Naseer Shahzad, Reem Al-Dubiban
Abstract:
Let $K$ be a nonempty closed convex subset of a real uniformly convex Banach 
space $E$ and $S, T:K\rightarrow K$ two nonexpansive mappings such that $F(S)\cap 
F(T):=\{x\in K: Sx=Tx=x\}\neq \varnothing$. Suppose $\{x_n\}$ is generated 
iteratively by 
$$ x_1\in K,\;\; x_{n+1}=(1-\alpha_n) x_n+\alpha_n S[(1-\beta_{n})x_n+\beta_{n}Tx_n], 
$$
$n\geq 1,$ where $\{{\alpha_n}\}$, $\{{\beta_n}\}$ are real sequences in 
$[0,1]$. 
In this paper, we discuss the weak and strong convergence of $\{x_n\}$ to some 
$x^*\in F(S)\cap F(T)$.
Keywords: 
Common fixed point, nonexpansive mapping, Banach space.
MSC 2000: 47H09, 47J25