).

1.9. The space ∧(L) is not an invariant subspace of C∗(L,F ) with respect
to the action of the operator ∂2:

∂2(1⊗ (u1 ∧ · · · ∧ um)) =
m

∑

i=1

(−1)i−1ui ⊗ (u1 ∧ · · · ∧ ûi ∧ . . . ∧ um).

However it is easy to show that for each u ∈ ∧mL and v ∈ ∧(L) we have

∂2(u ∧ v)− (∂2(u) · v + (−1)mu · ∂2(v)) = 0.

Therefore we can define the bracket as

[u, v] = (d∗(u) · v + (−1)mu · d∗(v))− d∗(u · v).

1.10. It is easy to check that for each u ∈ ∧mL, v ∈ ∧nL, w ∈ ∧kL, we
have:

(a) [u, v] = (−1)mn[v, u];
(b) [u, v ∧ w] = [u, v] ∧ w + (−1)mn+nv ∧ [u,w];
(c) (−1)mk[[u, v], w] + (−1)mn[[v, w], u] + (−1)nk[[w, u], v] = 0.
Let L be an F -modulus and assume that for each (u, v, a, b) ∈ L × L ×

F × F we have:
(a) (au)b = a(ub);
(b) [u, av] = (ua)v + a[u, v].
For each k = 1, 2, . . . ,∞ let V k(L, F ) denote an exterior degree of L as

an F -modulus: for a ∈ F and {u1, . . . , uk} ⊂ L we have au1∧u2∧ . . .∧uk =
u1 ∧ au2 ∧ u3 ∧ . . . ∧ uk. Assume that V 0(L,F ) = F and V k(L,F ) = {0}
when k < 0.

The space V (L,F ) =
∑

k∈Z V k(L,F ) is an aniticommutative graded al-
gebra.

1.12. Let J : ∧(L) −→ V (L, F )/ be the natural homomorphism which is
an epimorphism onto

∑

k∈Z\{0} V k(L, F ).
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Proposition. If elements {u, u′, v, v′} ⊂ ∧(L) are such that J(u) =
J(u′) and J(v) = J(v′), then J([u, v]) = J([u′, v′]).

It is easy to prove this using the formulas (b) (1.10) and (b) (1.11).

1.13. Definition. We define the Schoten bracket on V (L,F ) as follows:
for {x, y} ⊂

∑

k∈Z\{0} V k(L,F ) the bracket [x, y] is defined as J([u, v])
where J(u) = x and J(v) = y. We extend the definition to the space
V (L,F ) using equalities (b) (1.10) and (b) (1.11), namely: if u ∈ V ′(L,F )
and a ∈ V 0(L,F ) = F , then [u, a] = u(a); for u = u1 ∧ . . . ∧ uk ∈ V k(L,F )
and a ∈ F we use formula (b) (1.10). Finally, we recall that elements
au1 ∧ u2 ∧ . . . ∧ uk form the basis of V (L,F ).

1.14. In the special case where F = C∞(M) is the algebra of smooth
functions on a smooth manifold M , L = V ′(M) is the Lie algebra of smooth
vector fields on the manifold M and V k(M) is the space of antisymmetric
contravariant tensors of degree k (V k(M) is locally isomorphic to ∧kV ′(M)).
The bracket defined above coincides with the well-known Schoten bracket
(see [2]).

In that case if u ∈ V m(M), v ∈ V n(M), and ω ∈ Hom(V m+n−1(M),
C∞(M)) is a differential form, then the formula defining the bracket by
means of d∗ (see 1.9) gives

ω([u, v]) = (−1)mn+n(d(ivω))(u) + (−1)m(d(iuω))(v)− (dω)(u ∧ v),

where d is the well-known exterior differentiation of differential form (see
[3]).

The above formula can be used as yet another definition of the Schoten
bracket.

2. Poisson Bracket and a Bivector Field

2.1. Thus we have:
M is a finite-dimensional smooth manifold;
V 0(M) = C∞(M) is the algebra of real-valued smooth functions on M ;
V k(M), k > 0, is the space of antisymmetric contravariant tensor fields

of degree k;
V k(M) = {0} when k < 0;
V (M) =

∑

k∈Z V k(M) is the exterior algebra of polyvector fields;
A0(M) = C∞(M);
Ak(M) = {0} when k < 0;
Ak(M), k > 0, is the space of exterior differential forms of degree k.
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At the same time it is clear that Ak(M) = Hom(V k(M), C∞(M)) and
V k(M) = Hom(Ak(M), C∞(M)) for k ∈ Z (in the sense of homomorphisms
of the C∞(M)-moduli).

2.2. An element of the space V 2(M) will be called a bivector field on the
manifold M .

Given any bivector field ξ, for f, g ∈ C∞(M) the bracket {f, g} ∈ C∞(M)
is defined to be (df ∧ dg)(ξ).

It is easy to show that the bracket defined by ξ satisfies the following
conditions:

(a) antisymmetricity: {f, g} = −{g, f};
(b) bilinearity: {f, c1g1+c2g2} = c1{f, g1}+c2{f, g2} for each c1, c2 ∈ R;
(c) Leibnitz’ rule: {f, g · h} = {f, g} · h + {f, h} · g;
(d) for f, g, h ∈ C∞(M) we have

{{f, g}, h}+ {{h, f}, g}+ {{g, h}, f} =
1
2
(df ∧ dg ∧ dh)([ξ, ξ])

where [ , ] is the Schoten bracket (see 1.14).

2.3. Proposition. Let { , } be any bracket on C∞(M), having properties
(a), (b), (c) from 2.2. There is one and only one bivector field ξ on M ,
defining the bracket { , } as describe in 2.2.

The bracket { , } defines the structure of a Lie algebra on a subspace
A ⊂ C∞(M) when and only when for each f, g, h ∈ A we have (df∧dg)(ξ) ∈
A and (df ∧ dg ∧ dh)([ξ, ξ]) = 0.

2.4. We can consider ξ as a homomorphism of exterior algebras: for
f ∈ A0(M), α, β ∈ A′(M) we have ˜ξ(f) = f , β(˜ξ(α)) = (α ∧ β)(ξ).

As follows from 2.3, the bracket { , } defines in exact terms the structure
of a Lie algebra on C∞(M) when [ξ, ξ] = 0.

Proposition. If [ξ, ξ] = 0, then the map ˜ξ ◦ d : C∞(M) −→ V ′(M) is a
homomorphism of Lie algebras; C∞(M) is a central extension of Im(˜ξ ◦ d)
and R ⊂ Ker(˜ξ ◦ d).

Proof. In that case the pair (C∞(M), { , }) is called the Poisson structure
on M and the map f 7−→ ˜ξ(df) = {f, } is the so-called Hamiltonian map
which is a homomorphism of Lie algebras (see [4]).

2.5. Let ω be any differential 2-form on the manifold M , giving rise to
the homomorphism of C∞(M)-moduli: ω̃ : V ′(M) −→ A′(M), ω̃(X) =
ω(X, ), which is an isomorphism when ω is nondegenerate. In that case the
induced map denoted similarly by ω̃ : V k(M) −→ Ak(M), ω̃(u1∧. . .∧uk) =
ω̃(u1)∧ . . .∧ ω̃(uk), k = 1, . . . ,∞, is also an isomorphism. Let ξω ∈ V 2(M)
be ω̃−1(ω).
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More clearly, let ω =
∑n

i=1 ai ∧ bi, ai, bi ∈ A′(M), i = 1, . . . , n; the
nondegeneracy of ω means that {ai, bi | i = 1, . . . , n} is a basis of A′(M)
as a C∞(M)-modulus. We introduce the following vector-fields on M : ∂

∂ai
,

∂
∂bi

, i = 1, . . . , n,

ak

( ∂
∂ai

)

= bk

( ∂
∂bi

)

=
[

1, when k = i,
0, when k 6= i, k = 1, . . . , n;

ap

( ∂
∂bq

)

= bp

( ∂
∂aq

)

= 0, p, q = 1, . . . , n.

With this notation and keeping in mind the definition of ω̃ we have
ω̃
(

∂
∂ai

)

= bi, ω̃
(

∂
∂bi

)

= −ai, i = 1, . . . , n. Consequently, ξω =
∑n

i=1
∂

∂ai
∧

∂
∂bi

.

2.6. Theorem. ω̃([ξω, ξω]) = −2dω.

Proof. Using property (b) from 1.10 and the bilinearity of the Schoten
bracket, we obtain

[ξω, ξω] =
[

n
∑

i=1

∂
∂ai

∧ ∂
∂bi

,
n

∑

i=1

∂
∂ak

∧ ∂
∂bk

]

=

=
∑

i,k

[ ∂
∂ai

∧ ∂
∂bi

,
∂

∂ak
∧ ∂

∂bk

]

=
∑

i,k

(

−
[ ∂
∂ai

,
∂

∂ak

]

∧

∧ ∂
∂bi

∧ ∂
∂bk

+
[ ∂
∂ai

,
∂

∂bk

]

∧ ∂
∂bi

∧ ∂
∂ak

+

+
[ ∂
∂bi

,
∂

∂ak

]

∧ ∂
∂ai

∧ ∂
∂bk

−
[ ∂
∂bi

,
∂

∂bk

]

∧ ∂
∂ai

∧ ∂
∂ak

.

By the definition of ω̃ (see 2.5) we have

ω̃([ξω, ξω]) =
∑

i,m,k

(

bm

([ ∂
∂ai

,
∂

∂ak

])

· am ∧ ai ∧ ak −

−am

([ ∂
∂ai

,
∂

∂ak

])

· bm ∧ ai ∧ ak + bm

([ ∂
∂ai

,
∂

∂bk

])

· am ∧ ai ∧ bk −

−am

([ ∂
∂ai

,
∂

∂bk

])

· bm ∧ ai ∧ bk + bm

([ ∂
∂bi

,
∂

∂ak

])

· am ∧ bi ∧ ak −

−am

([ ∂
∂bi

,
∂

∂ak

])

· bm ∧ bi ∧ ak + bm

([ ∂
∂bi

,
∂

∂bk

])

· am ∧ bi ∧ bk −

−am

([ ∂
∂bi

,
∂

∂bk

])

· bm ∧ bi ∧ bk ≡ Ω.

It is obvious that dω =
∑n

i=1(dai ∧ bi − ai ∧ dbi).
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The monomials u′mik = ∂
∂am

∧ ∂
∂ai

∧ ∂
∂ak

, u2
mik = ∂

∂bm
∧ ∂

∂ai
∧ ∂

∂ak
, u3

mik =
∂

∂bm
∧ ∂

∂bi
∧ ∂

∂ak
, u4

mik = ∂
∂bm

∧ ∂
∂bi

∧ ∂
∂bk

, {m, i, k} ⊂ {1, . . . , n} form the
basis of V 3(M) as a C∞(M)-modulus and it is easy to check that Ω(uj

mik) =
−2(dω)(uj

mik) for each j ∈ {1, 2, 3, 4} and {m, i, k} ⊂ {1, . . . , n}.
We have therefore ascertained that Ω = −2dω.

2.7. Let (M, ω) be a symplectic manifold (see [3], [5]). For f ∈ C∞(M)
we define the vector field Xf by the formula df = ω( , Xf ). It is a well-known
fact (see [3], [5]) that ω defines a Poisson structure on M : for f, g ∈ C∞(M)
we have {f, g} = ω(Xf , Xg). It is easy to show that the corresponding
bivector field is ξω, i.e., (df ∧ dg)(ξω) = ω(Xf , Xg).

As follows from 2.6, the equality dω = 0 is equivalent to [ξω, ξω] = 0.

2.8. Lemma. If ω ∈ A2(M), α, β ∈ A′(M) and X,Y ∈ V 2(M), then
we have (ω ∧ α ∧ β)(X ∧ Y ) = ω(X) · (α ∧ β)(Y ) + ω(Y ) · (α ∧ β)(X) −
ω( ˜X(α), ˜Y (β)) + ω( ˜X(β), ˜Y (α)).

Proof. It is sufficient to prove the lemma for the case ω = ϕ ∧ ψ where
ϕ, ψ ∈ A′(M).

So, using the definition of the exterior product of differential forms (see
[3]), we obtain

(ϕ ∧ ψ ∧ α ∧ β)(X ∧ Y ) = (ϕ ∧ ψ)(X) · (α ∧ β)(Y ) +

+(ϕ ∧ α)(X) · (β ∧ ψ)(Y ) + (ϕ ∧ β)(X) · (ψ ∧ α)(Y ) +

+(ψ ∧ α)(X) · (ϕ ∧ β)(Y ) + (ψ ∧ β)(X) · (α ∧ ϕ)(Y ) +

+(α ∧ β)(X) · (ϕ ∧ ψ)(Y ) = ω(X) · (α ∧ β)(Y ) +

+ω(Y ) · (α ∧ β)(X)− ω( ˜X(α), ˜Y (β)) + ω( ˜X(β), ˜Y (α)).

2.9. A submodulus W ⊂ V ′(M) is said to be an involutory differential
system if for each pair X, Y ∈ W we have [X,Y ] ∈ W (see [6]).

Theorem. If ˜ξ : A′(M) −→ V ′(M) is the homomorphism corresponding
to the bivetor field ξ (see 2.4), then the differential system Im˜ξ is involutory
in exact terms when [ξ, ξ] ∈ Im˜ξ ∧ Im˜ξ ∧ Im˜ξ.

Proof. We can use any local coordinate system {x1, . . . , xn}. So, we want to
show that for each pair {i, j} ⊂ {1, . . . , n} the vector field [˜ξ(dxi), ˜ξ(dxj)] is
an element of Im˜ξ or, which is the same thing, that σ([˜ξ(dxi), ˜ξ(dxj)]) = 0
for each σ ∈ (Im˜ξ)⊥ ⊂ A′(M).

By the definition of the Schoten bracket (see 1.14) we obtain (dσ ∧ dxi ∧
dxj)(ξ ∧ ξ) = 2(dσ)(ξ) · (dxi ∧ dxj)(ξ) − (σ ∧ dxi ∧ dxj)([ξ, ξ]). Using
Lemma 2.8, we have (dσ ∧ dxi ∧ dxj)(ξ ∧ ξ) = 2(dσ)(ξ) · (dxi ∧ dxj)(ξ) −
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2(dσ)(˜ξ(dxi), ˜ξ(dxj)). Thus (σ ∧ dxi ∧ dxj)([ξ, ξ]) = 2(dσ)(˜ξ(dxi), ˜ξ(dxj)).
Clearly, (dσ)(˜ξ(dxi), ˜ξ(dxj)) = −σ([˜ξ(dxi), ˜ξ(dxj)]). Keeping in mind these
identities, we obtain (σ ∧ dxi ∧ dxj)([ξ, ξ]) = −2σ([˜ξ(dxi), ˜ξ(dxj)]).

2.10. Definition. An integer 2k ≥ 0 is said to be a rank of the bivector
field ξ at a point a ∈ M if (∧kξa) 6= 0 and ∧k+1ξa = 0.

Let e = {e1, . . . , en} be a basis of Ta(M) and e′ = {e1, . . . , en} be the
corresponding dual basis of T ∗a (M). As is known (see [3]), a basis e can be
chosen so that ξa = e1 ∧ e2 + · · · + e2k−1 ∧ e2k. From the definition of ˜ξ
(see 2.4) it follows that {e1, . . . , e2k} is a basis of Im˜ξa. Also, it is clear that
∧kξa = e1 ∧ . . . ∧ e2k and ∧k+1ξa = 0. We have therefore ascertained that
dim(Im˜ξa) = rank ξa.

2.11. If the rank ξ = const and [ξ, ξ] ∈ ∧3Im˜ξ, then Theorem 2.9 and
Frobenius’ theorem imply that the differential system Im˜ξ is integrable (see
[3]), i.e., for each point a ∈ M there is a submanifold N ⊂ M such that
a ∈ N and for each X ∈ N we have Im˜ξx = Tx(N). It is clear that
dim N = rank ξ.

2.12. Proposition. If [ξ, ξ] = 0, then the differential system Im˜ξ is
integrable.

The proof follows from Hermann’s generalization of Frobenius’ theorem
(see [7]) and the fact that for each function f ∈ C∞(M) the one-parameter
group corresponding to ˜ξ(df) preserves ξ. Consequently, the rank ˜ξ is in-
variant under the action of this group.

2.13. Definition. The bivector field ξ is said to be nondegenerate at a
point a ∈ M if the rank ξa = dim M . It is said to be nondegenerate on the
manifold M if it is nondegenerate at each point of M .

2.14. If ξ is nondegenerate on M , then ˜ξ is an isomorphism defining the
differential 2-form ω = ˜ξ−1(ξ), which is a symplectic form exactly when
[ξ, ξ] = 0.

The Poisson bracket defined by ξ coincides with that defined by ω.
As mentioned in 2.12, if [ξ, ξ] = 0, then ξ defines the foliation on M

perhaps with fibers of different dimensions. Let N be any fiber from this
foliation and ξN be the restriction of ξ on the manifold N . It is easy to
check that

(a) ξN ∈ V 2(N);
(b) ξN is nondegenerate on N .
Consequently,
(c) N is a symplectic manifold with the differential 2-form ωN = ˜ξ−1

N (ξN ).
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3. Some Cohomology Properties of Bivector Fields

3.1. Let ξ be a bivector field on the manifold M . Setting u = ξ in
equality (b) of 1.10, we obtain

[ξ, v ∧ w] = [ξ, v] ∧ w + (−1)nv ∧ [ξ, w]

which implies that the endomorphism

[ξ, ] : V (M) −→ V (M)

is an antidifferentiation of degree 1:

[ξ, V m(M)] ⊂ V m+1(M), m ∈ Z.

Let [ξ, ξ] = 0. Then by (c) from 1.10 we obtain [ξ, [ξ,X]] = 0 for each
X ∈ V (M). So the endomorphism [ξ, ] can be regarded as a coboundary
operator defining some cohomology algebra Hξ(M).

To investigate bivector fields from this standpoint we have to prove some
propositions.

3.2. Lemma. If ξ is a bivector field with [ξ, ξ] = 0, then for each closed
1-form α we have [ξ, ˜ξ(α)] = 0.

Proof. Using the local coordinate system x1, . . . , xm, the formula from 1.14,
and the definition of ˜ξ (see 2.4), we find that for each i, j = 1, . . . , n we have
(dxi ∧dxj)([ξ, ˜ξ(α)]) = −(d((α∧dxi)(ξ)((·dxj − (α∧dxj)(ξ) ·dxi))(ξ)+α∧
d((dxi∧dxj)(ξ)) = −(d((dxi∧dxj)(ξ) ·α− (dxi ∧α)(ξ) ·dxj +(dxj ∧α)(ξ) ·
dxi))(ξ) = − 1

2 (dxi ∧ dxj ∧ α)([ξ, ξ]) = 0. Consequently, [ξ, ˜ξ(α)] = 0.

3.3. Theorem. If ξ is a bivector field with [ξ, ξ] = 0, then the diagram

A(M) d−−−−→ A(M)

ξ̃





y





yξ̃

V (M)
[ξ, ]−−−−→ V (M)

is commutative.

Proof. So, the aim is to show that for each form ω we have ˜ξ(dω) = [ξ, ˜ξ(ω)].
It is suffiecient to show this for ω = f · dx1 ∧ . . .∧ dxm, where f, x1, . . . , xm

are smooth functions on M :

˜ξ(ω) = f · ˜ξ(dx1) ∧ . . . ∧ ˜ξ(dxm);

[ξ, ˜ξ(ω)] = [ξ, f · ˜ξ(dx1) ∧ . . . ∧ ˜ξ(dxm)] =

= [ξ, f · ˜ξ(dx1)] ∧ ˜ξ(dx2) ∧ . . . ∧ ˜ξ(dxm)±

±f · ˜ξ(dx1) ∧ [ξ, ˜ξ(dx2) ∧ . . . ∧ ˜ξ(dxm)] =
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= f · [ξ, ˜ξ(dx1)] ∧ ˜ξ(dx2) ∧ . . . ∧ ˜ξ(dxm) +

+˜ξ(df) ∧ ˜ξ(dx1) ∧ . . . ∧ ˜ξ(dxm)±

±f · ˜ξ(dx1)] ∧ [ξ, ˜ξ(dx2) ∧ . . . ∧ ˜ξ(dxm)].

The preceding lemma and formula (b) from 1.10 give

[ξ, ˜ξ(dxi)] = [ξ, ˜ξ(dx1) ∧ . . . ∧ ˜ξ(dxm)] = 0.

Eventually, [ξ, ˜ξ(ω)] = ˜ξ(df) ∧ ˜ξ(dx1) ∧ . . . ∧ ˜ξ(dxm) = ˜(ξ(dω).

3.4. To say otherwise, we have the following homomorphism of cochain
complexes:

R −−−−→ A0(M) = C∞(M) d−−−−→ A′(M) d−−−−→ · · ·

Id





y ξ̃=Id





y ξ̃





y

R −−−−→ V 0(M) = C∞(M)
[ξ, ]−−−−→ V ′(M)

[ξ, ]−−−−→ · · ·

where the top complex is that of De-Rham.
The above homomorphism defines the homomorphism between the De-

Rham cohomology algebra H(M,R) and the cohomology algebra Hξ(M),
which will also be denoted by ˜ξ.

3.5. Example. Let M = T ∗(X) where X is any smooth manifold. As
known, there is a canonical symplectic form ω on M (see [3], [4], [5]), defining
the Poisson structure on C∞(M). Consider the corresponding bivector field
ξω = ω̃−1(ω) (see 2.5, 2.7). It is clear that ˜ξω(ω) = ξω. Since ω = dλ,
where λ is the Liouville form (see [3]), by the theorem from 3.3 we obtain
ξω = ˜ξ(dλ) = [ξω, ˜ξω(λ)].

It is easy to show that the vector field ˜ξω(λ) is the vector field corre-
sponding to the one-parameter group ϕt(u) = e−t · u, t ∈ R, u ∈ T ∗(X).
Otherwise, ˜ξω(λ)|u = −u.

3.6. Example. Let L be a finite-dimensional real vector space and
s : L ∧ L −→ L be any linear map. We have the bivector field ξ on the
manifold M = L∗ defined by means of s. Clearly, T ∗(M) = L∗ × L and for
each point a ∈ L∗ we have ∧2T ∗a (M) = L ∧ L. Now we define ξ as follows:
let α(ξa) = a(s(α)) for a ∈ L∗ and α ∈ ∧2T ∗α(M).

3.7. Theorem. The equality [ξ, ξ] = 0 for the above-defined bivector field
holds if and only if the linear map s defines the structure of a Lie algebra
on L, i.e., we have

s(s(u ∧ v) ∧ w) + s(s(w ∧ u) ∧ v) + s(s(v ∧ w) ∧ u) = 0
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for each u, v, w ∈ L.

Proof. Let {u, v, w} ⊂ L and ω = u ∧ v ∧ w be an element of V 3(L∗).
Clearly, dω = 0 and for p ∈ L∗ we have (iξω)|p = ((u ∧ v)(ξ) · w + (w ∧
u)(ξ) · v +(v∧w)(ξ) ·u)|p = p(s(u∧ v)) ·w + p(s(w∧u)) · v + p(s(v∧w)) ·u.
As one can see, the form iξω depends linearly on p and therefore d(iξω) =
s(u ∧ v) ∧ w + s(w ∧ u) ∧ v + s(v ∧ w) ∧ u.

Using the formula from 1.14, we obtain ω([ξ, ξ])|p = 2d(iξω)(ξ)|p =
p(s(s(u ∧ v) ∧ w + s(s(w ∧ u)) ∧ v + s(s(v ∧ w)) ∧ u)), p ∈ L∗.

Thus [ξ, ξ] = 0 exactly when ω([ξ, ξ])|p = 0 for each ω = u ∧ v ∧ w and
p ∈ L∗; otherwise, p(s(s(u∧ v)∧w) + s(s(w ∧ u)∧ v) + s(s(v ∧w)∧ u)) = 0
for each p ∈ L∗, which is the same as s(s(u ∧ v) ∧ w + s(s(w ∧ u)) ∧ v +
s(s(v ∧ w)) ∧ u) = 0.

3.8. We have ascertained that ξ defines the Poisson structure on C∞(L∗)
if and only if the bracket [u, v] = s(u ∧ v) defines the structure of a Lie
algebra on L.

Clearly, L is a subspace of C∞(L∗). Moreover, L is a Lie subalgebra of
the Poisson algebra C∞(M) and the bracket [ , ] coincides with the Poisson
bracket { , } on L: for u, v ∈ L we have {u, v}(p) = (u, v)(ξ)|p = p([u, v]),
p ∈ L∗. Finally, we find that the element [u, v] as a linear function on L∗

coincides with {u, v}.
3.9. Let us consider the exterior algebra ∧(L∗) =

∑

k∈Z ∧kL∗. Clearly,
∧(L∗) is a subalgebra of the exterior algebra V (L∗).

Theorem. The subalgebra ∧(L∗) in V (L∗) is an invariant subspace of
the operator [ξ, ], and [ξ, ] : ∧(L∗) −→ ∧(L∗) is the Chevalley–Eilenberg
operator (see the operator ∂1 in 1.3) defining the cohomology of the Lie
algebra L with coefficients in R.

Proof. Let α ∈ ∧kL∗. Then [ξ, α] ∈ ∧k+1L∗. We must prove that for
u1 ∧ . . . ∧ uk+1 ∈ ∧k+1L ⊂ Ak+1(L∗) we have (u1 ∧ . . . ∧ uk1)([ξ, α]) =
∑

i<j(−1)i+j−1α([ui, uj ], u1, . . . , uk+1) (recall that for X ∈ ∧mL∗ ⊂ V m(L∗)
and λ ∈ ∧mL ⊂ Am(L∗) we have λ(X) = X(λ)) : (u1 ∧ . . .∧uk+1)([ξ, α]) =
(−1)k(d(iα(u1 ∧ . . .∧uk+1)))(ξ) + (d(iξ(u1 ∧ . . .∧uk+1)))(α)− (d(u1 ∧ . . .∧
uk+1))(ξ ∧ α). Clearly,

d(iα(u1 ∧ . . . ∧ uk+1)) = d(u1 ∧ . . . ∧ uk+1) = 0;

iξ(u1 ∧ . . . ∧ uk+1)|p =
∑

i<j

(−1)i+j−1p([ui, uj ]) · u1 ∧ . . . ∧ uk+1

p ∈ L∗ and d(iξ(u1 ∧ . . .∧ uk+1)) =
∑

i<j(−1)i+j−1[ui, uj ])∧ u1 ∧ . . .∧ ûi ∧
. . . ∧ ûj ∧ . . . ∧ uk+1.

Therefore we obtain

(u1 ∧ . . . ∧ uk+1)([ξ, α]) = [ξ, α](u1, . . . , uk+1) =
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= α
(
∑

i<j

(−1)i+j−1[ui, uj ] ∧ u1 ∧ . . . ∧ ûi ∧ . . . ∧ ûj ∧ . . . ∧ uk+1).

3.10. Let Ā(M) be a sheaf of local differential forms on M and V̄ (M)
be a sheaf of local polyvector fields on M . Since the diagram in 3.3 is
commutative, the diagram of morphisms of sheaves

Ā(M) d−−−−→ Ā(M)

ξ̃





y





yξ̃

V̄ (M)
[ξ, ]−−−−→ V̄ (M)

will also be commutative. Therefore we can talk about the sheave Īm˜ξ,
with the coboundary operator [ξ, ] : Īm˜ξ −→ Īm˜ξ. On the global sections
of Īm˜ξ the operator [ξ, ] defines some cohomology algebra which will be
denoted by hξ(M). The homomorphism ˜ξ induces a homomorphism from
H(M,R) into hξ(M). The element ξ ∈ V 2(M) defines some cohomology
class [ξ] ∈ hξ(M).

3.11. Let N be any integral manifold of the differential system Im˜ξ. Then
the restriction map Im˜ξ 3 X −→ XN ∈ V (N) induces a homomorphism
from hξ(M) into HξN (N). Since the bivector field ξN is nondegenerate,
there is an isomorphism ˜ξN : H(N,R) −→ HξN (N) and therefore we have
a homomorphism from hξ(M) into H(N,R). Finally, we find that for each
N which is an integral manifold of Im˜ξ there is a homomorphism

rN : hξ(M) −→ H(N,R).

3.12. Let us return to 3.6, 3.7, 3.8. As was proved, the canonical bivector
field ξ on L∗, where L is a Lie algebra, is such that [ξ, ξ] = 0. Therefore ξ
defines the foliation in L∗. One can show that if L is a Lie algebra of the
connected Lie group G, then the orbits of the Ad∗G-representation (see [1],
[4]) are just the fibers of the foliation defined by ξ, while for each fiber N
the symplectic form ξ−1

N (ξN ) is just the Souriau–Kostant form on the orbits
of the coadjoint representation.

If the cohomology class [ξ] ∈ hξ(M) is zero, then, as follows from 3.11,
each orbit satisfies the Souriau–Kostant prequantization condition (see [8]).

References

1. D. B. Fuks, Cohomology of infinite-dimensional Lie algebras. (Rus-
sian) Nauka, Moscow, 1984.
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