# ON A SPATIAL PROBLEM OF DARBOUX TYPE FOR A SECOND-ORDER HYPERBOLIC EQUATION 

S. KHARIBEGASHVILI


#### Abstract

The theorem of unique solvability of a spatial problem of Darboux type in Sobolev space is proved for a second-order hyperbolic equation.


In the space of variables $x_{1}, x_{2}, t$ let us consider the second order hyperbolic equation

$$
\begin{equation*}
L u \equiv \square u+a u_{x_{1}}+b u_{x_{2}}+c u_{t}+d u=F \tag{1}
\end{equation*}
$$

where $\square \equiv \frac{\partial^{2}}{\partial t^{2}}-\frac{\partial^{2}}{\partial x_{1}^{2}}-\frac{\partial^{2}}{\partial x_{2}^{2}}$ is a wave operator; the coefficients $a, b, c, d$ and the right-hand side $F$ of equation (1) are given real functions, and $u$ is an unknown real function.

Denote by $D: k t<x_{2}<t, 0<t<t_{0},-1<k=$ const $<1$, the domain lying in a half-space $t>0$, which is bounded by a time-type plane surface $S_{1}: k t-x_{2}=0,0 \leq t \leq t_{0}$, a characteristic surface $S_{2}: t-x_{2}=0$, $0 \leq t \leq t_{0}$ of equation (1), and a plane $t=t_{0}$.

Let us consider the Darboux type problem formulated as follows: find in the domain $D$ the solution $u\left(x_{1}, x_{2}, t\right)$ of equation (1) under the boundary conditions

$$
\begin{equation*}
\left.u\right|_{S_{i}}=f_{i}, \quad i=1,2 \tag{2}
\end{equation*}
$$

where $f_{i}, i=1,2$, are given real functions on $S_{i}$; moreover $\left.\left(f_{1}-f_{2}\right)\right|_{S_{1} \cap S_{2}}=$ 0.

Note that in the class of analytic functions the problem (1),(2) is considered in [1]. In the case where $S_{1}$ is a characteristic surface $t+x_{2}=0$, $0 \leq t \leq t_{0}$, the problem (1),(2) is studied in [1-3]. Some multidimensional analogues of the Darboux problems are treated in [4-6]. In the present paper the problem (1),(2) is investigated in the Sobolev space $W_{2}^{1}(D)$.

[^0]Below we shall obtain first the solution of problem (1),(2) when equation (1) is a wave equation

$$
\begin{equation*}
\square u \equiv \frac{\partial^{2} u}{\partial t^{2}}-\frac{\partial^{2} u}{\partial x_{1}^{2}}-\frac{\partial^{2} u}{\partial x_{2}^{2}}=F \tag{3}
\end{equation*}
$$

and then using the estimates for that solution we shall prove the solvability of the problem (1),(2) in the Sobolev space $W_{2}^{1}(D)$.

Using the method suggested in [7], we can get an integral representation of the regular solution of the problem (3),(2). Moreover, without loss of generality we can assume that for the domain $D$ the value $k=0$, i.e., $D: 0<x_{2}<t, 0<t<t_{0}$, since the case $k \neq 0$ is reduced to the case $k=0$ by a suitable Lorentz transform for which the wave operator $\square$ is invariant. To this end we denote by $D_{\varepsilon \delta}$ a part of the domain $D: 0<$ $x_{2}<t, 0<t<t_{0}$, bounded by the surfaces $S_{1}$ and $S_{2}$, the circular cone $K_{\varepsilon}: r^{2}=\left(t-t^{0}\right)(1-\varepsilon)$ with vertex at the point $\left(x^{0}, t^{0}\right) \in D$, and the circular cylinder $H_{\delta}: r^{2}=\delta^{2}$, where $r^{2}=\left(x_{1}-x_{1}^{0}\right)^{2}+\left(x_{2}-x_{2}^{0}\right)^{2}$ while $\varepsilon$ and $\delta$ are sufficiently small positive numbers.

For any two twice continuously differentiable functions $u$ and $v$ we have an obvious identity

$$
\begin{equation*}
u \square v-v \square u=\sum_{i=1}^{2} \frac{\partial}{\partial x_{i}}\left(v \frac{\partial u}{\partial x_{i}}-u \frac{\partial v}{\partial x_{i}}\right)-\frac{\partial}{\partial t}\left(v \frac{\partial u}{\partial t}-u \frac{\partial v}{\partial t}\right) \tag{4}
\end{equation*}
$$

Integrating equality (4) with respect to $D_{\varepsilon \delta}$, where $u \in C^{1}(\bar{D}) \cap C^{2}(D)$ is a regular solution of the equation (3) and

$$
v=E\left(r, t, t^{0}\right)=\frac{1}{2 \pi} \log \frac{t-t^{0}-\sqrt{\left(t-t^{0}\right)^{2}-r^{2}}}{r}
$$

we have

$$
\begin{equation*}
\int_{\partial D_{\varepsilon \delta}}\left[E\left(r, t, t^{0}\right) \frac{\partial u}{\partial N}-\frac{\partial E\left(r, t, t^{0}\right)}{\partial N} u\right] d s+\int_{D_{\varepsilon \delta}} F \cdot E\left(r, t, t^{0}\right) d x d t=0 \tag{5}
\end{equation*}
$$

where $N$ is the unit conormal vector at the point $(x, t)=\left(x_{1}, x_{2}, t\right) \in \partial D_{\varepsilon \delta}$ with direction cosines $\cos \widehat{N x_{1}}=\cos \widehat{n x_{1}}, \cos \widehat{N x_{2}}=\cos \widehat{n x_{2}}, \cos \widehat{N t}=$ - $\cos \widehat{n t}$ and $n$ is a unit vector of an outer normal to $\partial D_{\varepsilon \delta}$.

Passing in the equality (5) to the limit for $\varepsilon \rightarrow 0, \delta \rightarrow 0$, we get

$$
\begin{aligned}
\int_{x_{2}^{0}}^{t^{0}} u\left(x_{1}^{0}, x_{2}^{0}, t\right) d t= & \int_{S_{1}^{*} \cup S_{2}^{*}}\left[\frac{\partial E\left(r, t, t^{0}\right)}{\partial N} u-E\left(r, t, t^{0}\right) \frac{\partial u}{\partial N}\right] d s- \\
& -\int_{D^{*}} F \cdot E\left(r, t, t^{0}\right) d x d t
\end{aligned}
$$

where $D^{*}$ is a domain of $D_{\varepsilon \delta}$ for $\varepsilon=\delta=0$, and $S_{i}^{*}=S_{i} \cap \partial D^{*}, i=1,2$. Differentiation gives

$$
\begin{align*}
u\left(x_{1}^{0}, x_{2}^{0}, t^{0}\right)=\frac{d}{d t^{0}} & {\left[\int_{S_{1}^{*} \cup S_{2}^{*}}\left[\frac{\partial E\left(r, t, t^{0}\right)}{\partial N} u-E\left(r, t, t^{0}\right) \frac{\partial u}{\partial N}\right] d s-\right.} \\
& \left.-\int_{D^{*}} F \cdot E\left(r, t, t^{0}\right) d x d t\right] \tag{6}
\end{align*}
$$

Remark. Since on the characteristic surface $S_{2}^{*}$ the direction of the conormal $N$ coincides with that of a bicharacteristic lying on $S_{2}^{*}$, we can, along with $\left.u\right|_{S_{2}^{*}}=f_{2}$, calculate also $\frac{\partial u}{\partial N}$ over $S_{2}^{*}$. At the same time, since the surface $S_{1}^{*}$ is a part of the plane $x_{2}=0$, the direction of the conormal $N$ coincides with that of an outer normal to $\partial D^{*}$, i.e., $\frac{\partial}{\partial N}=-\frac{\partial}{\partial x_{2}}$. Therefore, to obtain an integral representation of the regular solution of the problem (3),(2), we should eliminate the value $\left.\frac{\partial u}{\partial N}\right|_{S_{1}^{*}}$ on the right-hand side of the representation (6).

For this let us introduce a point $P^{\prime}\left(x_{1}^{0},-x_{2}^{0}, t^{0}\right)$ symmetric to the point $P\left(x_{1}^{0}, x_{2}^{0}, t^{0}\right)$ with respect to the plane $x_{2}=0$. Denote by $D_{\varepsilon}$ a part of the domain $D$ bounded by the cone $K_{\varepsilon}^{0}:\left(x_{1}-x_{1}^{0}\right)^{2}+\left(x_{2}+x_{2}^{0}\right)^{2}=\left(t-t^{0}\right)^{2}(1-\varepsilon)$ with vertex at $P^{\prime}$ and a boundary $\partial D$. Obviously, $\partial D_{\varepsilon} \cap S_{1} \subset S_{1}^{*}$ and $\partial D_{0} \cap$ $S_{1}=S_{1}^{*}$. Put $\partial D_{0} \cap S_{2}=\widetilde{S_{2}}, \widetilde{r}=\sqrt{\left(x_{1}-x_{1}^{0}\right)^{2}+\left(x_{2}+x_{2}^{0}\right)^{2}}$. Integrating now the equality (4) with respect to $D_{\varepsilon}$, where $u \in C^{1}(\bar{D}) \cap C^{2}(D)$ is a regular solution of equation (3) and

$$
v=E\left(\widetilde{r}, t, t^{0}\right)=\frac{1}{2 \pi} \log \frac{t-t^{0}-\sqrt{\left(t-t^{0}\right)^{2}-\widetilde{r}^{2}}}{\widetilde{r}}
$$

and taking into account the fact that the function $E\left(\widetilde{r}, t, t^{0}\right)$ in $D_{0}$ is nonsingular, after passing to the limit for $\varepsilon \rightarrow 0$ we get the equality

$$
\begin{gather*}
\frac{d}{d t^{0}}\left[\int_{S_{1}^{*} \cup S_{2}^{*}}\left[\frac{\partial E\left(\widetilde{r}, t, t^{0}\right)}{\partial N} u-E\left(\widetilde{r}, t, t^{0}\right) \frac{\partial u}{\partial N}\right] d s-\right. \\
\left.-\int_{D_{0}} F \cdot E\left(\widetilde{r}, t, t^{0}\right) d x d t\right]=0 \tag{7}
\end{gather*}
$$

Since $r=\widetilde{r}$ for $x_{2}=0$, we have $E\left(\widetilde{r}, t, t^{0}\right)=E\left(r, t, t^{0}\right)$ on $S_{1}^{*}$. Therefore, eliminating the value $\left.\frac{\partial u}{\partial N}\right|_{S_{1}^{*}}$ from equalities (6) and (7), we finally get the
integral representation of the regular solution of the problem (3),(2):

$$
\begin{align*}
& u\left(x_{1}^{0}, x_{2}^{0}, t^{0}\right)=\frac{d}{d t^{0}}\left[\int_{S_{1}^{*}}\left[\frac{\partial E\left(r, t, t^{0}\right)}{\partial N}-\frac{\partial E\left(\widetilde{r}, t, t^{0}\right)}{\partial N}\right] u d s+\right. \\
&+ \int_{S_{2}^{*}}\left[\frac{\partial E\left(r, t, t^{0}\right)}{\partial N} u-E\left(r, t, t^{0}\right) \frac{\partial u}{\partial N}\right] d s-\int_{\widetilde{S}_{2}}\left[\frac{\partial E\left(\widetilde{r}, t, t^{0}\right)}{\partial N} u-\right. \\
&\left.\left.-E\left(\widetilde{r}, t, t^{0}\right) \frac{\partial u}{\partial N}\right] d s+\int_{D_{0}} F \cdot E\left(\widetilde{r}, t, t^{0}\right) d x d t-\int_{D^{*}} F \cdot E\left(r, t, t^{0}\right) d x d t\right] . \tag{8}
\end{align*}
$$

Denote by $C_{*}^{\infty}(\bar{D})$ the space of functions of the class $C^{\infty}(\bar{D})$ having bounded supports, i.e.,

$$
C_{*}^{\infty}(\bar{D})=\left\{u \in C^{\infty}(\bar{D}): \operatorname{diam} \operatorname{supp} u<\infty\right\}
$$

The spaces $C_{*}^{\infty}\left(S_{i}\right), i=1,2$, are defined analogously.
According to the remark above and using the formula (8), the solution $u\left(x_{1}, x_{2}, t\right)$ of the problem (3), (2) will be defined uniquely; moreover, as is easily seen, for any $F \in C_{*}^{\infty}(\bar{D}), f_{i} \in C_{*}^{\infty}\left(S_{i}\right), i=1,2$, this solution belongs to the class $C_{*}^{\infty}(\bar{D})$.

Denote by $W_{2}^{1}(D), W_{2}^{2}(D)$ and $W_{2}^{1}\left(S_{i}\right), i=1,2$, the well-known Sobolev spaces.

Definition. Let $f_{i} \in W_{2}^{1}\left(S_{i}\right), i=1,2, F \in L_{2}(D)$. The function $u \in W_{2}^{1}(D)$ is said to be a strong solution of the problem (3),(2) of the class $W_{2}^{1}$ if there is a sequence $u_{n} \in C_{*}^{\infty}(\bar{D})$ such that $u_{n} \rightarrow u, \square u_{n} \rightarrow F$ and $\left.u_{n}\right|_{S_{i}} \rightarrow f_{i}$ in the spaces $W_{2}^{1}(D), L_{2}(D)$ and $W_{2}^{1}\left(S_{i}\right), i=1,2$, respectively, i.e., for $n \rightarrow \infty$

$$
\begin{gathered}
\left\|u_{n}-u\right\|_{W_{2}^{1}(D)} \rightarrow 0, \quad\left\|\square u_{n}-F\right\|_{L_{2}(D)} \rightarrow 0 \\
\left\|\left.u_{n}\right|_{S_{i}}-f_{i}\right\|_{W_{2}^{1}\left(S_{i}\right)} \rightarrow 0, \quad i=1,2
\end{gathered}
$$

Lemma 1. For $-1<k<0$ the a priori estimate

$$
\begin{equation*}
\|u\|_{W_{2}^{1}(D)} \leq C\left(\sum_{i=1}^{2}\left\|f_{i}\right\|_{W_{2}^{1}\left(S_{i}\right)}+\|F\|_{L_{2}(D)}\right) \tag{9}
\end{equation*}
$$

is valid for any $u \in C_{*}^{\infty}(\bar{D})$, where $f_{i}=\left.u\right|_{S_{i}}, i=1,2, F=\square u$, and the positive constant $C$ does not depend on $u$.

Proof. Introduce the notations:

$$
\begin{gathered}
D_{\tau}=\{(x, t) \in D: t<\tau\}, \quad D_{0 \tau}=\partial D_{\tau} \cap\{t=\tau\}, \quad 0<\tau \leq t_{0} \\
S_{i \tau}=\partial D_{\tau} \cap S_{i}, \quad i=1,2, \quad S_{\tau}=S_{1 \tau} \cup S_{2 \tau}, \quad \alpha_{1}=\cos \widehat{\left(n, x_{1}\right)} \\
\alpha_{2}=\cos \widehat{\left(n, x_{2}\right)}, \quad \alpha_{3}=\cos \widehat{(n, t)} .
\end{gathered}
$$

Here $n=\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right)$ is the unit vector of an outer normal to $\partial D_{\tau} ;$ moreover, as is easily seen,

$$
\left.n\right|_{S_{1 \tau}}=\left(0, \frac{-1}{\sqrt{1+k^{2}}}, \frac{k}{\sqrt{1+k^{2}}}\right),\left.n\right|_{S_{2 \tau}}=\left(0, \frac{\sqrt{2}}{2}, \frac{-\sqrt{2}}{2}\right),\left.n\right|_{D_{0 \tau}}=(0,0,1)
$$

Hence, for $-1<k<0$

$$
\begin{gather*}
\left.\alpha_{3}\right|_{S_{i \tau}}<0 \quad i=1,2,\left.\quad \alpha_{3}^{-1}\left(\alpha_{3}^{2}-\alpha_{1}^{2}-\alpha_{2}^{2}\right)\right|_{S_{1}}>0 \\
\left.\left(\alpha_{3}^{2}-\alpha_{1}^{2}-\alpha_{2}^{2}\right)\right|_{S_{2}}=0 \tag{10}
\end{gather*}
$$

Multiplying both parts of equation (3) by $2 u_{t}$, where $u \in C_{*}^{\infty}(\bar{D}), F=$ $\square u$, integrating the obtained expression over the region to $D_{\tau}$, and taking into account (10), we get

$$
\begin{gather*}
2 \int_{D_{\tau}} F u_{\tau} d x d t=\int_{D_{\tau}}\left(\frac{\partial u_{t}^{2}}{\partial t}+2 u_{x_{1}} u_{t x_{1}}+2 u_{x_{2}} u_{t x_{2}}\right) d x d t- \\
-2 \int_{S_{\tau}}\left(u_{x_{1}} u_{t} \alpha_{1}+u_{x_{2}} u_{t} \alpha_{2}\right) d s=\int_{D_{0 \tau}}\left(u_{t}^{2}+u_{x_{1}}^{2}+u_{x_{2}}^{2}\right) d x+ \\
\quad+\int_{S_{\tau}}\left[\left(u_{t}^{2}+u_{x_{1}}^{2}+u_{x_{2}}^{2}\right) \alpha_{3}-2\left(u_{x_{1}} u_{t} \alpha_{1}+u_{x_{2}} u_{t} \alpha_{2}\right)\right] d s= \\
=\int_{D_{0 \tau}}\left(u_{t}^{2}+u_{x_{1}}^{2}+u_{x_{2}}^{2}\right) d x+\int_{S_{\tau}} \alpha_{3}^{-1}\left[\left(\alpha_{3} u_{x_{1}}-\alpha_{1} u_{t}\right)^{2}+\left(\alpha_{3} u_{x_{2}}-\alpha_{2} u_{t}\right)^{2}+\right. \\
\left.\quad+\left(\alpha_{3}^{2}-\alpha_{1}^{2}-\alpha_{2}^{2}\right) u_{t}^{2}\right] d s \geq \int_{D_{0 \tau}}\left(u_{t}^{2}+u_{x_{1}}^{2}+u_{x_{2}}^{2}\right) d x+ \\
\quad+\int_{S_{\tau}} \alpha_{3}^{-1}\left[\left(\alpha_{3} u_{x_{1}}-\alpha_{1} u_{t}\right)^{2}+\left(\alpha_{3} u_{x_{2}}-\alpha_{2} u_{t}\right)^{2}\right] d s \tag{11}
\end{gather*}
$$

Putting

$$
W(\tau)=\int_{D_{0 \tau}}\left(u_{t}^{2}+u_{x_{1}}^{2}+u_{x_{2}}^{2}\right) d x, \quad \widetilde{u}_{i}=\alpha_{3} u_{x_{i}}-\alpha_{i} u_{t}, \quad i=1,2
$$

from (11) we have

$$
\begin{gather*}
W(\tau) \leq \frac{\sqrt{1+k^{2}}}{|k|} \int_{S_{1 \tau}}\left(\widetilde{u}_{1}^{2}+\widetilde{u}_{2}^{2}\right) d s+\sqrt{2} \int_{S_{2 \tau}}\left(\widetilde{u}_{1}^{2}+\widetilde{u}_{2}^{2}\right) d s+ \\
+\int_{D_{\tau}}\left(F^{2}+u_{t}^{2}\right) d x d t \leq \frac{\sqrt{1+k^{2}}}{|k|} \int_{S_{1 \tau}}\left(\widetilde{u}_{1}^{2}+\widetilde{u}_{2}^{2}\right) d s+\sqrt{2} \int_{S_{2 \tau}}\left(\widetilde{u}_{1}^{2}+\widetilde{u}_{2}^{2}\right) d s+ \\
+\int_{0}^{\tau} d \xi \int_{D_{0 \xi}} u_{t}^{2} d x+\int_{D_{\tau}} F^{2} d x d t \leq \frac{\sqrt{1+k^{2}}}{|k|} \int_{S_{\tau}}\left(\widetilde{u}_{1}^{2}+\widetilde{u}_{2}^{2}\right) d s+ \\
+\int_{0}^{\tau} W(\xi) d \xi+\int_{D_{\tau}} F^{2} d x d t \tag{12}
\end{gather*}
$$

Let $\left(x, \tau_{x}\right)$ be a point of intersection of the surface $S_{1} \cup S_{2}$ with a straight line parallel to the axis $t$ and passing through the point $(x, 0)$. We have

$$
u(x, \tau)=u\left(x, \tau_{x}\right)+\int_{\tau_{x}}^{\tau} u_{t}(x, t) d t
$$

whence it follows that

$$
\begin{gather*}
\int_{D_{0 \tau}} u^{2}(x, \tau) d x \leq 2 \int_{D_{0 \tau}} u^{2}\left(x, \tau_{x}\right) d x+ \\
+2\left|\tau-\tau_{x}\right| \cdot \int_{D_{0 \tau}} d x \int_{\tau_{x}}^{\tau} u_{t}^{2}(x, t) d t=2 \int_{S_{\tau}} \alpha_{3}^{-1} u^{2} d s+ \\
+2\left|\tau-\tau_{x}\right| \int_{D_{\tau}} u_{t}^{2} d x d t \leq C_{k}\left(\int_{S_{\tau}} u^{2} d s+\int_{D_{\tau}} u_{t}^{2} d x d t\right) \tag{13}
\end{gather*}
$$

where $C_{k}=2 \max \left(\frac{\sqrt{1+k^{2}}}{|k|}, t_{0}\right)$.
Introducing the notation

$$
W_{0}(\tau)=\int_{D_{0 \tau}}\left(u^{2}+u_{t}^{2}+u_{x_{1}}^{2}+u_{x_{2}}^{2}\right) d x
$$

and adding the inequalities (12) and (13) we obtain

$$
W_{0}(\tau) \leq C_{k}\left[\int_{S_{\tau}}\left(u^{2}+\widetilde{u}_{1}^{2}+\widetilde{u}_{2}^{2}\right) d s+\int_{0}^{\tau} W_{0}(\xi) d \xi+\int_{D_{\tau}} F^{2} d x d t\right]
$$

from which by Gronwall's lemma we find that

$$
\begin{equation*}
W_{0}(\tau) \leq C_{1 k}\left[\int_{S_{\tau}}\left(u^{2}+\widetilde{u}_{1}^{2}+\widetilde{u}_{2}^{2}\right) d s+\int_{D_{\tau}} F^{2} d x d t\right] \tag{14}
\end{equation*}
$$

We can easily see that $\alpha_{3} \frac{\partial}{\partial x_{i}}-\alpha_{i} \frac{\partial}{\partial t}$ is the interior differential operator on the surface $S_{\tau}$. Therefore, by virtue of (2), the inequality

$$
\begin{equation*}
\int_{S_{\tau}}\left(u^{2}+\widetilde{u}_{1}^{2}+\widetilde{u}_{2}^{2}\right) d s \leq \widetilde{C}_{3} \sum_{i=1}^{2}\|f\|_{W_{2}^{1}\left(S_{i \tau}\right)}^{2} \tag{15}
\end{equation*}
$$

is valid.
It follows from (14) and (15) that

$$
\begin{equation*}
W_{0}(\tau) \leq C_{2 k}\left(\sum_{i=1}^{2}\left\|f_{i}\right\|_{W_{2}^{1}\left(S_{i \tau}\right)}^{2}+\|F\|_{L_{2}\left(D_{\tau}\right)}^{2}\right) \tag{16}
\end{equation*}
$$

Integrating both parts of the inequality (16) with respect to $\tau$, we obtain the estimate (9).

Remark. It is easy see that the a priori estimate (9) is also valid for a function $u$ of the class $W_{2}^{2}(D)$, since the space $C_{*}^{\infty}(\bar{D})$ is everywhere a dense subset of the space $W_{2}^{2}(D)$. It should be noted that the constant $C$ in (9) tends to infinity for $k \rightarrow 0$ and it becomes, generally speaking, invalid in the limit for $k=0$, i.e. for $S_{1}: x_{2}=0,0 \leq t \leq t_{0}$. At the same time, following the proof of Lemma 1, we can see that the estimate (9) is also valid for $k=0$ if $f_{1}=\left.u\right|_{S_{1}}=0$.

The following theorem holds.
Theorem 1. Let $-1<k<0$. Then for every $f_{i} \in W_{2}^{1}\left(S_{i}\right), i=1,2$, $F \in L_{2}(D)$ there exists a unique strong solution of the problem (3), (2) of the class $W_{2}^{1}$ for which the estimate (9) is valid.
Proof. It is known that the spaces $C_{*}^{\infty}(\bar{D})$ and $C_{*}^{\infty}\left(S_{i}\right), i=1,2$, are dense everywhere in the spaces $L_{2}(D)$ and $W_{2}^{1}\left(S_{i}\right), i=1,2$, respectively. Therefore there exist sequences $F_{n} \in C_{*}^{\infty}(D)$ and $f_{i n} \in C_{*}^{\infty}\left(S_{i}\right), i=1,2$, such that

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|F-F_{n}\right\|_{L_{2}(D)}=\lim _{n \rightarrow \infty}\left\|f_{i}-f_{i n}\right\|_{W_{2}^{1}\left(S_{i}\right)}=0, \quad i=1,2 \tag{17}
\end{equation*}
$$

Moreover, because of the condition $\left.\left(f_{1}-f_{2}\right)\right|_{S_{1} \cap S_{2}}=0$, the sequences $f_{1 n}$ and $f_{2 n}$ can be chosen so that

$$
\left.\left(f_{1 n}-f_{2 n}\right)\right|_{S_{1} \cap S_{2}}=0, \quad n=1,2, \ldots
$$

According to the integral representation (8) of the regular solutions of the problem $(3),(2)$, there exists a sequence $u_{n} \in C_{*}^{\infty}(\bar{D})$ of solutions of that problem for $F=F_{n}, f_{i}=f_{i n}, i=1,2$.

By virtue of the inequality (9) we have

$$
\begin{gather*}
\left\|u_{n}-u_{m}\right\|_{W_{2}^{1}(D)} \leq \\
\leq C\left(\sum_{i=1}^{2}\left\|f_{i n}-f_{i m}\right\|_{W_{2}^{1}\left(S_{i}\right)}+\left\|F_{n}-F_{m}\right\|_{L_{2}(D)}\right) \tag{18}
\end{gather*}
$$

It follows from (17) and (18) that the sequence $u_{n}$ of the functions is fundamental in the space $W_{2}^{1}(D)$. Therefore, since the space $W_{2}^{1}(D)$ is complete, there exists a function $u \in W_{2}^{1}(D)$ such that $u_{n} \rightarrow u$, $\square u_{n} \rightarrow F$, and $\left.u_{n}\right|_{S_{i}} \rightarrow f_{i}$ in $W_{2}^{1}(D), L_{2}(D)$, and $W_{2}^{1}\left(S_{i}\right), i=1,2$, respectively, for $n \rightarrow \infty$. Hence the function $u$ is the strong solution of the problem (3),(2) of the class $W_{2}^{1}$. The uniqueness of the strong solution of the problem (3),(2) of the class $W_{2}^{1}$ follows from the inequality (9).

Remark. Theorem 1 remains also valid for $k=0$, i.e., for $S_{1}: x_{2}=0$, $0 \leq t \leq t_{0}$ if $f_{1}=\left.u\right|_{S_{1}}=0$.

Now for the problem (3), (2) let us introduce the notion of a weak solution of the class $W_{2}^{1}$. Put $S_{3}=\partial D \cap\left\{t=t_{0}\right\}, V=\left\{v \in W_{2}^{1}(D):\left.v\right|_{S_{1} \cup S_{3}}=0\right\}$.

Definition. Let $f_{i} \in W_{2}^{1}\left(S_{i}\right), i=1,2, F \in L_{2}(D)$. The function $u \in W_{2}^{1}(D)$ is said to be a weak solution of the problem (3),(2) of the class $W_{2}^{1}$ if it satisfies both the boundary conditions (2) and the identity

$$
\begin{equation*}
\int_{D}\left(u_{t} v_{t}-u_{x_{1}} v_{x_{1}}-u_{x_{2}} v_{x_{2}}\right) d x d t+\int_{S_{2}} \frac{\partial f_{2}}{\partial N} v d s+\int_{D} F v d x d t=0 \tag{19}
\end{equation*}
$$

for any $v \in V$, where $\frac{\partial}{\partial N}$ is a derivative with respect to a conormal to $S_{2}$.
Obviously, every strong solution of the problem (3),(2) of the class $W_{2}^{1}$ is a weak solution of the same class.

Lemma 2. For $k=0$, i.e., for $S_{1}: x_{2}=0,0 \leq t \leq t_{0}$ the problem (3), (2) cannot have more than one weak solution of the class $W_{2}^{1}$.

Proof. Let the function $u \in W_{2}^{1}(D)$ satisfy the identity (19) for $\left.u\right|_{S_{i}}=f_{i}=$ $0, i=1,2, F=0$. In this identity we take as $v$ the function

$$
v\left(x_{1}, x_{2}, t\right)=\left\{\begin{array}{l}
0 \text { for } t \geq \tau  \tag{20}\\
\int_{\tau}^{t} u\left(x_{1}, x_{2}, \sigma\right) d \sigma \quad \text { for } \quad\left|x_{2}\right| \leq t \leq \tau
\end{array}\right.
$$

where $0<\tau \leq t_{0}$.
Obviously, $v \in V$ and

$$
\begin{gather*}
v_{t}=u, \quad v_{x_{i}}=\int_{\tau}^{t} u_{x_{i}}\left(x_{1}, x_{2}, \sigma\right) d \sigma, \quad i=1,2  \tag{21}\\
v_{t x_{i}}=u_{x_{i}}, \quad v_{t t}=u_{t}
\end{gather*}
$$

By virtue of (20) and (21), the identity (19) for $f_{2}=0, F=0$ takes the form

$$
\int_{D_{\tau}}\left(v_{t t} v_{t}-v_{t x_{1}} v_{x_{1}}-v_{t x_{2}} v_{x_{2}}\right) d x d t=0
$$

or

$$
\begin{equation*}
\int_{D_{\tau}} \frac{\partial}{\partial t}\left(v_{t}^{2}-v_{x_{1}}^{2}-v_{x_{2}}^{2}\right) d x d t=0 \tag{22}
\end{equation*}
$$

where $D_{\tau}=D \cap\{t<\tau\}$.
Using the Gauss-Ostrogradsky formula on the left-hand side of (22), we obtain

$$
\begin{equation*}
\int_{\partial D_{\tau}}\left(v_{t}^{2}-v_{x_{1}}^{2}-v_{x_{2}}^{2}\right) \cos \widehat{n t} d s=0 . \tag{23}
\end{equation*}
$$

Since $\partial D_{\tau}=S_{1 \tau} \cup S_{2 \tau} \cup S_{3 \tau}$, where $S_{i \tau}=\partial D_{\tau} \cap S_{i}, i=1,2, S_{3 \tau}=$ $\partial D_{\tau} \cap\{t=\tau\}$ and

$$
\begin{gathered}
\left.\cos \widehat{n t}\right|_{S_{1 \tau}}=0,\left.\quad \cos \widehat{n t}\right|_{S_{2 \tau}}=-\frac{1}{\sqrt{2}},\left.\quad \cos \widehat{n t}\right|_{S_{3 \tau}}=1 \\
\left.u\right|_{S_{i \tau}}=f_{i}=0, \quad i=1,2,\left.\quad v_{x_{i}}\right|_{S_{3 \tau}}=0, \quad i=1,2, \quad v_{t}=u
\end{gathered}
$$

it follows from (23) that

$$
\int_{S_{3 \tau}} u^{2} d x_{1} d x_{2}+\frac{1}{\sqrt{2}} \int_{S_{2 \tau}}\left(v_{x_{1}}^{2}+v_{x_{2}}^{2}\right) d s=0
$$

Hence, $\left.u\right|_{S_{3 \tau}}=0$ for any $\tau$ from the interval $\left(0, t_{0}\right]$. Therefore, $u \equiv 0$ in the domain $D$.

Due to the fact that the strong solution of the problem (3),(2) of the class $W_{2}^{1}$ is at the same time a weak solution of the class $W_{2}^{1}$, from Lemma 2 and the remark following after Theorem 1 we have

Theorem 2. Let $k=0$, i.e., $S_{1}: x_{2}=0,0 \leq t \leq t_{0}$ and $\left.u\right|_{S_{1}}=f_{1}=0$. Then for any $f_{2} \in W_{2}^{1}\left(S_{2}\right)$ and $F_{2} \in L_{2}(D)$ there exists a unique weak solution $u$ of the problem (3), (2) of the class $W_{2}^{1}$ for which the estimate (9) is valid.

To prove the solvability of the problem (1),(2) we shall use the solvability of the problem $(3),(2)$ and the fact that in the specifically chosen equivalent norms of the spaces $L_{2}(D), W_{2}^{1}(D), W_{2}^{1}\left(S_{i}\right), i=1,2$, the lowest terms in equation (1) give arbitrarily small perturbations.

Introduce in the space $W_{2}^{1}(D)$ an equivalent norm depending on the parameter $\gamma$,

$$
\|u\|_{D, 1, \gamma}^{2}=\int_{D} e^{-\gamma t}\left(u^{2}+u_{t}^{2}+u_{x_{1}}^{2}+u_{x_{2}}^{2}\right) d x d t, \quad \gamma>0
$$

In the same manner we introduce the norms $\|F\|_{D, 0, \gamma},\left\|f_{i}\right\|_{S_{i}, 1, \gamma}$ in the spaces $L_{2}(D), W_{2}^{1}\left(S_{i}\right), i=1,2$.

Making use of the inequality (16), we obtain the a priori estimate for $u \in C_{*}^{\infty}(D)$ with respect to the norms $\|\cdot\|_{D, 1, \gamma},\|\cdot\|_{S_{i, 1, \gamma}}, i=1,2$. Multiplying both parts of the inequality (16) by $e^{-\gamma t}$ and integrating the obtained inequality with respect to $\tau$ from 0 to $t_{0}$ we get

$$
\begin{gather*}
\|u\|_{D, 1, \gamma}^{2}=\int_{0}^{t_{0}} e^{-\gamma \tau} W_{0}(\tau) d \tau \leq C_{2 k}\left(\sum_{i=1}^{2} \int_{0}^{t_{0}} e^{-\gamma t}\left\|f_{i}\right\|_{W_{2}^{1}\left(S_{i \tau}\right)}^{2} d \tau+\right. \\
\left.+\int_{0}^{t_{0}} e^{-\gamma \tau}\|F\|_{L_{2}\left(D_{\tau}\right)}^{2} d \tau\right) \tag{24}
\end{gather*}
$$

We have

$$
\begin{gather*}
\int_{0}^{t_{0}} e^{-\gamma t}\|F\|_{L_{2}\left(D_{\tau}\right)}^{2} d \tau=\int_{0}^{t_{0}} e^{-\gamma t}\left[\int_{0}^{\tau}\left(\int_{D_{0 \sigma}} F^{2} d x\right) d \sigma\right] d \tau= \\
=\int_{0}^{t_{0}}\left[\int_{D_{0 \sigma}} F^{2} d x \int_{\sigma}^{t_{0}} e^{-\gamma \tau} d \tau\right] d \sigma=\frac{1}{\gamma} \int_{0}^{t_{0}}\left(e^{-\gamma \sigma}-e^{-\gamma t_{0}}\right)\left[\int_{D_{0 \sigma}} F^{2} d x\right] d \sigma \leq \\
\leq \frac{1}{\gamma} \int_{0}^{t_{0}} e^{-\gamma \sigma}\left[\int_{D_{0 \sigma}} F^{2} d x\right] d \sigma=\frac{1}{\gamma}\|F\|_{D, 0, \gamma}^{2} \tag{25}
\end{gather*}
$$

where $D_{0 \tau}=\partial D_{\tau} \cap\{t=\tau\}, 0<\tau \leq t_{0}$.

Analogously we obtain

$$
\begin{equation*}
\int_{0}^{t_{0}} e^{-\gamma \tau}\left\|f_{i}\right\|_{W_{2}^{1}\left(S_{i \tau}\right)}^{2} d \tau \leq \frac{C_{3}}{\gamma}\left\|f_{i}\right\|_{S_{i}, 1, \gamma}^{2}, \quad i=1,2 \tag{26}
\end{equation*}
$$

where $C_{3}$ is a positive constant independent of $f_{i}$ and the parameter $\gamma$.
From the inequalities $(24)-(26)$ we have the a priori estimate for $u \in$ $C_{*}^{\infty}(\bar{D})$

$$
\begin{equation*}
\|u\|_{D, 1, \gamma} \leq \frac{C_{4}}{\sqrt{\gamma}}\left(\sum_{i=1}^{2}\left\|f_{i}\right\|_{S_{i}, 1, \gamma}+\|F\|_{D, 0, \gamma}\right) \tag{27}
\end{equation*}
$$

for $-1<k<0$, where $C_{4}=$ const $>0$ does not depend on $u$ and the parameter $\gamma$.

Below, the coefficients $a, b, c$, and $d$ in equation (1) are assumed to be bounded measurable functions in the domain $D$.

Consider the space

$$
V=L_{2}(D) \times W_{2}^{1}\left(S_{1}\right) \times W_{2}^{1}\left(S_{2}\right)
$$

To the problem (1),(2) there corresponds an unbounded operator

$$
T: W_{2}^{1}(D) \rightarrow V
$$

with the domain of definition $\Omega_{T}=C_{*}^{\infty}(D) \subset W_{2}^{1}(D)$, acting by the formula

$$
T u=\left(L u,\left.u\right|_{S_{1}},\left.u\right|_{S_{2}}\right), \quad u \in \Omega_{T} .
$$

We can easily prove that the operator $T$ admits a closure $\bar{T}$. In fact, let $u_{n} \in \Omega_{T}, u_{n} \rightarrow 0$ in $W_{2}^{1}(D)$ and $T u_{n} \rightarrow\left(F, f_{1}, f_{2}\right)$ in the space $V$. First we shall show that $F=0$. For $\varphi \in C_{0}^{\infty}(D)$ we have

$$
\begin{equation*}
\left(L u_{n}, \varphi\right)=\left(u_{n}, \square \varphi\right)+(K u, \varphi) \tag{28}
\end{equation*}
$$

where $K u=a u_{x_{1}}+b u_{x_{2}}+c u_{t}+d u$. Since $u_{n} \rightarrow 0$ in $W_{2}^{1}(D)$, it follows from (28) that $\left(L u_{n}, \varphi\right) \rightarrow 0$. On the other hand, by the definition of a strong solution, we have the convergence $L u_{n} \rightarrow F$ in $L_{2}(D)$. Therefore $(f, \varphi)=0$ for any $\varphi \in C_{0}^{\infty}(D)$, and hence, $F=0$. That $f_{1}=f_{2}=0$ follows from the fact that $u_{n} \rightarrow 0$ in $W_{2}^{1}(D)$ and the contraction operator $u \rightarrow\left(\left.u\right|_{S_{1}},\left.u\right|_{S_{2}}\right)$ acts boundedly from $W_{2}^{1}(D)$ to $L_{2}\left(S_{1}\right) \times L_{2}\left(S_{2}\right)$.

To the problem (3),(2) there corresponds an unbounded operator $T_{0}$ : $W_{2}^{1}(D) \rightarrow V$ obtained from the operator $T$ for $a=b=c=d=0$. As was shown above, the operator $T_{0}$ also admits a closure $\bar{T}_{0}$. Obviously, the operator $K_{0}: W_{2}^{1}(D) \rightarrow V$ acting by the formula $K_{0} u=(K u, 0,0)$ is bounded and

$$
\begin{equation*}
T=T_{0}+K_{0} \tag{29}
\end{equation*}
$$

Note that the domains of definition $\Omega_{\bar{T}}$ and $\Omega_{\bar{T}_{0}}$ of the closed operators $\bar{T}$ and $\bar{T}_{0}$ coincide by virtue of (29) and the fact that the operator $K_{0}$ is bounded.

We can easily see that the existence and uniqueness of the strong solution of the problem (1),(2) of the class $W_{2}^{1}$ as well as the estimate (9) for this solution follow from the existence of the bounded right operator $\bar{T}^{-1}$ inverse to $\bar{T}$ and defined in a whole space $V$.

The fact that the operator $\bar{T}_{0}$ has a bounded right inverse operator $\bar{T}_{0}^{-1}$ : $V \rightarrow W_{2}^{1}(D)$ for $-1<k<0$ follows from Theorem 1 and the estimate (9) which, as we have shown above, can be written in equivalent norms in the form of (27). It is easy to see that the operator

$$
K_{0} \bar{T}_{0}^{-1}: V \rightarrow V
$$

is bounded and by virtue of (27) its norm admits the following estimate

$$
\begin{equation*}
\left\|K_{0} \bar{T}_{0}^{-1}\right\| \leq \frac{C_{4} C_{5}}{\sqrt{\gamma}} \tag{30}
\end{equation*}
$$

where $C_{5}$ is a positive constant depending only on the coefficients $a, b, c$, and $d$ of equation (1).

Taking into account (30), we note that the operator $\left(I+K_{0} \bar{T}_{0}^{-1}\right): V \rightarrow V$ has a bounded inverse operator $\left(I+K_{0} \bar{T}_{0}^{-1}\right)^{-1}$ for sufficiently large $\gamma$, where $I$ is the unit operator. Now it remains only to note that the operator

$$
\bar{T}_{0}^{-1}\left(I+K_{0} \bar{T}_{0}^{-1}\right)^{-1}
$$

is a bounded operator right inverse to $\bar{T}$ and defined in a whole space $V$.
Thus the following theorem is proved.
Theorem 3. Let $-1<k<0$. Then for any $f_{i} \in W_{2}^{1}\left(S_{i}\right), i=1,2$, $F \in L_{2}(D)$ there exists a unique strong solution $u$ of the problem (1), (2) of the class $W_{2}^{1}$ for which the estimate (9) is valid.

## References

1. J. Hadamard, Lectures on Cauchy's problem in partial differential equations. Yale University Press, New Haven, 1923.
2. J. Tolen, Probleme de Cauchy sur les deux hipersurfaces caracteristiques secantes. C.R.Acad.Sci. Paris Ser. A-B 291(1980), No. 1, 49-52.
3. S. Kharibegashvili, On a characteristic problem for the wave equation. Proc. I. Vekua Inst. Appl. Math. Tbilisi St. Univ. 47(1992), 76-82.
4. A. V. Bitsadze, On mixed type equations on three-dimensional domains. (Russian) Dokl. Akad. Nauk SSSR 143(1962), No. 5, 1017-1019.
5. A. M. Nakhushev, A multidimensional analogue of the Darboux problem for hyperbolic equations. (Russian) Dokl. Akad. Nauk SSSR 194(1970), No. 1, 31-34.
6. T. Sh. Kalmenov, On multidimensional regular bounded value problems for the wave equation. (Russian) Izv. Akad. Nauk Kazakh. SSR, Ser. Fiz.-Mat. (1982), No. 3, 18-25.
7. A. V. Bitsadze, Some classes of partial differential equations. (Russian) Nauka, Moscow, 1981.
(Received 25.10.1993)
Author's address:
I. Vekua Institute of Applied Mathematics

Tbilisi State University
2, University St., Tbilisi 380043
Republic of Georgia


[^0]:    1991 Mathematics Subject Classification. 35L20.
    Key words and phrases. Characteristic, spatial problem of Darboux type, hyperbolic equation, a priori estimate.

