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EXISTENCE THEOREMS FOR NONLINEAR
FUNCTIONAL DIFFERENTIAL EQUATIONS OF

NEUTRAL TYPE

YUICHI KITAMURA, TAKAŜI KUSANO,1 AND B. S. LALLI

Abstract. Conditions are found upon satisfaction of which the dif-
ferential equation

x(n)(t)− λx(n)(t− σ) + f(t, x(g(t))) = 0

has solutions which are asymptotically equivalent to the solutions of
the equation

x(n)(t)− λx(n)(t− σ) = 0.

§ 0. Introduction

We consider the neutral functional differential equation

x(n)(t)− λx(n)(t− σ) + f(t, x(g(t))) = 0 (A)

under the assumptions that

(i) n ≥ 1 is an integer; λ and σ are positive constants with λ ≤ 1;

(ii) g : [t0,∞) → R is continuous, t0 > 0, and lim
t→∞

g(t) = ∞;

(iii) f : [t0,∞)× R→ R is continuous and satisfies

|f(t, x)| ≤ F (t, |x|), (t, x) ∈ [t0,∞)× R,

for some continuous function F (t, u) on [t0,∞)× [0,∞)
which is nondecreasing in u for each fixed t ≥ t0.

(0.1)
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We note that the associated unperturbed equation x(n)(t)−λx(n)(t−σ) =
0 has the solutions

t, t2, . . . tn, w(t) for the case λ = 1,

1, t, . . . , tn−1, λ
t
σ w(t) for the case λ 6= 1,

(0.2)

where w(t) is an arbitrary σ-periodic function in Cn(R).
Our objective here is to establish the existence of solutions x(t) of (A)

which are asymptotic to the functions (0.2) in the sense that

x(t) = ctj + σ(1) as t →∞, j ∈ {1, 2, . . . , n},
x(t) = cw(t) + σ(1) as t →∞

in the case λ = 1, and

x(t) = ctk + σ(1) as t →∞, t ∈ {0, 1, . . . , n− 1},

x(t) = cλ
t
σ [w(t) + σ(1)] as t →∞

in the case 0 < λ < 1, where w(t) 6≡ 0 is a given σ-periodic function and
c is a nonzero constant. A solution of (A) is naturally required to be n-
times continuously differentiable and satisfy the equation for all sufficiently
large t.

Our main results are stated and proved in Section 1 (λ = 1) and Section
2 (0 < λ < 1). There the desired solutions of (A) are obtained by solving,
via a fixed point analysis, suitable (functional) integral equations involving
an “inverse” of the difference operator ∆x(t) = x(t)− x(t− σ).

There has been increasing interest in the study of the qualitative behavior
of neutral functional differential equations because of their importance in
various theoretical and practical problems. Needless to say, the existence
theory of solutions is a fundamental question to be investigated in depth for
such equations. However, the existence results obtained so far have been
concerned exclusively with neutral equations of the form

[

x(t)− λx(t− σ)
](n)

+ f
(

t, x(g(t))
)

= 0 (B)

and nothing is known about the existence of solutions, oscillatory or nonoscil-
latory, for neutral equations of the type (A); see the papers [1–6]. This
observation motivated the present work.

We remark that the equations (A) and (B) are not equivalent. In fact,
a solution of (A) is automatically a solution of (B), but not conversely.
As was shown in the above references, a continuous function x(t) which is
not n-times differentiable can be a solution of (B) provided its “difference”
x(t)− λx(t− σ) is n-times differentiable.
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§ 1. Existence Theorems for the Case λ = 1

.
We start with the case λ = 1 in (A), i.e.,

x(n)(t)− x(n)(t− σ) + f
(

t, x(g(t))
)

= 0. (1.1)

Note that (1.1) can be written as

∆x(n)(t) + f
(

t, x(g(t))
)

= 0

in terms of the difference operator

∆ξ(t) = ξ(t)− ξ(t− σ). (1.2)

We make use of the observation that the unperturbed equation ∆x(n)(t) = 0
has the solutions t, t2, . . . , tn,w(t), w(t) being any σ-periodic function of
class Cn, and intend to construct solutions of (1.1) which are asymptotic to
these functions as t →∞.

Theorem 1. Suppose that there is a constant a > 0 such that F (t, a) is
nonincreasing for t ≥ t0 and

∞
∫

t0

tnF (t, a)dt < ∞. (1.3)

Then, for an arbitrary σ-periodic Cn-function w(t) 6≡ 0, the equation (1.1)
has a solution x(t) with the property that

x(t) = cw(t) + σ(1) as t →∞ (1.4)

for some nonzero constant c.

Theorem 2. Let j ∈ {1, 2, . . . , n}. Suppose that there is a constant
a > 0 such that F

(

t, a[g(t)]j
)

is nonincreasing for t ≥ t0 and

∞
∫

t0

tnF
(

t, a[g(t)]j
)

dt < ∞. (1.5)

Then the equation (1.1) has a solution x(t) with the property that

x(t) = ctj + σ(1) as t →∞ (1.6)

for some nonzero constant c.
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The proofs of these theorems require some elementary results (Lemmas
1–3 below) regarding an ”inverse” of the difference operator ∆ given by
(1.2).

Let S(T,∞) denote the set of all functions ξ ∈ C(T,∞) such that the
series

η(t) =
∞
∑

i=1

ξ(t + iσ), t ≥ T − σ, (1.7)

converges uniformly on any compact subinterval of [T−σ,∞). We denote by
Ψ the mapping which assigns to each ξ ∈ S[T,∞) a function η ∈ C[T−σ,∞)
defined by (1.7).

Lemma 1. If ξ ∈ S[T,∞), then Ψξ is a solution of the difference equa-
tion ∆x(t) = −ξ(t) for t ≥ T and satisfies Ψξ(t) → 0 as t →∞.

Lemma 2. If v ∈ C[T − σ,∞) is nonnegative, nonincreasing, and inte-
grable on [T − σ,∞), then v ∈ S[T,∞) and

Ψv(t) ≤ t
σ

∞
∫

t

v(s)ds, t ≥ T − σ.

Lemma 3. Let v be as in Lemma 2. Then
∫∞ tmv(t)dt < ∞ for some

m ∈ N implies
∫∞ tm−1Ψv(t)dt < ∞.

Lemma 1 follows immediately from the definition of Ψ. The proofs of
Lemmas 2 and 3 proceed in the following manner. In view of the nonin-
creasing property of v(t) we see that

Ψv(t) =
1
σ

∞
∑

i=1

σv(t + iσ) ≤ 1
σ

∞
∑

i=1

t+iσ
∫

t+(i−1)σ

v(s)ds ≤ 1
σ

∞
∫

t

v(s)ds

for t ≥ T − σ, and using this inequality, we obtain

∞
∫

T−σ

tm−1Ψv(t)dt ≤ 1
σ

∞
∫

T−σ

tm−1

∞
∫

t

v(s)dsdt ≤

≤ t
σ

∞
∫

T−σ

1
m

(s− T + σ)mv(s)ds ≤ 1
mσ

∞
∫

T−σ

smv(s)ds, (1.8)

where we have supposed that T − σ ≥ 0.
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Proof of Theorem 1. Let c > 0 be such that c(maxt |w(t)| + 1) ≤ a and
choose T > t0 so that

T∗ = min
{

T − σ, inf
t≥T

g(t)
}

≥ t0

and

∞
∫

T−σ

tnF (t, a)dt ≤ cn!σ. (1.9)

Define the set X ⊂ C[T∗,∞) and the mapping F : X → C[T∗,∞ by

X = {x ∈ C[T∗,∞) : |x(t)| ≤ a, t ≥ T∗}

and










Fx(t) = cω(t) + (−1)n
∫∞

t
(s−t)n−1

(n−1)! Ψ
[

f(s, x(g(s)))
]

ds,

t ≥ T − σ,
Fx(t) = Fx)(T − σ), T∗ ≤ t ≤ T − σ. (1.10)

We want to show that F maps X continuously into a relatively compact
subset of X. Let x ∈ X. Since |f(t, x(gt)))| ≤ F (t, a), t ≥ T , applying
Lemma 3 (cf.(1.8)) and using (1.9), we see that

∣

∣

∣

∣

∣

∣

∞
∫

t

(s− t)n−1

(n− 1)!
Ψ

[

f(s, x(g(s)))
]

ds

∣

∣

∣

∣

∣

∣

≤
∞
∫

T−σ

sn−1

(n− 1)!
Ψ

[

F (s, a)
]

ds ≤

≤ 1
n!σ

∞
∫

T−σ

snF (s, a)ds ≤ c, t ≥ T − σ.

Consequently, we have

|Fx(t)| ≤ c|w(t)|+ c ≤ c(max
t
|w(t)|+ 1) ≤ a, t ≥ T − σ,

which implies that Fx ∈ X. Thus F maps X into itself. To prove the
continuity of F let {xµ} be a sequence in X converging to x ∈ X in C[T∗,∞).
It is clear that f(·, xµ◦g) → f(·, x◦g) in C[T,∞), and so using the continuity
of Ψ in C[T − σ,∞), which is easy to verify, we conclude that

Ψ[f(·, xµ ◦ g)] → Ψ[f(·, x ◦ g)] in C[T − σ,∞).
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This, combined with the Lebesque dominated convergence theorem, then
implies that

∞
∫

t

(s− t)n−1

(n− 1)!
Ψ

[

f(s, xµ(g(s)))
]

ds →
∞
∫

t

(s− t)n−1

(n− 1)!
Ψ

[

f(s, x(g(s)))
]

ds,

the convergence being uniform on any compact subinterval of [T − σ,∞).
It follows that Fxµ → Fx in C[T∗,∞), establishing the continuity of F .
Finally, the relative compactness of F(X) follows readily from the relations
below holding for all x ∈ X and t ≥ T − σ : |Fx(t)| ≤ a

|(Fx)′(t)| =
∣

∣cw′(t) + Ψ
[

f(t, x(g(t)))
]∣

∣ ≤
≤ c|w′(t)|+ Ψ[F (t, a)] ≤

≤ cmax
t
|w′(t)|+ t

σ

∞
∫

T−σ

F (s, a)ds

for the case n = 1;

|(Fx)′(t)| =

∣

∣

∣

∣

∣

∣

cw′(t) + (−1)n−1

∞
∫

t

(s− t)n−2

(n− 2)!
Ψ

[

f(s, x(g(s)))
]

ds

∣

∣

∣

∣

∣

∣

≤

≤ c|w′(t)|+
∞
∫

t

sn−2

(n− 2)!
Ψ

[

F (s, a)
]

ds ≤

≤ c max
t
|w′(t)|+ 1

(n− 1)!σ

∞
∫

T−σ

sn−1F (s, a)ds

for the case n ≥ 2.

Therefore we are able to apply the Schauder–Tychonoff fixed point theorem,
concluding that there exists an x ∈ X such that x = Fx, which means that
x(t) satisfies the (functional) integral equation

x(t) = cw(t) + (−1)n

∞
∫

t

(s− t)n−1

(n− 1)!
Ψ

[

f(s, x(g(s)))
]

ds,

t ≥ T − σ.

(1.11)

Letting the difference operator ∆ operate on

x(n)(t) = cw(n)(t) + Ψ
[

f(t, x(g(t)))
]

, t ≥ T − σ,



DIFFERENTIAL EQUATIONS OF NEUTRAL TYPE 85

which follows from (1.11) by differentiation, we find in view of Lemma 1
that

x(n)(t)− x(n)(t− σ) = −f(t, x(g(t))), t ≥ T,

where use is made of the fact that cw(n)(t) is σ-periodic. This shows that
x(t) is a solution of the neutral equation (1.1). From (1.1) it follows that
x(t) − cw(t) → 0 as t → ∞, so that x(t) has the required asymptotic
property (1.4).

Proof of Theorem 2. Take c > 0 and T > t0 so that 2c ≤ a,

T∗ = min
{

T − σ, inf
t≥T

g(t)
}

≥ max{t0, 1}

and
∞
∫

T−σ

tnF (t, a[g(t)]j)dt ≤ cn!σ.

Define

Y = {y ∈ C[T∗,∞) : |y(t)| ≤ atj , t ≥ T∗},
{

Gy(t) = ctj + (−1)n
∫∞

t
(s−t)n−1

(n−1)! Ψ
[

f(s, y(g(s)))
]

ds, t ≥ T − σ,

Gy(t) = Gy(T − σ) tj

(T−σ)j , T∗≤ t≤T − σ.

Then, proceeding exactly as in the proof of Theorem 1 one can verify that
G is continuous on Y and maps Y onto a relatively compact subset of Y .
The Schauder–Tychonoff theorem ensures the existence of a y ∈ Y such
that y = Gy, which satisfies

y(t) = ctj + (−1)n

∞
∫

t

(s− t)n−1

(n− 1)!
Ψ

[

f(s, y(g(s)))
]

ds,

t ≥ T − σ.

(1.12)

It follows that y(t) is a solution of the equation (1.1) for t ≥ T satisfying
(1.6). This sketches the proof of Theorem 2. The details are left to the
reader.

Remark 1. The solutions constructed in Theorem 2 are all nonoscillatory,
whereas those obtained in Theorem 1 are oscillatory or nonoscillatory ac-
cording to whether the periodic function w(t) is oscillatory or nonoscillatory.
Since w(t) does not appear explicitly in (1.3), Theorem 1 asserts that under
the integral condition (1.3) the equation (1.1) possesses both oscillatory and
nonoscillatory solutions. Thus one can easily speak of the phenomenon of
coexistence of oscillatory and nonoscillatory solutions for neutral equations.
This is an aspect which is not shared by non-neutral equations of the form
x(n)(t) + f(t, x(g(t))) = 0.
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Remark 2. Suppose that there is a constant a > 0 such that
∞
∫

t0

tnF
(

t, a[g(t)]n
)

dt < ∞.

Then, from Theorems 1 and 2 it follows that (1.1) possesses oscillatory
solutions x0(t) which are asymptotic to an arbitrary σ-periodic function
w 6≡ 0 of class Cn in the sense that

x0(t) = cw(t) + σ(1) as t →∞

for some c 6= 0 as well as nonoscillatory solutions xj(t) which are asymptotic
to tj , j = 0, 1, · · · , n, in the sense that

xj(t) = ctj + o(1) as t →∞, j = 0, 1, · · · , n.

Example 1. Consider the neutral equation

x(n)(t)− x(n)(t− 1) + q(t)|x(t− 2)|γ sgn x(t− 2) = 0, (1.13)

where γ > 0 and q : [t0,∞) → R is continuous, t0 > 2, which is a special
case of (1.1) in which σ = 1, g(t) = t − 2 and f(t, x) = q(t)|x|γ sgnx, and
the conditions (0.1) are satisfied with F (t, u) = |q(t)|uγ . Note that the
conditions (1.3) and (1.5) written for (1.13) reduce, respectively, to

∞
∫

t0

tn|q(t)|dt < ∞ (1.14)

and
∞
∫

t0

tn+γj |q(t)|dt < ∞, j ∈ {1, 2, · · · , n}. (1.15)

From Theorems 1 and 2 it follows that if |q(t)| is nonincreasing and satisfies
(1.14), then, for any given σ-periodic function w(t) 6≡ 0 in Cn(R), there
existes a solution x(t) of (1.13) such that x(t) = cw(t) + o(1) as t → ∞
for some constant c 6= 0, and that if tγj |q(t)| is nonincreasing and satisfies
(1.15), then there exists a solution x(t) of (1.13) such that x(t) = ctj+o(1) as
t →∞ for some constant c 6= 0. If, in particular, tγn|g(t)| is nonincreasing
and satisfies

∞
∫

t0

t1+γ)n|q(t)|dt < ∞,

then (1.13) possesses all the solutions with the asymptotic properties spe-
cified above.
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§ 2. Existence Theorems for the Case 0 < λ < 1

Let us now turn to the case 0 < λ < 1 in (A):

x(n)(t)− λx(n)(t− σ) + f(t, x(g(t))) = 0, 0 < λ < 1. (2.1)

Using the generalized difference operator

∆λξ(t) = ξ(t)− λξ(t− σ),

this equation is written as

∆λx(n)(t) + f(t, x(g(t))) = 0,

which, in turn, can be expressed in the form

∆
[

λ−
t
σ x(n)(t)

]

+ λ−
t
σ f(t, x(g(t))) = 0 (2.2)

with the use of the following relation connecting ∆λ with ∆ defined by (1.2)

∆λξ(t) = λ
t
σ ∆

[

λ−
t
σ ξ(t)

]

.

Although (2.2) is not exactly of the same form as (1.1) because of the
presence of the factor λ−

t
σ in the leading part, a close look at the formation

of the (functional) integral equations (1.11) and (1.12) solving (1.1) will lead
us to the integral equations

x(t) = cλ
t
σ w(t) + (−1)n

∞
∫

t

(s− t)n−1

(n− 1)!
λ

s
σ Ψ×

×
[

λ−
s
σ f(s, x(g(s)))

]

ds, t ≥ T − σ, (2.3)

y(t) = ctk + (−1)n

∞
∫

t

(s− t)n−1

(n− 1)!
λ

s
σ Ψ

[

λ−
s
σ f(s, y(g(s)))

]

ds,

t ≥ T − σ, k ∈ {0, 1, · · · , n− 1},

(2.4)

for finding the desired solutions of (2.1) which are asymptotic to the so-
lutions of the unperturbed equation ∆λx(n)(t) = 0. Our purpose here is
to show that (2.3) and (2.4) are solvable with the aid of the Schauder–
Tychonoff fixed point theorem.

Theorem 3. Suppose that there is a constant a > 0 such that
λ−

t
σ F

(

t, aλ
g(t)

σ
)

is nonincreasing for t ≥ t0 and

∞
∫

t0

tnλ−
t
σ F

(

t, aλ
g(t)

σ
)

dt < ∞. (2.5)
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Then, for any σ-periodic function w(t) 6≡ 0 of class Cn, the equation (2.1)
possesses a solution x(t) satisfying

x(t) = cλ
t
σ
[

w(t) + o(1)
]

as t →∞ (2.6)

for some nonzero constant c.

Theorem 4. Let k ∈ {0, 1, · · · , n − 1} and suppose that there is a con-
stant a > 0 such that λ−

t
σ F

(

t, a[g(t)]k
)

is nonincreasing for t ≥ t0 and

∞
∫

t0

λ−
t
σ F

(

t, a[g(t)]k
)

dt < ∞. (2.7)

Then, the equation (2.1) possesses a solution x(t) satisfying

x(t) = ctk + o(1) as t →∞ (2.8)

for some nonzero constant c.

Proof of Theorem 3. Choose c > 0 and T > t0 so that c(maxt |w(t)|+1) ≤ a,

T∗ = min{T − σ, inf
t≥T

g(t)} ≥ max{t0, 1}, (2.9)

and
∞
∫

T−σ

tnλ−
t
σ F

(

t, aλ
g(t)

σ
)

dt ≤ cn!σ. (2.10)

Consider the set Xλ ⊂ C[T∗,∞) and the mapping Fλ : Xλ → C[T∗,∞)
defined by

Xλ = {x ∈ C[T∗,∞) : |x(t)| ≤ aλ
t
σ , t ≥ T∗}

and














Fλx(t) = cλ
t
σ w(t) + (−1)n

∫∞
t

(s−t)n−1

(n−1)! λ
s
σ×

×Ψ
[

λ−
s
σ f(s, x(g(s)))

]

ds, t ≥ T − σ,

Fλx(t) = Fλx(T − σ)λ
t
σ , T∗ ≤ t ≤ T − σ.

(2.11)

That Fλ maps Xλ into itself is shown as follows. Let x ∈ Xλ. Using Lemma
3 and (2.10), we have

∣

∣

∣

∣

∣

∣

(−1)n

∞
∫

t

(s− t)n−1

(n− 1)!
λ

s
σ Ψ

[

λ−
s
σ f(s, x(g(s)))

]

ds

∣

∣

∣

∣

∣

∣

≤
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≤ λ
t
σ

∞
∫

t

sn−1

(n− 1)!
Ψ

[

λ−
s
σ F

(

s, aλ
g(s)

σ
)

]

ds ≤

≤ 1
n!σ

λ
t
σ

∞
∫

T−σ

snλ−
s
σ F

(

s, aλ
g(s)

σ
)

ds ≤ cλ
t
σ , t ≥ T − σ.

From this and (2.11) it follows that

|Fλx(t)| ≤ cλ
t
σ (max

t
|w(t)|+ 1) ≤ aλ

t
σ , t ≥ T − σ.

The continuity of Fλ and the relative compactness of Fλ(Xλ) are verified in
a routine manner. Consequently, by the Schauder–Tychonoff theorem there
exists a function x ∈ Xλ satisfying the integral equation (2.3) for t ≥ T −σ.
Differentiating (2.3) n-times, we see that

λ−
t
σ x(n)(t) = Ω(t) + Ψ

[

λ−
s
σ f(t, x(g(t)))

]

, t ≥ T − σ, (2.12)

where Ω(t) is a continuous σ-periodic function, from which, by taking the
difference ∆ of both sides of (2.12), we conclude that

∆λx(n)(t) = λ
t
σ ∆

[

λ−
t
σ x(n)(t)

]

= −f(t, x(g(t))), t ≥ T.

This means that x(t) is a solution of (2.1) for t ≥ T . From (2.3) it is clear
that x(t)− cλ

t
σ w(t) → 0 as t →∞.

Proof of Theorem 4. Choose c > 0 and T > t0 so that 2c ≤ a, (2.9) holds
and

∞
∫

T−σ

λ−
t
σ F

(

t, a[g(t)]k
)

dt ≤
(

log( 1
λ )

)n
c

σn−1 . (2.13)

Let us define

Yλ = {y ∈ C[T∗,∞) : |y(t)| ≤ atk, t ≥ T∗},














Gλy(t) = ctk + (−1)n
∫∞

t
(s−t)n−1

(n−1)! λ
s
σ×

×Ψ
[

λ−
s
σ f(s, y(g(s)))

]

ds, t ≥ T − σ,

Gλy(t) = Gλy(T − σ) tk

(T−σ)k T∗ ≤ t ≤ T − σ.

(2.14)

If y ∈ Yλ, then by Lemma 2

∣

∣

∣Ψ
[

λ−
t
σ f(t, y(g(t)))

]∣

∣

∣ ≤
1
σ

∞
∫

t

λ−
s
σ F (s, a[g(s)]k)ds t ≥ T − σ.
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Using this inequality together with (2.3), we estimate the integral in (2.14)
as follows:

∣

∣

∣

∣

∣

∣

(−1)n

∞
∫

t

(s− t)n−1

(n− 1)!
λ

s
σ Ψ

[

λ−
s
σ f(s, y(g(s)))

]

ds

∣

∣

∣

∣

∣

∣

≤

≤ 1
(n− 1)!σ

∞
∫

t

sn−1λ
s
σ

∞
∫

s

λ−
r
σ F (r, a[g(r)]k)drds =

=
1

(n− 1)!σ

∞
∫

t

(

r
∫

t

sn−1λ
s
σ ds

)

λ−
r
σ F (r, a[g(r)]k)dr ≤

≤ 1
(n− 1)!σ

( σ
log( 1

λ )

)n
(n− 1)!

∞
∫

T−σ

λ−
r
σ F (r, a[g(r)]k)dr ≤ c,

t ≥ T − σ,

where use is made of the inequality
r

∫

t

sn−1λ
s
σ ds ≤

∞
∫

0

sn−1λ
s
σ ds =

( σ
log( 1

λ )

)n
(n− 1)!

Therefore, y ∈ Yλ implies that

|Gλy(t)| ≤ ctk + c ≤ 2ctk ≤ atk, t ≥ T − σ,

which shows that Gλ is a self-map on Yλ. Since Gλ is continuous and Gλ(Yλ)
is relatively compact in the C[T∗,∞)-topology, Gλ has a fixed element y ∈ Yλ
by the Schauder–Tychonoff theorem. This function y(t) clearly satisfies the
integral equation (2.4), and so gives a solution of the neutral equation (2.1)
having the asymptotic behavior (2.8). This completes the proof of Theorem
4.

Remark 3. The solutions given in Theorem 3 are oscillatory or nonos-
cillatory according to whether the periodic function w(t) is oscillatory or
nonoscillatory. The condition (2.5), which is independent of the choice
of w(t), guarantees the coexistence of both oscillatory and nonoscillatory
solutions for the equation (2.1). It is clear that these solutions are all
exponentially decaying to zero as t → ∞. The solutions constructed in
Theorem 4 are nonoscillatory.

Example 2. For illustration consider the equation

x(n)(t)− 1
e
x(n)(t− 1) + q(t)|x(t− 2)|γ sgnx(t− 2) = 0, (2.15)
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where γ > 0 is a constant and q : [t0,∞) → R, t0 > 2, is a continuous
function. This is a special case of (2.1) in which λ = 1

e σ = 1, g(t) = t− 2
and f(t, x) = q(t)|x|γ sgn x. The function F (t, u) bounding f(t, x) can be
taken to be F (t, u) = |q(t)|uγ . It is easy to see that the conditions (2.5)
and (2.7) written for (2.15) are equivalent to

∞
∫

t0

tne(1−γ)t|q(t)|dt < ∞ (2.16)

and
∞
∫

t0

tγket|q(t)|dt < ∞, k ∈ {0, 1, · · · , n− 1}, (2.17)

respectively.

From Theorem 3 it follows in particular that if e(1−γ)t|q(t)| is nonincreas-
ing and (2.16) holds, then (2.15) has solutions of the form

xm(t) = e−t
(

am cos
2mπt

σ
+ bm sin

2mπt
b

+ o(1)
)

as t →∞, m = 0, 1, 2, · · · ,

where am and bm are constants with a2
m + b2

m > 0. If m = 0, then x0(t) is
nonoscillatory; otherwise xm(t) are oscillatory.

Theorem 4 implies in particular that if tγ(n−1)et|q(t)| is nonincleasing
and

∞
∫

t0

tγ(n−1)et|q(t)|dt < ∞, (2.18)

then (2.15) has nonoscillatory solutions of the form

yk(t) = cktk = o(1) as t →∞ for all k = 0, 1, · · · , n− 1.

Suppose that γ ≥ 1. Then, (2.18) implies (2.16), and so (2.15) possesses all
the solutions listed above provided (2.18) is satisfied.
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