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THE SUPERSTABILITY OF THE GENERALIZED
D’ALEMBERT FUNCTIONAL EQUATION

ELHOUCIEN ELQORACHI AND MOHAMED AKKOUCHI

Abstract. We generalize the well-known Baker’s superstability result for the
d’Alembert functional equation with values in the field of complex numbers
to the case of the integral equation

/ f(ety)du(t) + / Flato(y)du(t) = 2/ (2)f(y) 2.y € G,
G G

where G is a locally compact group, p is a generalized Gelfand measure and
o is a continuous involution of G.
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1. INTRODUCTION

Let G be a locally compact group. We denote by M (G) the Banach algebra of
bounded measures on G with complex values. It is the topological dual of Cy(G),
the Banach space of continuous functions vanishing at infinity (cf. 13.1.2 of [5]).
o is a continuous involution of G, i.e. ,(co0)(z) = x and o(xy) = o(y)o(x) for
all x,y € G.

Let 4 € M(G) be a compactly supported measure on G. We say that p is
o-invariant if < u, foo === u, f > for all continuous functions f on GG, where
< p, [ == [ f(@)du().

Throughout this paper we assume that u is a generalized Gelfand measure on
G with compact support. This means that the following conditions are satisfied

(i) p*p=p and

(ii) p* M(G) * p is a commutative Banach algebra under the convolution
product (see [1] for more information).

In a previous work [6], complex continuous solutions of the generalized d’Alem-
bert functional equation

/ f(aty)du(t) + / Flato(y)du(t) = 2f(@)f(y), wyeG (1)
G G

are determined.

There is an important particular case of the integral equation (1) : g = J. and
o(x) = —xz, where J, denotes the Dirac measure concentrated at the identity
element of G. In this setting G is an abelian group and (1) reduces to the
classical d’Alembert functional equation

fle+y)+ flo—y)=2f(2)f(y), zyecd. (2)
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In the paper [2] the superstability theorem of the d’Alembert functional equation
(2) appears. More precisely, J. A. Baker proved the following result in [2]
(Theorem 5).

Let G be an abelian group and 6 > 0. Let f be a complex function such that

lflx+y)+ flz—y)—2f(x)f(y)] <6, z,y€qG.

1+vV1+20

5 ,
flx+y) + flr—y) =2f(2)f(y), =yeq.

Then either

|f(z)] < z € G,

or

The aim of this note is to extend the above Baker’s stability theorem to
the case of the generalized d’Alembert functional equation (1) in which p is a
generalized o-invariant Gelfand measure with compact support.

2. THE MAIN RESULTS

Theorem. Let § > 0 and let f be a continuous complez-valued function on

G such that
/fxty e /fa:ta Jap(t) — 2/ () f()| <6, ryeC.  (3)

Then either

242
oy < LV EE2 s

or

/fxtydu /fxta Jdu(t) = 2/ (1) f(y), .y € G,

The following lemma will be useful in the proof of the main results.

Lemma. If f is a continuous and bounded solution of the functional inequality

(3) then
+ 2420
sup | f| < | ]l \/|2| Al _

Proof. Let M = sup|f|. Using the inequality of the lemma we find that
2[f (@) f (@) < M || pu || +M [ o || +9,

from which we conclude that M = sup |f| satisfies M? < M || p || +2.
The rest of the proof consists in finding the roots of the second order poly-
nomial 22 — z || p || —4. O

Proof of Theorem. 1f f is bounded, then according to the lemma we are in the
first case of the theorem. So we may from now on assume that f is unbounded.
Step one. First we show that

/frctdu /ft:cdu = f(=),
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for all z € G in the manner as follows.
For any =,y € G,

2f (2

0l = 25) [ Fatautt) - 27001 >‘

/fyt:zr ault) /fyta Jutt) - 21(2) )
/fytxdu /fyta Jdp(t) —2f(x /fytdu ‘

Since p * = p, we get that

/fytxdu /fyta Jpu(t) — 2f (x /fytdu)‘

(ytsz)du(t)du(s //fytsa Ydp(t)dp(s)—
—Qfx/fytdut)‘

/f ytsz)dp(s /f ytso(x))dpu(s) — 2f(x) f (ylf)'dlﬂl(t)éﬁS el -
It follows that
27(a)| | Futidu(t) - F@) <546 u ]l
G
Since f is unbounded, we have
| rnautn = s, vec.

On the other hand,
2f @)[|f(y) = flo@)| = 12f(x) f(y) = 2f(x) f(o(y))]

[ Hotwauto) + [ Jotatu)int) — 2550 >\

/f:cto )yt /fxtydu)—2f()f(())'§25-

Since f is unbounded, we have f(o(y)) = f(y), for all y € G.
By using the above results we will prove that

/G Fltydu(t) = fy), ye G,

Since p is o-invariant, we get for any y € G that

/ F(ty)dult) / F(o(y)o(t))dult) = /G Fodu(t) = Fo ) = £().



506 ELHOUCIEN ELQORACHI AND MOHAMED AKKOUCHI

Now p is a generalized Gelfand measure and therefore then we have

/fxty dp(t) /// katys)dp(k)dp(t)du(s)

==Lk Op K Uk Oy ¥, [ == L% Oy * [k [ % Oy * 1, [ =
=<k Oy Kk ok ok Oy ko, [ ==k Oy k kO x pu, -

/ / / f(kytxs)du(k)du(t) / flytx)du(t)  (4)
for all z,y € G.

On the other hand, if we replace f by ¥(z) = [, f o f(zs57)dp(s) in the previous
formula (4), we get

/ / F(zswty)du(s)du(t) / / F(zsytz)du(s)du(t)

for all z,y,z € G.

Step two. By using the ideas from the paper by Badora [3] we will prove that
f is a solution of the integral equation (1). f is unbounded, so there exists a
sequence (a,)nen in G such that

f(an) # 0 and nEToJf(a”)' = +00.

By inequality (3), for = a,, we have

Jo flanty)du(t) + [ flanto(y))du(t) )
Flan) 21| < 1]

for all y € G and n € N.

It follows that the convergence of the sequence of functions
fG (antz)dp(t) + [, flanto(x))du(t)

f(an) ’

eN, (5)

to the function
z s 21 (2)

is uniform.
For any z,y € G and n € N it is easily seen that

/ flantyse)dpu(t)dpu(s / / flantyso(x))du(t)dp(s)

~2f(e) [ f(anty)du(t)'

/ F(antyse)duls / f(antyso(@))du(s) — 27 (2) f(anty)| diul(t)
<6 -

Similarly, we get

/ / F(anto(y)sx)du(t)d(s) / / F(anto(y)so (@) dpu(t)dp(s)
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24 [ f(anta(y))du(t)‘ <o)l

Combining this and

/ / F(zsoty)du(s)dpu(t) / / f(zsyta)dp(s)dpu(t),

we obtain

//fanta )sx)du(t)du(s //fanta )sy)dp(t)du(s)
//fanta so(z))du(t)du(s //fantxsy du(t)du(s)

2f(a [/fantydu /fanta Japt Hs%uuu.

After dividing both sides of this inequality by |f(a,)| we get

j/ Jo [lanto(y)sz)dp(t ;(if) (anto(x)o(s)y)du(t) du(s)
J& (antzsy)du(t +—%;2an?nt0 o(s )0($))du(t)du<5)
s e
In view of (5), we get by letting n — +oo that
n_++a;ﬁ; (anto(y)sx)du(t ;kii) flapto(z)o(s)y)du(t) — 9 f(o(y)sa).
nlgﬁgfﬁ; (antzsy)dp(t %-%%1an?nt0(y)U(S)U(w))du(t):: 2f (wsy)
. Jo flanty)dp(t) + [ flanto(y))du(t) _ 95 ().

”HJFOO f(an)
Moreover, since the convergence is uniform, we have

\2 [ Stotwssiants) +2 [ sasydnts) - 4f<x>f<y>\ <0,

for all z,y € G
In view of (4) [, f(xty)du(t) = [, f(ytx)du(t), z,y € G, and thus we
conclude that f is a solution of the functional equatlon (1). O

Corollary. Let (G, K) be a compact Gelfand pair (see [4]) with o(K) C K.
Let 6 > 0 and let f be a continuous complez-valued function on G such that

/K F(ky)dk + /K F (ko (y))dk — 2f(2) £ ()

where dk denotes the normalized Haar measure on K.

<d, mzyegd,
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Then either

or

|tttk + / f(wko(y)dk = 2f(@)f(y), 2.y € G.

Remarks 1. (1) In the theorem, we can replace the condition that p is a
generalized Gelfand measure by a weaker condition that f satisfies the following
version of Kannappan’s condition :

//f zsxty)dp(s)dpu(t) //f zsytz)du(s)du(t), x,y,z € G.

) If 4 is a complex measure with finite support, the complex function f in
the theorem need not be assumed to be continuous.
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