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ON A GENERALIZATION OF THE KELDYSH THEOREM

G. JAIANI

Abstract. The Keldysh theorem for an elliptic equation with cha-
racteristic parabolic degeneration is generalized for the case of an
elliptic equation of the second-order canonical form with order and
type degeneration. The criteria under which the Dirichlet or Keldysh
problems are correct are given in a one-sided neighborhood of the
degeneration segment, enabling one to write the criteria in a single
form. Moreover, some cases are pointed out in which it is even ness-
esary to give a criterion in the neighborhood because it is impossible
to establish it on the segment of degeneracy of the equation.

Let us consider the equation

L(u) def= ym ∂2u
∂x2 + yn ∂2u

∂y2 + a(x, y)
∂u
∂x

+

+b(x, y)
∂u
∂y

+ c(x, y)u = 0, m, n = const ≥ 0, (1)

in a domain Ω bounded by a sufficiently smooth arc σ lying in the upper
half-plane y ≥ 0 and by a segment AB of the x-axis;

a, b, c ∈ A(Ω), c ≤ 0 in Ω, (2)

where A(Ω) is the class of functions analytic in Ω with respect to x, y, and
two boundary value problems:

Dirichlet Problem. Find u ∈ C2(Ω) ∩ C(Ω) in Ω from the prescribed
continuous values of L(u) in Ω and of u on the boundary∂Ω.

Keldysh Problem. Find bounded u ∈ C2(Ω) ∩ C(Ω ∪ σ) in Ω from
prescribed continuous values of L(u) in Ω and of u on σ.

C(Ω) is a set of functions continuous in closure of Ω. C2(Ω) is a set of
functions with continuous derivatives of orders ≤ 2 in Ω.
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Let
Iδ

def= {(x, y) ∈ Ω : 0 < y < δ, δ = const > 0}.

Theorem. If n < 1, or n ≥ 1 and

b(x, y) < yn−1 in Iδ, (3)

the Dirichlet problem is correct while the Keldysh problem has an infinite
number of solutions. If n ≥ 1,

b(x, y) ≥ yn−1 in Iδ, (4)

and

a(x, y) = O(ym), y → 0+ (5)

(O is the Landau symbol), the Keldysh problem is correct while the Dirichlet
problem, in general, has no solutions.

Proof. In [1] (see pp. 187-194) it is shown for equation (1) that
if there exists W ∈ C2(Ω) such that:

W > 0 in Ω ∪ σ,

lim
y→0+

W (x, y) = +∞

uniformly with respect to x,

L(W ) < 0 in Ω,

then the Keldysh problem is correct,
if for any point (x0, 0), x0 ∈ AB, there exists (barrier) v ∈ C2(ωδ

x0
),

where

ωδ
x0

def= {(x, y) ∈ Ω : (x− x0)2 + y2 < δ, δ = const > 0},

such that

v ∈ C(ωδ
x0

),

v(x0, 0) = 0,

v > 0 in ωδ
x0
\{(x0, 0)},

L(v) < η = const < 0 in ωδ
x0

,

then the Dirichlet problem is correct.
Let us show that by (3) the function

v(x, y) = (− ln y)−1 + (x− x0)2

can serve as a barrier function.
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Indeed, taking into account (1), we have

L(v) = 2ym + 2yn−2(− ln y)−3 − yn−2(− ln y)−2 + 2a · (x− x0) +

+ b · y−1(− ln y)−2 + cv = [b(x, y)− yn−1]y−1(− ln y)−2 +

+ 2yn−2(− ln y)−3 + 2ym + 2a · (x− x0) + cv <

< η < 0 in wδ
x0

, (6)

since the sign of L(v) when y → 0+ is defined by the first term of (6)

[b(x, y)− yn−1]y−1(− ln y)−2, (7)

and for n ≥ 1, in view of (3),

lim
y→0+

L(v) = −∞. (8)

If 0 ≤ n < 1, we rewrite the first term of (6) as

[y1−nb(x, y)− 1]yn−2(− ln y)−2. (9)

Because of (2)
lim

y→0+
[y1−nb(x, y)− 1] = −1.

Therefore (8) holds in this case too.
It is easy to see that the other properties of the barrier are also fulfilled.
To prove the second part of the theorem, let us consider the function

W (x, y) = − ln y − (x− α)l + k,

where x− α > 1, α, k = const, l > 2 is an integer.
Obviously,

L(W ) = −l(l − 1)(x− α)l−2ym + yn−2 − la · (x− α)l−1 − b
y

+ cW =

=
yn−1 − b(x, y)

y
− 1

3
l
[

ym(l − 1) + 3a · (x− α)
]

(x− α)l−2 −

− 2
3
l(l − 1)(x− α)l−2ym + cW. (10)

In view of (5) l can be chosen so that

l − 1 > 3max
Ω

(x− α) sup
Ω

|a|
ym ≥ 3|a|(x− α)

ym in Ω. (11)

On the other hand, by virtue of (4),

yn−1 − b(x, y)
y

≤ 0 in Iδ.
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Hence, taking into account that 1 < (x− α)l−2 and

−2
3
l(l − 1)ym > −2

3
l(l − 1)(x− α)l−2ym in Ω,

from (10) we have

L(W ) < −2
3
l(l − 1)(x− α)l−2ym + cW ≤

≤ −2
3
l(l − 1)ym < 0 in Iδ, (12)

since W > 0 in Ω ∪ σ for suitably chosen k. It is clear that there exist
A, l = const such that

yn−1 − b(x, y)
y

< A and l(l − 1) >
3A
ym in Ω\Iδ.

Further

L(W ) < A− 2
3
l(l − 1)ym + cW < −1

3
l(l − 1)ym < 0 in Ω\Iδ. (13)

From (12) and (13) there follows

L(W ) < 0 in Ω.

The fulfillment of the other properties of the function W is obvious.

Remark 1. Condition (5) is not necessary. If a(x, y) ≥ 0 in Iδ, then

L(W ) < −l(l − 1)(x− α)l−2ym < −l(l − 1)ym < 0 in Iδ,

and by virtue of (13), which is valid since (11) holds for Ω\Iδ, the theorem
remains true without restriction (5). On the other hand, if (4) is fulfilled in
Ω and c < 0 in Ω or b(x, y) > yn−1 in Ω and c ≤ 0 in Ω, then

W ∗ = − ln y + k

can serve as the Keldysh function, since

L(W ∗) =
yn−1 − b(x, y)

y
+ cW ∗ < 0 in Ω,

and condition (5) is again unnecessary.

Remark 2. When 1 < n < 2, b(x, 0) ≤ 0, the sign of L(v) (see (6)) is
defined by (7). Since b ∈ A(Ω),

[b(x, y)− yn−1]y−1 ln−2 y = [b(x, 0) +
∂b(x, 0)

∂y
y + O(y2)]y−1 ln−2 y −

−yn−2 ln−2 y ≤
[∂b(x, 0)

∂y
−O(y)

]

ln−2 y − yn−2 ln−2 y,



ON A GENERALIZATION OF THE KELDYSH THEOREM 295

where the first term tends to zero and the second one tends to −∞. There-
fore (8) is fulfilled and the Dirichlet problem is correct.

Remark 3. Because of the continuity in Ω of both sides if n ≥ 1, (4) holds
also in Iδ.

Remark 4. Because of (2) b(x, y) 6≡ yn−1 in Ω when {n} 6= 0 ({n} is a
fractional part of n) since yn−1, {n} 6= 0, is not analytic in Ω.

Remark 5. For 0 ≤ n < 1, because of the boundedness (see (2)) of b(x, y)
and limy→0+ yn−1 = +∞, (3) is always fulfilled in Iδ and (4) cannot take
place in Iδ. In that case from (3) in Iδ there follows

y1−nb(x, y)− 1 < 0 in Iδ,

and the correctness of the Dirichlet problem is clear (see the proof of the
theorem). Hence we could embrace the case 0 ≤ n < 1 with condition (3).
But because of the clearness of the question (for 0 ≤ n < 1 the Dirichlet
problem is always correct), this case is considered separately.

Remark 6. When (3) holds we have either n = 1, b(x, 0) < 1 or n > 1,
b(x, 0) < 0 and vice versa.

Indeed, when n = 1, (3) obviously implies b(x, 0) < 1, x ∈ AB, and from
the latter there follows (3) since [1 − b(x, y)] ∈ C(Ω) (see (2)) and has to
preserve its sign in closure of some Iδ∗ ⊂ Iδ, δ∗ < δ. If n > 1 from (3) there
follows b(x, 0) < 0 and from the latter as above b(x, y) < 0 in some Iδ∗ and
therefore there obviously follows (3).

Remark 7. When (4) holds we have either n = 1, b(x, 0) ≥ 1 or 1 < n < 2,
b(x, 0) > 0 or n ≥ 2, b(x, 0) ≥ 0 for x ∈ AB. The reverse motion is not true
in general but if n = 1, b(x, 0) > 1 or n > 1, b(x, 0) > 0, x ∈ AB, then

b(x, y) > yn−1 in Iδ. (14)

In the latter case, there exist b0 and δ such that b(x, y) ≥ b0 = const > 0 in

Iδ. Hence (14) will be fulfilled if δ = b
1

n−1
0 .

For 1 < n < 2 condition (4) does not exclude the existence of such
x0 ∈ AB where b(x0, 0) = 0. But in that case, because of (2),

b(x0, y) = b(x0, 0) +
∂b(x0, 0)

∂y
y +

1
2

∂2b(x0, 0)
∂y2 y2 + · · · =

= y
[∂b(x0, 0)

∂y
+

1
2

∂2b(x0, 0)
∂y2 y + . . .

]

= y · κ(x0, y), 0 ≤ y < δ,

with κ(x0, y) bounded for 0 ≤ y < δ and, in view of (4), we have

yκ(x0, y) ≥ yn−1, 0 < y < δ,
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i.e.,
κ(x0, y) ≥ yn−2, 0 < y < δ,

which means the unboundedness of κ. This is a contradiction. Therefore
b(x0, 0) 6= 0 and b(x, 0) > 0 for all x ∈ AB. The other cases are obvious.

From Remarks 6 and 7 there follows

Remark 8. For m = 0, if b(x, 0) 6= 1 when n = 1, and b(x, 0) 6= 0 when
n > 1, from our theorem there follows the Keldysh theorem [2].

Remark 9. Let us consider in Ω two equations: one with order and type
degeneration

ym ∂2u
∂x2 + yn ∂2u

∂y2 + b(x, y)
∂u
∂y

= 0 (15)

and the other with characteristic type degeneration

∂2u
∂x2 + yn ∂2u

∂y2 + b(x, y)
∂u
∂y

= 0, (16)

where

b(x, y) = b0y[n]−1, b0 = const, m ≥ [n]− 1, n ≥ 2, (17)

and [n] is the integral part of n.
In both cases b(x, 0) = 0. Hence, in view of the Keldysh theorem [2], the

Keldysh problem is correct for (16). Similarly, expecting the correctness of
the Keldysh problem for (15), let us check the fulfillment of (4). Condition
(4) will be fulfilled for (17) iff

b0 ≥ y{n} in Iδ. (18)

The latter will be fulfilled iff

b0 ≥ 1 when {n} = 0, (19)

b0 > 0 when {n} > 0. (20)

(Indeed, if n is an integer, (18) and (19) coincide. When n is not an integer,

for any b0 > 0 we can find the neighborhood Iδ, δ = b
1
{n}
0 where (18) will

be fulfilled.) In these cases the correctness of the Keldysh problem follows
from our theorem.

If

b0 < 1 when {n} = 0,

b0 ≤ 0 when {n} > 0,
(21)
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(3) is fulfilled in Iδ but in Iδ the inequality cannot be strong and we are
not able to use our theorem. However, after dividing both sides of (15) by
y[n]−1 in Ω, we obtain the equation

ym−[n]+1 ∂2u
∂x2 + y{n}+1 ∂2u

∂y2 + b0
∂u
∂y

= 0,

and now we can apply our theorem, which by (21) asserts the correctness
of Dirichlet problem.

Thus, for both equations (15) and (16) b(x, 0) = 0. Nevertheless the
Keldysh problem is correct for (16) for any b0; the Keldysh problem is
correct for (15) for some b0 (see (19), (20)), and the Dirichlet problem is
correct for other b0 (see (21)). It means that for equation (16) with type
degeneration the correctness of admissible problems depends on values of
b(x, y) on the line of degeneracy of the equation, but for equation (15)
with order and type degeneration, the correctness of admissible problems
essentially depends on the behavior of b(x, y) in a neighborhood not on the
segment of degeneracy of the equation.

Therefore, when m > 0, n > 2, b(x, 0) = 0, the well-posedness of the
boundary value problems for (1), even under assumptions (2), essentially
depends on additional properties of b(x, y) in the neighborhood (see (3),(4))
of line of degeneracy of (1), i.e., it is nessesary to give the criteria in the
neighborhood because it is impossible to establish them on the segment of
degeneracy of the equation.
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