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FRACTIONAL INTEGRODIFFERENTIATION IN HÖLDER
CLASSES OF ARBITRARY ORDER

N. K. KARAPETYANTS AND A. I. GINZBURG

Abstract. Hölder classes of variable order µ(x) are introduced and
it is shown that the fractional integral Iα

0+ has Hölder order µ(x) + α
(0 < α, µ+, α + µ+ < 1, µ+ = sup µ(x)).

The connection between the smoothness of image and the smoothness
of density is an important problem in the theory of integral operators. In
particular, the same problem for fractional integral operators Iα

0+ϕ in the
interval [a, b] was thoroughly studied by G. H. Hardy and J. E. Littlewood
(see [1], p. 56). They showed that the operator Iα

0+ϕ acts from Hα
0 [a, b]

into Hα+µ
0 [a, b] where 0 < µ, α, µ + α < 1, and ϕ ∈ Hµ

0 means that ϕ ∈ Hµ

and ϕ(a) = 0, i.e., ane improvement in smoothness takes place. In fact,
the following stronger statement by the same authors is likewise true: Iα

0+ϕ
implements an isomorphism between these classes.

The above results were subsequently generalized on weighted classes, gen-
eralized Hölder classes, and Besov spaces [1–3].

It is wellknown [1] that the connection between the fractional integrals Iα
+

and Iα
− by means of a singular integral operator is important for the study

of isomorphism in weighted classes. Here we consider classes of functions
having order µ everywhere but the Hölder order being µ0 > µ at the point
x0 ∈ [a, b] (see the definition and the examples below). It should be noted
(see [4]) that the singular integral does not preserve such a class. The
question arises whether the fractional integral preserves the local Hölder
order. To this we give a positive answer.

Here we introduce Hölder classes of variable order µ(x) and show that
Iα
0+ has Hölder order µ(x) + α (0 < µ, µ+, α + µ+ < 1, µ+ = sup µ(x)).

If, in addition, we assume µ(x) to have smoothness of the form

|µ(x + h)− µ(x)| < c| ln h|−1
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(c denotes all constants used in this paper) we will be able to study the
action of a fractional derivative and to solve the problem of an isomorphism.
Moreover, we shall extend the results to the case of power weights.

1. Introduction of Spaces

We will introduce a class of functions f(x) on the segment [a, b] satisfying
the Hölder condition with a variable index.

Definition 1.1. We denote by Hµ(x) a class of continuous functions on
the segment [a, b] with the norm

‖f‖µ = ‖f‖C[a,b] + sup
x 6=y

|f(x)− f(y)|
|x− y|µ(x) = ‖f‖C + Af , (1.1)

where µ(x) is defined for all x ∈ [a, b], 0 < µ ≤ 1. We introduce the notation
µ− = infx∈[a,b] µ(x) , µ+ = supx∈[a,b] µ(x), assuming throughout the paper
that µ− > 0.

Clearly, Hµ(x) is a linear space and also Hγ(x) ⊂ Hµ(x) if µ(x) ≤ γ(x).
For Hµ(x)[a, b] the following ordinary Hölder properties are satisfied: 1) the
space Hµ(x) is complete; 2) if f(x) ∈ Hµ(x)[a, c] and f(x) ∈ Hν(x)[c, b], and
f(x) is continuous for x = c, then f(x) ∈ Hγ(x)[a, b], where γ(x) = µ(x)
for a ≤ x < c, γ(x) = ν(x) if c < x ≤ b, and γ(x) = min(µ(c), ν(c));
3) if f(x) ∈ Hµ(x)[a, b], g(x) ∈ Hν(x)[a, b], then f [g(x)] ∈ Hγ(x)[a, b], where
γ(x) = µ(x)ν(x).

We adduce some examples of functions belonging to this space.

Example 1. f(x) =
n
∏

k=1
|x − xk|δk , 0 < δk ≤ 1, xk ∈ [a, b], where

µ(x) = δk for |x− xk| ≤ ε, ε = 1
4 infi 6=j |xi − xj |, and µ(x) = 1 for the rest

of x.

Example 2. Let [a, b] = [0, 1], x1 = 1/2, xk = 1/2 + 1/k, and f(x) =
|x− x1|+

∑∞
k=2 |x− xk|1/22−k. It is evident that f(x) ∈ H1/2[0, 1], but for

x = 1/2 the Hölder order is higher: µ(1/2) = 1. Namely,
∣

∣f(x)− f(1/2)
∣

∣ ≤ A
∣

∣x− 1/2
∣

∣,

where

A = 1 + 2
∞
∑

k=1

k1/22−k.

This fact can be proved using the inequality
∣

∣(1 + t)µ − 1
∣

∣ ≤ c|t|, t ≥ −1, 0 < µ ≤ 1. (1.2)

The next example is a generalization of the previous one.
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Example 3. Let Q = {xk}∞k=1 be an ordered sequence of rational num-
bers from [0, 1]. We represent it in the form Q = ∪Ql, where {xkl}∞l=1 ∈ Ql

and 1
k+1 < |xkl − 1

2 | ≤
1
k . We introduce the notation

f(x) = |x− x0|+
∞
∑

k=2

2−k
∞
∑

l=1

|xkl − x|δkl 2−l,

x0 = 1
2 , δkl ∈ (0, 1) (for example, δkl = 1

2 ), and δ0 = infk,l δkl > 0. Then
f(x) ∈ Hµ(x)[0, 1], where µ(x) = 1

2 if x 6= 1
2 , and µ( 1

2 ) = 1.

We also introduce a class of functions hµ(x)[a, b] satisfying a stronger
condition than (1.1).

Definition 1.2. Let hµ(x) be a set of functions from Hµ(x)[a, b] which
have the same norm and for which

lim
δ→0

Af (δ) = lim
δ→0

sup
|x−y|<δ

|f(x)− f(y)|
|x− y|µ(x) = 0. (1.3)

It is evident that hµ(x)[a, b] ⊂ Hµ(x)[a, b].
If f(a) = 0, the classes H and h will be denoted by Hµ(x)

0 [a, b] and
hµ(x)

0 [a, b], respectively. Note that in Hµ(x)
0 [a, b] the norm is defined by one

term Af from (1.1).

For hµ(x)[a, b] we have

Theorem 1.1. The functions from C∞[a, b], −∞ < a < b < ∞, are
dense in hµ(x) if µ(x) is a function satisfying the inequality

|µ(x + h)− µ(x)| ≤ c| ln h|−1 (1.4)

and 0 < µ(x) < 1.

Proof. (It can be assumed for simplicity that [a, b] = [0, 1].) Let ϕ(x) ∈
hµ(x)[0, 1]. Then

ψ(x) =

{

ϕ(x)− ϕ(0)(1− x)− ϕ(1)x, 0 ≤ x ≤ 1,
0, x 6∈ [0, 1]

belongs to C0(R1). It is clear that ψ(x) ∈ H µ̃(x), where µ̃(x) is equal to
µ(x) if 0 ≤ x < 1, to µ(0) if x ≤ 0, and to µ(1) if x ≥ 0.

Throughout the proof of this theorem it will be assumed that ϕ(x) has
the above-indicated properties for ψ(x) and µ̃(x) will be replaced by µ(x).

Let

ϕε(x) =
∫ ε

0
kε(t)ϕ(x− t) dt, (1.5)
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where k(t) ∈ C∞0 (R1), k(t) ≥ 0, supp k(t) ⊂ (0, 1), kε(t) = ε−1k( t
ε ), and

∫

R1
k(t)dt = 1. Then ϕε(t) is the average for ϕ(x) and ‖ϕε − ϕ‖C(R1) → 0

for ε → 0.
Our aim is to estimate ‖ϕε − ϕ‖µ. We have

ϕε(x)− ϕ(x) =
∫ ∞

0
kε(t)[ϕ(x− t)− ϕ(x)] dt

and, introducing the notation

(∆hψ)(x) = ψ(x + h)− ψ(x), (1.6)

we can write

∆h(ϕε−ϕ)(x) =
(

∫ δ

0
+

∫ ∞

δ

)

kε(t)
[

(∆hϕ)(x− t)− (∆hϕ)(x)
]

dt = I1 + I2.

Further, |(∆hϕ)(x)| ≤ Aϕ(t)hµ(x) when h < τ ; here Aϕ(τ) is defined by
(1.3), and Aϕ(τ) → 0 when τ → 0.

For (∆hϕ)(x− t) we have the inequality
∣

∣(∆hϕ)(x− t)
∣

∣ ≤ Aϕ(τ)|h|µ(x−t) ≤ Aϕ(τ)|h|µ(x),

where µ(x) satisfies (1.4).
Therefore for I1 we have for h < τ that

|I1| ≤ 2Aϕ(τ)|h|µ(x)
∫ δ

0
kε(t) dt ≤ 2Aϕ(τ)|h|µ(x).

This expression can be made small at the expense of an appropriate choice
of τ with respect to ϕ(x).

Next, we fix τ and estimate I1 for h > τ by the equality

I1 =
∫ δ

0
kε(t)

[

(∆−tϕ)(x)(x + h)− (∆−tϕ)(x)
]

dt.

We obtain
∣

∣(∆−tϕ)(x)
∣

∣ ≤ c|t|µ(x);
∣

∣(∆−tϕ)(x + h)
∣

∣ ≤ c|t|µ(x+h) ≤ c|t|µ(x).

Now for h > τ we can write

|I1| ≤ 2c
∫ δ

0
kε(t)|t|µ(x)dt ≤ 2cδµ(x)

∫ 1

0
kε(t)yµ(x)dy ≤

≤ 2cτ−µ(x)hµ(x)δµ(x)
∫ 1

0
kε(y)yµ(x)dy.
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This expression is o(hµ(x)) at the expense of choosing a small δ. Now we
fix δ and estimate I2. We have

‖I2‖ ≤ 2c|h|µ(x)
∫ ∞

δ
kε(t) dt = 2c|h|µ(x)

∫ ∞

δ/ε
k(y) dy → 0

when ε → 0.

2. Fractional Integrals and Derivatives in Hµ(x)
0 [0, 1]

We consider the action of fractional integral operators in Hµ(x)
0 [0, 1]. For

this we should give some definitions.

Definition 2.1. Let ϕ(x) be an arbitrary function from L1(0, 1). The
operators below will be called the Riemann–Liouville fractional integrals:

(

Iα
0+ϕ

)

(x) =
1

Γ(α)

∫ x

0
(x− t)α−1ϕ(t) dt, (2.1)

(

Iα
1−ϕ

)

(x) =
1

Γ(α)

∫ 1

x
(t− x)α−1ϕ(t) dt (2.2)

for x ∈ (0, 1), 0 < α < 1. Integrals (2.1) and (2.2) will be called the
left-hand and the right-hand one, respectively.

Definition 2.2. Let f(x) be defined on [0, 1]. The expression

(

Dα
0+f

)

(x) =
f(x)

Γ(1− α)xα +

+
α

Γ(1− α)

∫ x

0
(x− t)−(1+α)(f(x)− f(t)

)

dt (2.3)

is called the Marchaud derivative (it is defined for sufficiently good func-
tions; for details see [1]).

The next theorem giving the sufficient condition for the function f(x)
to be represented by the fractional integral of a function from Lp (see [1,
Theorem 13.5]) will be necessary hereafter to demonstrate the theorem on
isomorphism.

Theorem 2.1. If f(x) ∈ Lp(a, b) and
∫ b−a

0
t1−αωp(f, t) dt < ∞,

then f(x) can be represented by the fractional integral of a function from
Lp(a, b), 1 < p < 1

α , where

ωp(f, h) = sup
|t|<h

{
∫ 1

0
|f(x)− f(x− t)|pdx

}1/p
. (2.4)
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Now we can formulate the main result of this paper.

Theorem 2.2 (on isomorphism). Let µ(x) satisfy (1.4) and 0 < µ(x)
< 1, µ+ + α < 1, 0 < α < 1. Then the fractional integral operator Iα

0+

establishes an isomorphism between the spaces Hµ(x)
0 and Hµ(x)+α

0 .

The proof of Theorem 2.2 is based on the theorems on the action of the
fractional operator Iα

0+ϕ and the fractional derivative Dα
0+f in Hµ(x)

0 . These
theorems and their proofs are given below.

Theorem 2.3. If ϕ(x) ∈ Hµ(x)
0 [a, b] and µ+ + α < 1, 0 < α < 1, then

f ∈ Hµ(x)+α
0 , where f(x) = Iα

0+ϕ.

Theorem 2.4. If f(x) ∈ Hµ(x)+α
0 [0, 1], µ+ + α < 1, and µ(x) satisfies

(1.4), then (Dα
0+f)(x) ∈ Hµ(x)

0 [0, 1].

Proof of Theorem 2.3. We will estimate (∆hIα
0+ϕ)(x) , taking into account

(1.5). There are two separate proofs for h > 0 and h < 0, since we cannot
interchange the points x and x + h considered in Hµ(x)

0 [0, 1].
Let h > 0. We have

c
(

∆hIα
0+ϕ

)

(x) =
∫ x+h

0
tα−1ϕ(x+h−t)dt−

∫ x

0
tα−1ϕ(x−t)dt = I1+I2+I3,

where

I1 =
∫ x

0

[

(t + h)α−1 − tα−1][ϕ(x− t)− ϕ(x)
]

dt,

I2 =
∫ h

0

[

ϕ(x + h− t)− ϕ(x)
]

dt,

I3 =
∫ x+h

x
tα−1 dt.

Taking into account that |(∆tϕ)(x)| ≤ ctµ(x) and estimating each term
separately, we obtain

|I1| ≤ c
∫ x

0
tµ(x)

∣

∣(t + h)α−1 − tα−1
∣

∣ dt ≤

≤ chµ(x)+α
∫ ∞

0
yµ(x)

∣

∣(1 + y)α−1 − yα−1
∣

∣ dy.

It is obvious that the obtained integral is finite (µ+ + α < 1) and we have
the required estimate

|I1| ≤ chµ(x)+α
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for I1. The integrals I2 and I3 are estimated quite easily. We get

|I2| ≤ c
∫ h

0
tα−1(h− t)µ(x) dt = chµ(x)+α,

|I3| ≤ cxµ(x)
∫ x+h

x
tα−1 dt ≤ c

∫ x+h

x
tµ(x)+α−1 dt ≤ chµ(x)+α.

The proof for the case h > 0 is completed. The case h < 0 is not difficult
and we leave it out.

Remark 1. Estimates as above are correct for convolutions. For Kϕ we
have the estimate

|(∆hKϕ)(x)| ≤ c
{

∫ x

0
tµ(x)|(∆hk)(t)| dt +

+
∫ h

0
|k(t)|(h− t)µ(x)dt + xµ(x)

∣

∣

∣

∫ x+h

x
k(t) dt

∣

∣

∣

}

.

It is obvious that for k(t) = tα−1 we obtain Theorem 2.3.

Remark 2. Using the well-known representation Iα
1−ϕ = V Iα

0+V ϕ, where
V ϕ = ϕ(1 − x), for x ∈ [0, 1], we find that Theorem 2.3 holds for Iα

1−ϕ
provided that ϕ(1) = 0.

Proof of Theorem 2.4. We introduce the notation (see (2.3))

ψ(x) =
∫ x

0

f(x)− f(x− t)
t1+α dt. (2.5)

First we will show that ψ(x) ∈ Hµ(x)
0 [0, 1] and then consider the first term

of (2.3). In common with the proof of Theorem 2.3, here we will also treat
the cases h > 0 and h < 0 separately.

Let h > 0. We have

(∆hψ)(x) = I1 + I2 + I3,

where

I1 =
∫ x

0

[

f(x)− f(x− t)
][

(t + h)−α−1 − t−α−1]dt,

I2 =
∫ 0

−h

f(x + h)− f(x− h)
(t + h)1+α dt,

I3 =
∫ x

0

f(x + h)− f(x)
(t + h)1+α dt.
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We will estimate each term separately. It is easy to verify that for I1 and I3

|I1| ≤ c
∫ x

0
tµ(x)+α[

(t + h)−α−1 − t−α−1] dt ≤

≤ chµ(x)
∫ ∞

0
yµ(x)+α[

(y + 1)−α−1 − y−α−1] dy ≤ chµ(x),

|I3| ≤ chµ(x)+α
∫ x

0
(t + h)−α−1 dt ≤ chµ(x)

∫ ∞

0
(y + 1)−α−1 dy = chµ(x).

The term I2 is estimated by applying (2.4) for µ(x):

|I2| ≤ c
∫ 0

−h
(t + h)µ(x+h)−1 dt = chµ(x+h).

We obtain the final estimate for I2 if µ(x + h) ≥ µ(x), i.e., |I2| ≤ chµ(x).
For µ(x + h) ≤ µ(x) we can write

hµ(x+h) = e−(µ(x)−µ(x+h)) ln h · hµ(x) ≤ chµ(x).

Thus we finally show that

|I2| ≤ chµ(x).

To finish the case h > 0 we have to show that |∆h( f(x)
xα )| ≤ chµ(x). We

leave out the proof of the latter estimate, since it is similar to the case of
constant Hölder order (see [5]).

Now let h < 0. For convenience, instead of x + h for h < 0 we will
consider x− h with h > 0. Then we will decompose the terms rather than
otherwise (see [2]):

(∆−nDα
0+f)(x) = (x− h)−αf(x− h)− x−αf(x) +

+α
∫ x−h

0

f(x− h)− f(x− h− t)
t1+α dt− α

∫ x

0

f(x)− f(x− t)
t1+α dt =

= I1 + I2 + I3 + I4,

where

I1 =
∫ 0

−h

f(x)− f(x− h− t)
(t + h)1+α dt,

I2 =
∫ x−h

0

[

f(x− h− t)− f(x− h)
]

[ 1
t1+α −

1
(t + h)1+α

]

dt,

I3 = f(x− h)[x−α − (x− h)−α],

I4 = h−α[f(x)− f(x− h)].
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We will estimate each term separately. For I1 and I4 we easily obtain

|I1| ≤ c
∫ 0

−h
(t + h)µ(x)−1dt = chµ(x),

|I4| ≤ h−αhµ(x)+αdt ≤ chµ(x).

To estimate the term I2 we have to consider two cases, x − h ≤ h and
x− h > h.

For x− h ≤ h we have

|I2| ≤ c
∫ h

0
tµ(x−h)+α−1−αdt = chµ(x−h).

By virtue of (2.4) we have |I2| ≤ chµ(x).
For x− h > h we have

|I2| ≤ c
∣

∣

∣

(

∫ h

0
+

∫ x−h

h

)

tµ(x−h)+α
[ 1
t1+α −

1
(t + h)1+α

]

dt
∣

∣

∣ ≤

≤ c
∣

∣

∣

∫ h

0
tµ(x−h)−1dt

∣

∣

∣ + chµ(x−h)
∫ ∞

1
yµ(x−h)+αy−2−αdy ≤ chµ(x).

Now we will estimate I3. Keeping in mind that f(x−h) ≤ (x−h)µ(x−h)+α,
for x− h ≤ h we obtain

|I3| ≤ c(x− h)µ(x−h) ≤ chµ(x).

When x− h > h we have

|I3| ≤ c(x− h)µ(x−h)+α(x− h)−α−1h ≤ chµ(x).

This completes the proof of Theorem 2.4.

Thus it remains for us to prove the theorem on isomorphism.

Proof of Theorem 2.2. It is necessary to show that any function from
Hµ(x)+α

0 [0, 1] is representable in the form Iα
0+ϕ, where ϕ ∈ Hµ(x)

0 [0, 1]. To
this end we use Theorem 2.1. We make sure that for 1 < p < 1/α

∫ 1

0
t−α−1ωp(f, t) dt < ∞.

Clearly,

ωp(f, h) ≤ sup
|t|<h

{

∫ 1

0
tµ(x)+αdx

}1/p
≤ chµ−+α

and we obtain f(x) = Iα
0+ϕ, where ϕ(x) ∈ Lp(0, 1). Using the condition

f(x) ∈ Hµ(x)
0 [0.1] and Theorem 2.4, we find that ϕ = Dα

0+f ∈Hµ(x)
0 [0, 1].
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It should be noted that the theorem on isomorphism in the Hölder space
with constant order is wellknown (see [1]). Here we will give only the for-
mulations of the theorems on the action of the operators Iα

0+ and Dα
0+ in

hµ
0 , since their proofs are rather awkward.

Theorem 2.5. Let 0 < µ, α, µ + α < 1. Then Iα
0+ϕ acts from hµ

0 [0, 1]
into hµ+α

0 [0, 1].

Theorem 2.6. If f ∈ hµ+α
0 [0, 1], then Dα

0+f ∈ hµ
0 [0, 1], where 0 < µ,α,

µ + α < 1.

Finally, we note that the same results are true in the weight case as well.
Namely, we have

Theorem 2.7. If ϕ(x) ∈ Hµ(x)
0 (xν) and µ+ + α < 1, 0 < α < 1, then

f(x) ∈ Hµ(x)
0 (xν), where f(x) = Iα

0+ϕ and ν = 1 + µ−.

Theorem 2.8. Let f(x) ∈ Hµ(x)+α
0 (xν), µ+ +α < 1, µ satisfy (1.4) and

ν ≤ µ− + 1. Then (Dα
0+f)(x) ∈ Hµ(x)

0 (xν).

Theorem 2.9. Let µ satisfy (1.4) and 0 < µ(x) < 1, 0 < α < 1, µ+ +
α < 1, ν ≤ µ− + 1. Then the fractional integral operator Iα

0+ establishes an
isomorphism between the spaces Hµ(x)

0 (xν) and Hµ(x)+α
0 (xν).
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