Dorothee D. Haroske, Erika Tamási
Abstract:
This paper deals with wavelet frames in anisotropic Besov spaces $B_{pq}^{s,a}(\mathbb{R}^n)$, 
$s\in\mathbb{R}$, $0<p,q\leq\infty$, and $a=(a_1,\dots,a_n)$ is an anisotropy, 
with $a_i>0$, $i=1,\dots,n$, $a_1+ \cdots + a_n=n$. We present sub-atomic and 
wavelet decompositions for a large class of distributions. To some extent our 
results can be regarded as anisotropic counterparts of those recently obtained 
by H. Triebel in 2003.
Keywords: 
Anisotropic function spaces, sub-atomic decomposition, wavelet decomposition, 
wavelet frames.
MSC 2000: 46E35, 42B35, 42C40