Rajendra G. Vyas
Abstract:
Let $f$ denote a $2\pi$ periodic function in $L[0,2\pi$], and $\hat{f}(n)$, 
$n\in Z$, be its Fourier coefficients. For a function $f$ of the generalized 
Wiener class $\bigwedge \BV(p(n) \uparrow\infty$) we have proved that 
$$\hat{f}(n)=O\bigg(1/\Big(\sum_{i=1}^{| n|}\frac{1}{\lambda_{i}}\Big)^{1/p(k(n))}\bigg).$$
Keywords: 
Fourier coefficients, generalized Wiener class, $p$-$\bigwedge$-bounded 
variation.
MSC 2000: 42A16