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TWO-DIMENSION-LIKE FUNCTIONS DEFINED ON THE
CLASS OF ALL TYCHONOFF SPACES

I. TSERETELI

Abstract. Two-dimension-like functions are constructed on the class
of all Tychonoff spaces. Several of their properties, analogous to those
of the classical dimension functions, are established.

1. Introduction. All topological spaces discussed in this paper are
assumed to be Tychonoff spaces.

As usual, Ind, ind, and dim denote the classical dimension functions (the
large inductive, small inductive, and covering dimensions, respectively).

Let N′ be the union of all integers ≥ −1 and of one element set consisting
of a single formal symbol “+∞” provided with an essential order relation.

The set of all natural numbers is denoted by N.
Throughout the paper for any n ∈ N, the symbol In denotes a standard

n-cube In ≡ [0; 1]n, I0 ≡ {0}, and I−1 ≡ ∅ where ∅ stands for the empty
set.

The family of all Tychonoff spaces is denoted by T .
The class K of topological spaces is said to be permissible if K satisfies

the following conditions:
1) for any integer n ≥ −1 In ∈ K;
2) if X ∈ K and A ⊆ X, then A ∈ K;
3) if X1, X2 ∈ K, then X1×X2 ∈ K where X1×X2 is the usual product

of spaces.
The function d defined on a permissible class K of topological spaces

with values in N′ is called the generalized dimension-like function (GDF) if
a) d∅ = −1 and b) dX = dY whenever X is homeomorphic to Y .

The GDF d defined on a permissible class K of topological spaces is said
to be of the Tumarkin type if the following conditions T K1 −T K8 are satisfied:
T K1 ) for any integer n ≥ −1 dIn = n;
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T K2 ) if X ∈ K and A is a locally closed subspace of X (i.e., if A = F ∪G,
where F is closed and G is open in X), then dA ≤ dX;

T K3 ) if X ∈ K and X =
∞
∪

i=1
Ai where for any i ∈ N Ai is a closed subset

of the space X, then dX ≤ sup
1≤i<+∞

{dAi};

T K4 ) for any space X ∈ K there exists a Hausdorff compactification bX
of the space X such that dbX ≤ dX;
T K5 ) for every pair of spaces X1, X2 ∈ K at least one of which is nonempty

we have d(X1 ×X2) ≤ dX1 + dX2;
T K6 ) if X ∈ K and X = A ∪B, then dX ≤ dA + dB + 1;
T K7 ) if X ∈ K and there exists a nonnegative integer n such that dX ≤ n,

then the space X can be represented as the union of n + 1 pairwise disjoint
subsets X1, X2, . . . , Xn+1 with dXi ≤ 0 for any i = 1, 2, . . . , n + 1;
T K8 ) for any X ∈ K and an arbitrary subspace A of the space X there

exists a Gδ-set H in X such that A ⊆ H ⊆ X and dH ≤ dA.
It is well-known fact that on the class of all separable metrizable spaces

the classical dimension dim is a GDF of the Tumarkin type. On the other
hand, as proved by L. Zambakhidze [1], there exists no GDF of the Tumarkin
type on the class T . Moreover, there exists no GDF on T even satisfying
the conditions T T

1 , T T
2 , T T

3 , T T
4 , T T

5 simultaneously [1]. Also, there is no
GDF on T satisfying the conditions T T

1 , T T
2 , T T

8 simultaneously.
We say that a subcollection {T T

i1 , . . . , T T
ik
} (1 ≤ i1 < · · · < ik ≤ 8,

k = 1, . . . , 8) of the collection {T T
1 , . . . , T T

8 } is realized if there exists a
GDF on T which satisfies all conditions {T T

i1 , . . . , T T
ik
} simultaneously.

Clearly, if a subcollection {T T
i1 , . . . , T T

ik
} (1 ≤ i1 < · · · < ik ≤ 8, k =

1, . . . , 8) of the collection {T T
1 , . . . , T T

8 } is realized, then any subcollection
of {T T

i1 , . . . , T T
ik
} is realized, too. Also, if {T T

i1 , . . . , T T
ik
} is not realized, then

no subcollection of the collection {T T
1 , . . . , T T

8 } containing the given one is
realized.

L. Zambakhidze has shown [1] that the collections {T T
2 , T T

3 , T T
4 , T T

5 , T T
6 ,

T T
7 , T T

8 }, {T T
1 , T T

2 , T T
4 , T T

5 , T T
7 }, {T T

1 , T T
2 , T T

3 , T T
5 , T T

6 }, {T T
1 , T T

2 , T T
3 ,

T T
6 , T T

7 } and {T T
1 , T T

2 , T T
5 , T T

6 , T T
7 } are realized.

In this paper we prove that collections {T T
1 , T T

3 , T T
4 , T T

5 , T T
6 , T T

7 , T T
8 }

and {T T
1 , T T

2 , T T
3 , T T

5 , T T
7 } are realized. To this end we construct two GDFs

d1 and d2 on T such that d1 satisfies the conditions T T
1 , T T

3 , T T
4 , T T

5 , T T
6 , T T

7 ,
T T

8 and d2 satisfies the conditions T T
1 , T T

2 , T T
3 , T T

5 , T T
7 . Moreover, the func-

tions d1 and d2 are the extensions of the classical dimension function dim
from the class of all separable metrizable spaces over the class T .

2. GDF d1. Let X ∈ T . It is assumed that d1X = dim X if X has a
countable base and d1X = 0 otherwise.

Observe that d1 is a GDF on T and also is the extension of the function
dim from the class of all separable metrizable spaces over the class T .
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Theorem 1. The GDF d1 satisfies the conditions T T
1 , T T

3 , T T
4 , T T

5 , T T
6 ,

T T
7 , T T

8 , that is to say, the subcollection {T T
1 , T T

3 , T T
4 , T T

5 , T T
6 , T T

7 , T T
8 } of

the collection {T T
1 , . . . , T T

8 } is realized.

Proof. The function d1 obviously satisfies the conditions T T
1 , T T

3 , T T
4 , T T

5 ,
T T

6 , and T T
7 . Therefore it remains for us to prove that d1 satisfies the

condition T T
8 .

Let X ∈ T and A ⊆ X. Assume in the first place that ωX ≤ ℵ0 (here and
below ωX denotes the weight of the space X and ℵ0 stands for a countable
cardinal number). Then by Tumarkin’s theorem [2, Ch. 6, §3, Theorem 14]
there exists a Gδ-set H in X such that A ⊆ H ⊆ X and dim H ≤ dim A.
Hence, keeping in mind that ωA ≤ ℵ0 and ωH ≤ ℵ0, we have d1H ≤ d1A.

Now let ωX > ℵ0. If A = ∅, it can be assumed that H = ∅. If A 6= ∅,
then assume that H = X.

3. GDF d2. We begin by defining the function H constructed by Hayashi
[3].

Definition 1 ([3]). A subset X ′ of the space X ∈ T is called quasiclosed
in X if there exists a finite family {F1, . . . , Fk} of closed subsets of the space
X such that X ′ = F1 ± F2 ± · · · ± Fk, where + and − denote respectively
the union and the difference of sets, and whenever ± is written one should
take either + or −.

Clearly, every closed subset as well as every open subset of the space X
is quasiclosed in X.

The function H is defined on the class T as follows:
Let X ∈ T . H(X) = −1 iff X = ∅; H(X) = 0 iff X 6= ∅ and X =

∞
∪

i=1
Xi

where for any i ∈ N Xi is quasiclosed in X and ind Xi ≤ 0; H(X) ≤ n
(n ∈ N) iff X = X1 ∪X2, where H(X1) ≤ n− 1 and H(X2) ≤ 0; H(X) = n
(n = 0, 1, 2, . . . ) iff H(X) ≤ n and H(X) 6≤ n− 1.

Finally, H(X) = ∞ iff the inequality H(X) ≤ n does not hold for any
n = −1, 0, 1, 2, . . . .

Now we shall define the function d2.
Let X ∈ T . d2(X) = −1 iff X = ∅; d2(X) ≤ n (n = 0, 1, 2, . . . ) if

X =
∞
∪

t=1
Xt where H(Xt) ≤ 0 for any t ∈ N and

n+1
∪

k=1
Xtk = X for any

n + 1 pairwise disjoint natural numbers t1, t2, . . . , tn+1; d2(X) = n (n =
0, 1, 2, . . . ) iff d2(X) ≤ n and d2(X) 6≤ n − 1; d2(X) = ∞ if d2(X) � n for
any n = −1, 0, 1, 2, . . . .

Clearly, d2 is a GDF on the class T .

Lemma 1. We have d2(X) = dim X for any X ∈ T with a countable
base.



204 I. TSERETELI

Proof. Let X ∈ T and ωX ≤ ℵ0. Suppose that d2(X) ≤ n. Then X =
∞
∪

t=1
Xt, where H(Xt) ≤ 0 for any t ≥ 1 and

n+1
∪

i=1
Xti = X for any pairwise

disjoint t1, t2, . . . , tn+1 ∈ N. Since ω(Xt) ≤ ℵ0 for any t ∈ N, it follows from
[3, Theorem 4.3, Corollary 2] that dim Xt = ind Xt = H(Xt) ≤ 0. Therefore

we have X =
∞
∪

t=1
Xt where dim Xt ≤ 0 for any t ∈ N and

n+1
∪

i=1
Xti = X for

any pairwise disjoint t1, . . . , tn+1 ∈ N. Hence [4, Theorem 1.5.8] dim X ≤ n.
Conversely, let ωX ≤ ℵ0 and dim X ≤ n, (n ≥ 0). Then by Ostrand’s

theorem [5] X =
∞
∪

t=1
Xt, where dim Xt ≤ 0 for any t ≥ 1 and

n+1
∪

i=1
Xti = X for

any n+1 pairwise disjoint natural numbers t1, t2, . . . , tn+1. Applying again
[4, Theorem 4.3, Corollary 2], we obtain H(Xt) = dim Xt ≤ 0. Hence, by
the definition of the function d2, we have d2(X) ≤ n.

Corollary 1. The GDF d2 is the extension of the function dim from the
class of all separable metrizable spaces over the class T .

Corollary 2. The equalities d2(In) = dim In = n hold for any integer
n ≥ −1.

Lemma 2. We have d2(X ′) ≤ d2(X) for each X ∈ T and an arbitrary
subspace X ′ of the space X.

Proof. Assume that X ∈ T and X ′ is an arbitrary subspace of X. Let
d2(X) ≤ n (n ≥ −1). It will be shown that d2(X ′) ≤ n holds too. Indeed,

since d2(X) ≤ n, we have X =
∞
∪

t=1
Xt where H(Xt) ≤ 0 for each t ≥ 1 and

X =
n+1
∪

i=1
Xti for any pairwise disjoint numbers t1, . . . , tn+1. Introduce the

notation X ′
t ≡ Xt ∩X ′. Obviously, X ′ =

∞
∪

t=1
X ′

t.

Further, since H(Xt) ≤ 0 for any t ≥ 1, by the definition of the function

H we have Xt =
∞
∪

i=1
Xti ≤ 0, where each Xti is quasiclosed in Xt and

ind Xti ≤ 0 (i = 1, 2, . . . ). Observe that X ′
t = Xt ∩X ′ =

( ∞
∪

i=1
Xti

)

∩X ′ =
∞
∪

i=1
(Xti∩X ′). Since each Xti is quasiclosed in Xt, Xti∩(Xt∩X ′) = Xti∩X ′

will be quasiclosed in Xt∩X ′ = X ′
t [3, Theorem 1.4]. Introduce the notation

X ′
ti = Xti ∩ X ′. Then X ′

t =
∞
∪

i=1
X ′

ti, where each X ′
ti is quasiclosed in X ′

t.

Moreover, since X ′
ti = Xti ∩X ′ ⊆ Xti, we have ind X ′

ti ≤ ind Xti ≤ 0.

Now we shall show that X ′
t =

n+1
∪

i=1
X ′

ti
for any pairwise disjoint natural

numbers t1, . . . , tn+1. Indeed,
n+1
∪

i=1
X ′

ti
=

n+1
∪

i=1
(Xti ∩X ′) =

( n+1
∪

i=1
Xti

)

∩X ′ =

X ∩X ′ = X ′. The inequality d2(X ′) ≤ n is proved and so is the inequality
d2(X ′) ≤ d2(X).
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Lemma 3. Let X ∈ T and X =
∞
∪

i=1
Xi where each Xi is quasiclosed in

X. Also assume there exists a natural number n such that d2(Xi) ≤ n for
any i ≥ 1. Then d2(X) ≤ n.

Proof. It is obvious that if n = −1, the assertion is true.
Let us consider the case n = 0. By definition, d2(X) = 0 iff H(X) = 0.

Applying Theorem 3.2 from [3], we conclude that the assertion of the lemma
is true in this case too.

Now consider the case n ≥ 1. It can be assumed without loss of generality
that Xi ∩Xj = ∅ whenever i 6= j. (Indeed, otherwise we have to consider

a new covering {X ′
i}∞i=1 of the space X, where X ′

1 = X1, X ′
k = Xk\

k−1
∪

i=1
X ′

i

for k > 1. Then [3, Theorems 1.1 and 1.3] each X ′
i is quasiclosed in X and

X ′
i ∩X ′

j = ∅ whenever i 6= j. Since X ′
k ⊆ Xk for any k ≥ 1, by Lemma 2

we have d2(X ′
k) ≤ d2(Xk) ≤ n). By the definition of the function d2 and

since d2Xi ≤ n, we have Xi =
∞
∪

t=1
Xit, where H(Xit) ≤ 0 for each t ≥ 1 and

n+1
∪

j=1
Xitj = Xi for any pairwise disjoint natural numbers t1, . . . , tn+1.

We introduce the notation X(t) ≡
∞
∪

i=1
Xit. It is obvious that

∞
∪

t=1
X(t) = X.

We shall prove that H(X(t)) ≤ 0 for any t ≥ 1.
Since Xi ∩Xj = ∅ for i 6= j, it is obvious that Xit = Xi ∩X(t). Hence

due to the quasiclosedness of Xi in X this implies [3, Theorem 1.4] that
Xit is quasiclosed in X(t). On the other hand, since H(Xit) ≤ 0, we have

Xit =
∞
∪

k=1
Xitk, where each Xitk is quasiclosed in Xit (and, accordingly,

in Xi and X(t) as well [3, Theorem 1.5]) and for any i, t, k ≥ 1 we have

indXitk ≤ 0. But it is clear that X(t) =
∞
∪

i,k=1
Xitk for any t ≥ 1. Hence, by

the definition of the function H, H(X(t)) ≤ 0 for any t ≥ 1.
Now let us consider natural numbers t1, . . . , tn+1 such that ti 6= tj when-

ever i 6= j (i, j = 1, . . . , n + 1). We have

n+1
∪

m=1
X(tm) =

n+1
∪

m=1

( ∞
∪

i=1
Xitm

)

=
n+1
∪

i=1

( n+1
∪

m=1
Xitm

)

=
∞
∪

i=1
Xi = X.

Hence d2(X) ≤ n.

Corollary 3. let X ∈ T and X =
∞
∪

i=1
Xi, where each Xi is closed in X.

Also assume that there exists a natural number n such that d2(Xi) ≤ n for
any i ≥ 1. Then d2(X) ≤ n.

Lemma 4. If X1 is a quasiclosed subset of X ∈ T and Y1 is a quasiclosed
subset of Y ∈ T , then X1×Y1 is a quasiclosed subset of the space X×Y ∈ T .
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Proof. By the assumption

X1 = F0 ± F1 ± · · · ± Fk−1 ± Fk

and

Y1 = Φ0 ± Φ1 ± · · · ± Φs−1 ± Φs,

where each Fi (o ≤ i ≤ k) is a closed subset of X and each Φj (0 ≤ j ≤ s) is
a closed subset of Y . The sign “+” denotes the usual union of sets, the sign
“−” the usual difference of sets, and so whenever ± is written one should
take either + or −.

The lemma will be proved by double induction (with respect to k and s).
If k = s = 0, then X1 = F0 and Y1 = Φ0, where F0 is a closed subset of

the space X and Φ0 is a closed subset of the space Y . Therefore X1 × Y1

will be a closed subset and thus it will also be a quasiclosed subset of X×Y .
Assume that Lemma 4 has already been proved in two cases: 1) 0 ≤ k ≤

m − 1 and 0 ≤ s ≤ n; 2) 0 ≤ k ≤ m and 0 ≤ s ≤ n − 1, and prove it
for k = m and s = n. For this note that the following (easily verifiable)
point-set equations hold for any sets A,B, C, D:

(a) (A ∪B)× (C ∪D) = (A× C) ∪ (A×D) ∪ (B × C) ∪ (B ×D);

(b) (A ∪B)× (C\D) = {[(A× C) ∪ (B × C)]\(A×D)}\(B ×D);

(c) (A\B)× (C ∪D) = {[(A× C) ∪ (A×D)]\(B × C)}\(B ×D);

(d) (A\B)× (C\D) = [(A× C)\(A×D)]\(B × C).

Four cases are possible:

(++)

{

X1 = F0 ± F1 ± · · · ± Fm−1 + Fm

Y1 = Φ0 ± Φ1 ± · · · ± Φn−1 + Φn
,

(+−)

{

X1 = F0 ± F1 ± · · · ± Fm−1 + Fm

Y1 = Φ0 ± Φ1 ± · · · ± Φn−1 − Φn
,

(−+)

{

X1 = F0 ± F1 ± · · · ± Fm−1 − Fm

Y1 = Φ0 ± Φ1 ± · · · ± Φn−1 + Φn
,

(−−)

{

X1 = F0 ± F1 ± · · · ± Fm−1 − Fm

Y1 = Φ0 ± Φ1 ± · · · ± Φn−1 − Φn
.

Let us consider each of these cases separately.
Introduce the notation

F0 ± F1 ± · · · ± Fm−1 ≡ ˜Fm−1;

Φ0 ± Φ1 ± · · · ± Φn−1 ≡ ˜Φn−1.
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Case (++). Due to (a) we have

X1 × Y1 = ( ˜Fm−1 ∪ Fm)× (˜Φn−1 ∪ Φn) = ( ˜Fm−1 × ˜Φn−1) ∪

∪ ( ˜Fm−1 × ˜Φn) ∪ (Fm × ˜Φn−1) ∪ (Fm)× Φn).

By the assumption of induction ˜Fm−1× ˜Φn−1, ˜Fm−1×Φn and Fm× ˜Φn−1
are quasiclosed subsets of X × Y . Since the sets Fm and Φn are closed in
X and Y , respectively, Fm × Φn is closed (and thus is also quasiclosed) in
X×Y . This means that the union of these sets will be quasiclosed in X×Y
as well [3, Theorem 1.1].

Case (+−). Applying (b), we have

X1 × Y1 = {[( ˜Fm−1 × Φn) ∪ (Fm × ˜Φn−1)]\

\( ˜Fm−1 × ˜Φn−1)}\(Fm × Φn).

By the assumption the sets ˜Fm−1 × Φn, Fm × ˜Φn−1 and ˜Fm−1 × ˜Φn−1

are quasiclosed in X × Y . The set Fm × Φn is obviously closed in X × Y .
Hence X1 × Y1 is quasiclosed in X × Y [3, Theorems 1.1 and 1.3].

Case (−+). By (c) we have

X1 × Y1 = {[( ˜Fm−1 × ˜Φn−1) ∪ ( ˜Fm−1 × Φn)]\

\(Fm × ˜Φn−1)}\(Fm × Φn).

By the assumption of induction and Theorem 1.3 from [3] one can prove
that X1 × Y1 is quasiclosed in X × Y .

Case (−−). From (d) it follows that

X1 × Y1 = [( ˜Fm−1 × ˜Φn−1)\( ˜Fm−1 × Φn)]\(Fm × ˜Φn−1).

By the assumption the sets ˜Fm−1× ˜Φn−1, ˜Fm−1×Φn and Fm× ˜Φn−1 are
quasiclosed in X×Y . Hence by Theorem 1.3 from [3] X1×Y1 is quasiclosed
in X × Y as well.

Proposition 1. For any pair of spaces X, Y ∈ T , if ind X ≤ 0 and
ind Y ≤ 0, then ind X × Y ≤ 0.

The proof is trivial.

Lemma 5. Let X, Y ∈ T and let either X 6= ∅ or Y 6= ∅. Then
d2(X × Y ) ≤ d2(X) + d2(Y ).
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Proof. If either d2(X) = 0 and d2(Y ) = −1 or d2(X) = −1 and d2(Y ) = 0,
then the inequality d2(X × Y ) ≤ d2(X) + d2(Y ) is obvious.

Assume that d2(X) = n ≥ 0 and d2(Y ) = m ≥ 0. Then X =
∞
∪

t=1
Xt,

Y =
∞
∪

l=1
Yl, where H(Xt) ≤ 0 and H(Yl) ≤ 0 for any t, l ≥ 1, and, moreover,

the equalities

X =
n+1
∪

i=1
Xti , Y =

m+1
∪

j=1
Ylj

hold for any sequences t1, . . . , tn+1 and l1, . . . , lm+1 of natural numbers with
pairwise disjoint numbers.

Introduce the notation Zp ≡ Xp × Yp for any p ≥ 1. Since H(Xp) ≤ 0

and H(Yp) ≤ 0 for each p ∈ N, we have Xp =
∞
∪

i=1
Xpi and Yp =

∞
∪

j=1
Ypj ,

where each Xpi is quasiclosed in Xp and each Ypj is quasiclosed in Yp, and
for any i, j ∈ N we have ind Xpi ≤ 0, ind Ypj ≤ 0.

Lemma 4 implies that Xpi × Ypj is quasiclosed in Xp × Yp = Zp and by
Proposition 1 we have ind(Xpi × Ypj) ≤ 0. Moreover, it is obvious that

Zp = Xp × Yp =
∞
∪

i,j=1
(Xpi × Ypj).

Let us now prove that if we are given n + m + 1 natural numbers
p1, p2, . . . , pn+m+1 such that pi 6= pj for any i 6= j (1 ≤ i, j ≤ n + m + 1),

then
n+m+1
∪

i=1
Zpi = X×Y . (This, in particular, implies that

∞
∪

p=1
Zp = X×Y .)

The inclusion X × Y ⊇ Zp1 ∪ · · · ∪ Zpn+m+1 is obvious. Let us prove
the inverse inclusion. Assume that (x, y) ∈ X × Y . It remains for us to
show that if (x, y) does not belong to some m + n members of the sys-
tem {Zp1 , . . . , Zpm+n+1}, then (x, y) necessarily belongs to the remaining
member of this system.

Consider the case where (x, y) ∈ X × Y and (x, y) 6∈ Zp1 ∪ · · · ∪ Zpm+n .
It will be shown that (x, y) ∈ Zpm+n+1 . (All other cases are considered
analogously.) Let x not belong to exactly k (0 ≤ k ≤ m + n) members of
the system {Xpi}m+n

i=1 and belong to the remaining m + n − k members of
this system. Then, since each subsystem of the system {Xt}∞t=1 consisting
of n + 1 elements covers the space X, we have k ≤ n.

By the assumption (x, y) 6∈ Zp1 ∪ · · · ∪ Zpm+n . Now if x ∈ Xpi , we shall
necessarily have y 6∈ Ypi (1 ≤ i ≤ m + n). Hence y does not belong to at
least m + n − k members of the system {Ypi}m+n

i=1 . Since each subsystem
of the system {Yl}∞l=1 consisting of m + 1 elements covers the space Y , we
have m + n− k ≤ m. Therefore n ≤ k.

From the inequalities k ≤ n and n ≤ k we obtain the equality n = k.
Therefore x does not belong to exactly n elements of the system {Xpi}m+n

i=1 .
Assume that they are sets Xpi1

, . . . , Xpin
and consider the system

{Xpi1
, . . . , Xpin

, Xpm+n+1}. Since the latter system consists of n + 1 ele-
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ments, we have (
n
∪

j=1
Xpij

) ∪ Xpm+n+1 = X and, consequently, since x 6∈
n
∪

j=1
Xpij

, we have x ∈ Xpm+n+1 .

Analogously, y does not belong to exactly m + n − k = m + n − n = m
elements of the system {Ypi}m+n

i=1 . Assume that they are sets Ypj1
, . . . , Ypjm

.
(It is obvious that {pi1 , . . . , pin} ∪ {pj1 , . . . , pjm} = {p1, . . . , pm+n} and
{pi1 , . . . , pin} ∩ {pj1 , . . . , pjm} = ∅.) Consider the system {Ypj1

, . . . , Ypjm
,

Ypm+n+1}. Since this system consists of m+1 members, we have (
m
∪

i=1
Ypji

)∪

Ypm+n+1 = Y . But y 6∈
m
∪

i=1
Ypji

and thus y ∈ Ypm+n+1 . Therefore (x, y) ∈
Xpm+n+1 × Ypm+n+1 ⊆ Zp1 ∪ · · · ∪ Zpm+n+1 .

Lemma 6. Let X ∈ T and d2(X) ≤ n (where 0 ≤ n < +∞). Then there

exist n + 1 subspaces X1, . . . , Xn+1 of the space X such that X =
n+1
∪

i=1
Xi

and d2(Xi) ≤ 0 holds for any i = 1, . . . , n + 1.

Proof. d2(X) ≤ n implies X =
∞
∪

t=1
Xt where for each t ≥ 1 H(Xt) ≤ 0

(which in turn implies d2(Xt) ≤ 0) and for any pairwise disjoint natural

numbers t1, . . . , tn+1 we have X =
n+1
∪

i=1
Xti , in particular, X =

n+1
∪

k=1
Xk where

d2(Xk) ≤ 0 for any k = 1, . . . , n + 1.

Applying Lemmas 2, 5, 6 and Corollaries 2, 3, we arrive at

Theorem 2. The GDF d2 satisfies the conditions T T
1 , T T

2 , T T
3 , T T

5 , T T
7

simultaneously. In other words, the subsystem {T T
1 , T T

2 , T T
3 , T T

5 , T T
7 } of the

system {T T
1 , . . . , T T

8 } is realized.
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