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INTEGRAL REPRESENTATIONS FOR THE SOLUTION OF
DYNAMIC BENDING OF A PLATE WITH

DISPLACEMENT-TRACTION BOUNDARY DATA

IGOR CHUDINOVICH AND CHRISTIAN CONSTANDA

Abstract. The existence of distributional solutions is investigated for the
time-dependent bending of a plate with transverse shear deformation under
mixed boundary conditions. The problem is then reduced to nonstationary
boundary integral equations and the existence and uniqueness of solutions
to the latter are studied in appropriate Sobolev spaces.
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1. Introduction

Mathematical models play an essential role in the study of mechanical phe-
nomena and processes. Owing to their complexity, solutions of initial-boundary
value problems for such models are usually approximated by means of various
numerical procedures. But before methods of this type can be developed and
applied, the practitioner must have a guarantee that the problem is well posed;
in other words, that it has a unique solution depending continuously on the
data.

In this paper we address the questions of existence, uniqueness, and stability
of the solution to the time-dependent bending of a plate with transverse shear
deformation where displacements are prescribed on one part of the boundary
and the bending and twisting moments and shear force are given on the re-
maining part. The analysis is performed in Sobolev spaces, whose norms are
particularly well suited to the construction of global error estimates.

The corresponding equilibrium problem has been fully investigated in [1]. A
discussion of other mathematical models in elasticity can be found in [2]–[4].

2. Formulation of the Problem

Consider a homogeneous and isotropic elastic plate of thickness h0 = const >
0, which occupies a domain S̄ × [−h0/2, h0/2] in R3, where S is a domain in
R2 with a simple closed boundary ∂S. In the transverse shear deformation
model proposed in [5] it is assumed that the displacement vector at (x, x3),
x = (x1, x2) ∈ R2, at time t ≥ 0, is of the form

(
x3u1(x, t), x3u2(x, t), u3(x, t)

)T
,
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where the superscript T denotes matrix transposition. Then u = (u1, u2, u3)
T

satisfies the equation of motion

B(∂2
t u)(x, t) + (Au)(x, t) = q(x, t), (x, t) ∈ G = S × (0,∞);

here B = diag{ρh2, ρh2, ρ}, h2 = h2
0/12, ρ is the density of the material, ∂t =

∂/∂t,

A =



−h2µ∆− h2(λ + µ)∂2

1 + µ −h2(λ + µ)∂1∂2 µ∂1

−h2(λ + µ)∂1∂2 −h2µ∆− h2(λ + µ)∂2
2 + µ µ∂2

−µ∂1 −µ∂2 −µ∆


 ,

∂α = ∂/∂xα, α = 1, 2, λ and µ are the Lamé constants satisfying λ + µ > 0 and
µ > 0, and q is a combination of forces and moments acting on the plate and
its faces x3 = ±h0/2.

In what follows we work with three-component distributions; however, for
simplicity, we use the same symbols for their spaces and norms as in the scalar
case.

We denote by Hm,p(R2), m ∈ R, p ∈ C, the space that coincides with Hm(R2)
as a set but is endowed with the norm

‖u‖m,p =

{ ∫

R2

(1 + |p|2 + |ξ|2)m|ũ(ξ)|2 dξ

}1/2

,

where ũ is the distributional Fourier transform of u ∈ S ′(R2). Next, H̊m,p(S) is
the subspace of Hm,p(R2) consisting of all u ∈ Hm,p(R2) with supp u ⊂ S̄, and
Hm,p(S) is the space of the restrictions to S of all v ∈ Hm,p(R2). The norm of
u ∈ Hm,p(S) is defined by

‖u‖m,p;S = inf
v∈Hm,p(R2): v|S=u

‖v‖m,p.

Also, H−m,p(R2) is the dual of Hm,p(R2) with respect to the duality generated

by the inner product (· , ·)0 in L2(R2); the dual of H̊m,p(S) is H−m,p(S). Let γ
be the trace operator that maps H1,p(S) continuously to the space H1/2,p(∂S),
which coincides as a set with H1/2(∂S) but is endowed with the norm

‖f‖1/2,p;∂S = inf
u∈H1,p(S): γu=f

‖u‖1,p;S.

The continuity of γ from H1,p(S) to H1/2,p(∂S) is uniform with respect to p ∈
C. Finally, H−1/2,p(∂S) is the dual of H1/2,p(∂S) with respect to the duality
generated by the inner product (· , ·)0;∂S in L2(∂S).

We fix κ > 0 and introduce the complex half-plane Cκ = {p = σ + iτ ∈ C :
σ > κ}. Consider the space HL

m,k,κ(S), m, k ∈ R, of all û(x, p), x ∈ S, p ∈ Cκ,
such that U(p) = û(· , p) is a holomorphic mapping from Cκ to Hm(S) (which
implies that U(p) also belongs to Hm,p(S) for every p ∈ Cκ) and for which

‖û‖2
m,k,κ;S = sup

σ>κ

∞∫

−∞

(1 + |p|2)k‖U(p)‖2
m,p;S dτ < ∞.
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The norm on HL
m,k,κ(S) is defined by this equality. In what follows, we use

the symbol û(x, p) when we want to emphasize that this is a distribution in
Hm,p(S), and the symbol U(p) when we need to regard it as a mapping from Cκ

to Hm(S). The spaces HL
±1/2,k,κ(∂S) and its norm ‖ · ‖±1/2,k,κ;∂S are introduced

similarly.
Let HL−1

m,k,κ(G) and HL−1

±1/2,k,κ(Γ), Γ = ∂S× (0,∞), be the spaces of the inverse

Laplace transforms u and f of all û ∈ HL
m,k,κ(S) and f̂ ∈ HL

±1/2,k,κ(∂S), with
norms

‖u‖m,k,κ;G = ‖û‖m,k,κ;S, ‖f‖±1/2,k,κ;∂G = ‖f̂‖±1/2,k,κ;∂S.

We assume that ∂S is a C2-curve consisting of two arcs ∂Sν , ν = 1, 2, such
that ∂S = ∂S1 ∪ ∂S2, ∂S1 ∩ ∂S2 = ∅, and mes ∂Sν > 0, ν = 1, 2. Let
S+ and S− be the interior and exterior domains into which ∂S divides R2,
and let G± = S± × (0,∞) and Γν = ∂Sν × (0,∞), ν = 1, 2. We denote
by γ± the trace operators corresponding to S±. For simplicity, we use the
same symbols for the trace operators in the spaces of originals and in those of
their Laplace transforms. Thus, γ± also denote the trace operators mapping
HL−1

1,k,κ(G
±) continuously to HL−1

1/2,k,κ(Γ) for any k ∈ R. Also, we denote by πν ,

ν = 1, 2, the operators of restriction from Γ to Γν (and from ∂S to ∂Sν), and
write γ±ν = πνγ

±, ν = 1, 2. Finally, let π± be the operators of restriction from
R2 × (0,∞) to G± (or from R2 to S±).

We introduce the subspace H̊1/2,p(∂Sν) of H1/2,p(∂S) consisting of all ϕ ∈
H1/2,p(∂S) such that supp ϕ ∈ ∂Sν , ν = 1, 2, and denote by H1/2,p(∂Sν) the
space of restrictions from ∂S to ∂Sν of the elements of H1/2,p(∂S). The norm
of ϕ ∈ H1/2,p(∂Sν) is defined by

‖ϕ‖1/2,p;∂Sν = inf
f∈H1/2,p(∂S):πνf=ϕ

‖f‖1/2,p;∂S, ν = 1, 2.

Let lν , ν = 1, 2, be extension operators from ∂Sν to ∂S which map H1/2,p(∂Sν)
to H1/2,p(∂S) continuously and uniformly with respect to p and satisfy

‖lνf‖1/2,p;∂S ≤ c‖f‖1/2,p;∂Sν ∀f ∈ H1/2,p(∂Sν).

Also, let l± be operators of extension from ∂S to S± which map H1/2,p(∂S) to
H1,p(S

±) continuously and uniformly with respect to p.

By H̊−1/2,p(∂Sν) and H−1/2,p(∂Sν), ν =1, 2, we denote the duals of H1/2,p(∂Sν)

and H̊1/2,p(∂Sν), respectively, with respect to the duality generated by the inner
product in [L2(∂Sν)]

3; their norms are ‖ · ‖−1/2,p;∂S and ‖ · ‖−1/2,p;∂Sν . The

corresponding spaces HL−1

±1/2,k,κ(Γν) and H̊L−1

±1/2,k,κ(Γν), ν = 1, 2, and their norms

‖ · ‖±1/2,k,κ,Γν and ‖ · ‖±1/2,k,κ,Γ, k ∈ R, κ > 0, are introduced in the usual way.
In what follows we denote by

a±(u, v) = 2

∫

S±

E(u, v) dx
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the sesquilinear form of the internal energy density, where

2E(u, v) = h2E0(u, v) + h2µ(∂2u1 + ∂1u2)(∂2v̄1 + ∂1v̄2)

+ µ[(u1 + ∂1u3)(v̄1 + ∂1v̄3) + (u2 + ∂2u3)(v̄2 + ∂2v̄3)],

E0(u, v) = (λ + 2µ)
[
(∂1u1)(∂1v̄1) + (∂2u2)(∂2v̄2)

]

+ λ
[
(∂1u1)(∂2v̄2) + (∂2u2)(∂1v̄1)

]
.

The classical formulation of the dynamic mixed problems (DM±) consists in
finding u ∈ C2(G±) ∩ C1(Ḡ±) that satisfies

B(∂2
t u)(x, t) + (Au)(x, t) = 0, (x, t) ∈ G+ or G−,

u(x, 0+) = (∂tu)(x, 0+) = 0, x ∈ S+ or S−,

u±(x, t) = f1(x, t), (x, t) ∈ Γ1, (Tu)±(x, t) = g2(x, t), (x, t) ∈ Γ2,

where T is the moment-force boundary operator defined by


h2(λ + 2µ)n1∂1 + h2µn2∂2 h2µn2∂1 + h2λn1∂2 0
h2λn2∂1 + h2µn1∂2 h2µn1∂1 + h2(λ + 2µ)n2∂2 0

µn1 µn2 µ(n1∂1 + n2∂2)


 ,

n = (n1, n2) is the outward unit normal to ∂S, the superscripts ± denote the
limiting values of the corresponding functions as (x, t) → Γ from inside G± (or
x → ∂S from inside S±), and f1 and g2 are given functions.

We call u ∈ HL−1

1,0,κ(G
±) a weak solution of the corresponding problem (DM±)

if it satisfies
∞∫

0

{a±(u, v)− (B1/2∂tu,B1/2∂tv)0;S±} dt = ±
∞∫

0

(g2, v)0;∂S2 dt,

γ±1 u = f1

(1)

for all v ∈ C∞
0 (Ḡ±) such that γ±1 v = 0.

3. Solvability of the Problems

In what follows we use the same symbol c for all positive constants that occur
in various estimates and are independent of the functions in those estimates and
of p ∈ Cκ (but may depend on κ).

Theorem 1. For every κ > 0, f1 ∈ HL−1

1/2,1,κ(Γ1), and g2 ∈ HL−1

−1/2,1,κ(Γ2),

problems (1) have a unique solution u ∈ HL−1

1,0,κ(G
±). Furthermore, if f1 ∈

HL
1/2,k,κ(Γ1) and g2 ∈ HL

−1/2,k,κ(Γ2), then u ∈ HL
1,k−1,κ(G

±) and for every k ∈ R
‖u‖1,k−1,κ;G± ≤ c

(‖f1‖1/2,k,κ;Γ1 + ‖g2‖−1/2,k,κ;Γ2

)
.

Proof. We prove the assertion for (DM+); the case of (DM−) is treated similarly.
We begin by rewriting (1) in terms of Laplace transforms.

Let H̊1,p(S
+, ∂Sν) be the subspace of H1,p(S

+) of all elements u such that

π3−νγ
+u = 0, ν = 1, 2; that is, γ+u ∈ H̊1/2,p(∂Sν). Going over to Laplace
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transforms, (1) becomes the problem (DM+
p ) of seeking u ∈ H1,p(S

+) such that
for every p ∈ Cκ

p2(B1/2u, B1/2v)0;S+ + a+(u, v) = (g2, v)0;∂S2 ∀v ∈ H̊1,p(S
+, ∂S2),

π1γ
+u = f1.

(2)

Since for any v ∈ H̊1,p(S
+, ∂S2)∣∣(g2, v)0;∂S2

∣∣ ≤ ‖g2‖−1/2,p;∂S2‖v‖1/2,p;∂S ≤ c‖g2‖−1/2,p;∂S2‖v‖1,p;S+ ,

(g2, v)0;∂S2 defines an antilinear functional on H̊1,p(S
+, ∂S2); hence, it can be

written as
(g2, v)0;∂S2 = (q2, v)0;S+ ∀v ∈ H1,p(S

+, ∂S2), (3)

where q2 ∈ [H̊1,p(S
+, ∂S2)]

∗ and

‖q2‖[H̊1,p(S+,∂S2)]∗ ≤ c‖g2‖−1/2,p;∂S2 . (4)

First, we assume that f1 = 0. Taking (3) into account, we write (2) in the
form

p2(B1/2u0, B
1/2v)0;S+ + a+(u0, v) = (q2, v)0;S+ ∀v ∈ H̊1,p(S

+, ∂S2), (5)

where u0 ∈ H̊1,p(S
+, ∂S2) is an unknown vector function. The unique solvability

of (5) and the estimate

‖u0‖1,p;S+ ≤ c|p| ‖q2‖[H̊1,p(S+,∂S2)]∗ (6)

are proved in the usual way (see, for example, [6]).
If f1 6= 0, then we set w = l+l1f1 ∈ H1,p(S

+) and remark that

‖w‖1,p;S+ ≤ c‖f1‖1/2,p;∂S1 . (7)

We seek the solution u of (2) as u = u0+w. Clearly, u0 ∈ H̊1,p(S
+, ∂S2) satisfies

p2(B1/2u0, B
1/2v)0;S+ + a+(u0, v)

= (q2, v)0;S+ − p2(B1/2w, B1/2v)0;S+ − a+(w, v)

∀v ∈ H̊1,p(S
+, ∂S2). (8)

By (7),

|p2(B1/2w, B1/2v)0,S+ + a+(w, v)| ≤ c‖w‖1,p;S+‖v‖1,p;S+

≤ c‖f1‖1/2,p;∂S1‖v‖1,p;S+ ;

hence,

p2(B1/2w, B1/2v)0;S+ + a+(w, v) = (q1, v)0;S+ ∀v ∈ H̊1,p(S
+, ∂S2),

where q1 ∈ [H̊1,p(S
+, ∂S2)]

∗ and

‖q1‖[H̊1,p(S+,∂S2)]∗ ≤ c‖f1‖1/2,p;∂S1 . (9)

Equation (8) now takes the form

p2(B1/2u0, B1/2v)0;S+ + a+(u0, v) = (q2 − q1, v)0;S+ ∀v ∈ H̊1,p(S
+, ∂S2). (10)
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We have already stated that (10) has a unique solution u0 ∈ H̊1,p(S
+, ∂S2). By

(6), (4), and (9),

‖u0‖1,p;S+ ≤ c|p|‖q1 − q2‖[H̊1,p(S+,∂S2)]∗

≤ c|p|(‖f1‖1/2,p;∂S1 + ‖g2‖−1/2,p;∂S2

)
.

Therefore, for u = u0 + w we have

‖u‖1,p;S+ ≤ c|p|(‖f1‖1/2,p;∂S1 + ‖g2‖−1/2,p;∂S2

)
. (11)

Returning to the spaces of originals and repeating the scheme used in [6] and
[7], we complete the proof of the assertion. ¤

4. Dynamic Plate Potentials and their Properties

Consider a matrix D(x, t) of fundamental solutions for the equation of motion,
that is, a (3× 3)-matrix such that

B(∂2
t D)(x, t) + AD(x, t) = δ(x, t)I, (x, t) ∈ R2 × R,

D(x, t) = 0, (x, t) ∈ R2 × (−∞, 0),

where δ is the Dirac delta distribution and I is the identity (3 × 3)-matrix.

Clearly, its Laplace transform D̂(x, p) satisfies

Bp2D̂(x, p) + AD̂(x, p) = δ(x)I, x ∈ R2.

The explicit form of D̂(x, p) can be found in [7].
Let α, β ∈ C2(∂S × R) be functions with compact support in Γ̄, and let α̂

and β̂ be their Laplace transforms. We define the single-layer and double-layer
potentials

(Vpα̂)(x, p) =

∫

∂S

D̂(x− y, p)α̂(y, p) dsy, x ∈ R2, p ∈ C0,

(Wpβ̂)(x, p) =

∫

∂S

(
TyD̂(y − x, p)

)T
β̂(y, p) dsy, x ∈ S+ ∪ S−, p ∈ C0,

where Ty is the boundary operator T acting with respect to y.

Since D̂(x, p) has a polynomial growth with respect to p ∈ Cκ, κ > 0, we
may now define the dynamic (retarded) single-layer and double-layer potentials

(V α)(x, t) = (L−1Vpα̂)(x, t)

=

∞∫

0

∫

∂S

D(x− y, t− τ)α(y, τ) dsy dτ, (x, t) ∈ R2 × (0,∞),

(Wβ)(x, t) = (L−1Wpβ̂)(x, t)

=

∞∫

0

∫

∂S

(
TyD(y − x, t− τ)

)T
β(y, τ) dsy dτ, (x, t) ∈ G+ ∪G−.
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We consider the boundary operators V0, W±, and N defined by

V0α = γ±π±V α, W±β = γ±π±Wβ, Nβ = T±π±Wβ.

Their corresponding transformed versions are defined by

Vp,0α̂ = γ±π±Vpα̂, W±
p β̂ = γ±π±Wpβ̂, Npβ̂ = T±π±Wpβ̂.

These operators can be extended by continuity to much wider classes of densities
[7]. For convenience, we gather here some of the main results.

First we introduce the Poincaré–Steklov operators T ±
p acting in Sobolev

spaces with a parameter. Let f ∈ H1/2,p(∂S), p ∈ C0, and let u ∈ H1,p(S
±) be

the weak solution [8] of the problem

p2(B1/2u,B1/2v)0,;S± + a±(u, v) = 0 ∀v ∈ H̊1,p(S
±),

γ±u = f.
(12)

Also, let ϕ ∈ H1/2,p(∂S) be arbitrary and let w ∈ H1,p(S
±) be such that γ±w =

ϕ. We define the Poincaré–Steklov operators T ±
p depending on the parameter

p ∈ C0 by

(T ±
p f, ϕ)0;∂S = ±{

p2(B1/2u,B1/2w)0;S± + a±(u, w)
}
. (13)

It is obvious that (13) defines T ±
p correctly. For if w1, w2 ∈ H1,p(S

±) are such

that γ±w1 = γ±w2 = ϕ, then v = w1 − w2 ∈ H̊1,p(S
±) and, by (12),

p2(B1/2u,B1/2w1)0,S± + a±(u,w1) =p2(B1/2u,B1/2(v + w2))0;S±+a±(u, v + w2)

=p2(B1/2u,B1/2w2)0;S± + a±(u, w2).

Lemma 1. For every p ∈ C0, the operators T ±
p are homeomorphisms from

H1/2,p(∂S) to H−1/2,p(∂S), and for every κ > 0 and p ∈ C̄κ

‖T ±
p f‖−1/2,p;∂S ≤ c|p|‖f‖1/2,p;∂S, (14)

‖f‖1/2,p;∂S ≤ c|p|‖T ±
p f‖−1/2,p;∂S. (15)

Returning to the spaces of originals, we introduce the Poincaré–Steklov op-
erators T ±. From (14) and (15) we easily deduce the following assertion.

Theorem 2. For any κ > 0 and k ∈ R, the operators T ± define injective
maps

T ± : HL−1

1/2,k,κ(Γ) → HL−1

−1/2,k−1,κ(Γ).

Their inverses, extended by continuity to the corresponding spaces, define injec-
tions

(T ±)−1 : HL−1

−1/2,k,κ(Γ) → HL−1

1/2,k−1,κ(Γ).

We now use the above results to investigate the properties of the single-
layer and double-layer potentials. Obviously, both these potentials satisfy the
equation

Bp2û(x, p) + Aû(x, p) = 0, x ∈ S+ ∪ S− .
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Lemma 2. For any p ∈ C0, the operator Vp,0, extended by continuity from
C2(∂S) to the space H−1/2,p(∂S), is a homeomorphism from H−1/2,p(∂S) to
H1/2,p(∂S), and for every p ∈ C̄κ

‖Vp,0α̂‖1/2,p;∂S ≤ c|p|‖α̂‖−1/2,p;∂S,

‖α̂‖−1/2,p;∂S ≤ c|p|‖Vp,0α̂‖1/2,p;∂S.

For any density α̂ ∈ H−1/2,p(∂S), the single-layer potential is continuous in
the sense that γ+Vpα̂ = γ−Vpα̂ = Vp,0α̂. Also, the jump formulas

T +
p Vp,0α̂ = 1

2
α̂ + (T +

p Vp,0α̂)0,

T −
p Vp,0α̂ = −1

2
α̂ + (T +

p Vp,0α̂)0

hold, where (T +
p Vp,0α̂)0 is the integral operator generated by the direct value

on ∂S of the corresponding singular integral.

Lemma 3. For any p ∈ C0, the operators W±
p , extended by continuity from

C2(∂S) to H1/2,p(∂S), are homeomorphisms from H1/2,p(∂S) to H1/2,p(∂S), and
for every p ∈ C̄κ

‖W±
p β̂‖1/2,p;∂S ≤ c|p|2‖β̂‖1/2,p;∂S,

‖β̂‖1/2,p;∂S ≤ c|p|2‖W±
p β̂‖1/2,p;∂S.

The jump formulas for the double-layer potential with β̂ ∈ H1/2,p(∂S) have
the form

W+
p β̂ = −1

2
β̂ + (Wpβ̂)0,

W−
p β̂ = 1

2
β̂ + (Wpβ̂)0,

where (Wpβ̂)0 is the integral operator generated by the direct value on ∂S of
the corresponding singular integral.

Finally, we consider the operator Np = T +
p W+

p = T −
p W−

p , which is an integral
(pseudodifferential) operator with a hypersingular kernel.

Lemma 4. For any p ∈ C0, the operator Np, extended by continuity from
C2(∂S) to H1/2,p(∂S), is a homeomorphism from H1/2,p(∂S) to H−1/2,p(∂S),
and for every p ∈ C̄κ

‖Npβ̂‖−1/2,p;∂S ≤ c|p|3‖β̂‖1/2,p;∂S,

‖β̂‖1/2,p;∂S ≤ c|p|‖Npβ̂‖−1/2,p;∂S.

We remark that if α̂ ∈ H−1/2,p(∂S) and β̂ ∈ H1/2,p(∂S), then the single-layer
and double-layer potentials belong to H1,p(S

±).
Returning to the spaces of originals, we establish the properties of the bound-

ary operators, which are summarized in the next assertion.

Theorem 3. (i) The operator V0, extended by continuity from C2
0(Γ) to

HL−1

−1/2,k,κ(Γ), is continuous and injective from HL−1

−1/2,k,κ(Γ) to HL−1

1/2,k−1,κ(Γ) for

every κ > 0 and k ∈ R, and its range is dense in HL−1

1/2,k−1,κ(Γ). The inverse
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V −1
0 , extended by continuity from the range of V0 to HL−1

1/2,k,κ(Γ), is continuous

and injective from HL−1

1/2,k,κ(Γ) to HL−1

−1/2,k−1,κ(Γ) for any k ∈ R, and its range is

dense in HL−1

−1/2,k−1,κ(Γ). Furthermore,

‖π+V α‖1,k−1,κ;G+ + ‖π−V α‖1,k−1,κ;G− ≤ c‖α‖−1/2,k,κ;Γ.

(ii) The operators W±, extended by continuity from C2
0(Γ) to HL−1

1/2,k,κ(Γ), are

continuous and injective from HL−1

1/2,k,κ(Γ) to HL−1

1/2,k−2,κ(Γ) for any κ > 0 and

k ∈ R, and their ranges are dense in HL−1

1/2,k−2,κ(Γ). The inverses (W±)−1,

extended by continuity from the ranges of W± to HL−1

1/2,k,κ(Γ), are continuous

and injective from HL−1

1/2,k,κ(Γ) to HL−1

1/2,k−2,κ(Γ) for all k ∈ R, and their ranges

are dense in HL−1

1/2,k−2,κ(Γ). Furthermore,

‖π+Wβ‖1,k−2,κ;G+ + ‖π−Wβ‖1,k−2,κ;G− ≤ c‖β‖1/2,k,κ;Γ.

(iii) The operator N , extended by continuity from C2
0(Γ) to HL−1

1/2,k,κ(Γ), is

continuous and injective from HL−1

1/2,k,κ(Γ) to HL−1

−1/2,k−3,κ(Γ) for any κ > 0 and

k ∈ R, and its range is dense in HL−1

−1/2,k−3,κ(Γ). The inverse N−1, extended

by continuity from the range of N to HL−1

−1/2,k,κ(Γ), is continuous and injective

from HL−1

−1/2,k,κ(Γ) to HL−1

1/2,k−1,κ(Γ) for any k ∈ R and its range is dense in

HL−1

1/2,k−1,κ(Γ).

(iv) For any α ∈ HL−1

−1/2,k,κ(Γ), κ > 0, and k ≥ 1, the potential V α is a weak

solution of the homogeneous equation (1) in G+ ∪G− with homogeneous initial

conditions. For any β ∈ HL−1

1/2,k,κ(Γ), κ > 0, and k ≥ 2, the potential Wβ is a

weak solution of the homogeneous equation (1) in G+ ∪ G− with homogeneous
initial conditions.

The jump formulas for the single-layer and double-layer dynamic potentials
are obvious and we omit them.

5. Integral Representations of the Solutions

For every p ∈ C0 we introduce three pairs of special boundary operators. Let
α, β = 1, 2, α 6= β. For f ∈ H1/2,p(∂S) we define the operators π±αβ by

π±αβf = {παf, πβT ±
p f}.

For g ∈ H−1/2,p(∂S), we define the operators θ±αβ by

θ±αβg = π±αβ(T ±
p )−1g.

Finally, for {fα, gβ} ∈ H1/2,p(∂Sα) × H−1/2,p(∂Sβ) we define the operators ρ±βα

by

ρ±βα{fα, gβ} = π±βα(π±αβ)−1{fα, gβ}
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We denote by ‖{fα, gβ}‖1/2,p;∂Sα;−1/2,p;∂Sβ
the norm of {fα, gβ} in the space

H1/2,p(∂Sα)×H−1/2,p(∂Sβ); that is,

‖{fα, gβ}‖1/2,p;∂Sα;−1/2,p;∂Sβ
= ‖fα‖1/2,p;∂Sα + ‖gβ‖−1/2,p;∂Sβ

.

Lemma 5. (i) The operators π±αβ are homeomorphisms from H1/2,p(∂S) to

H1/2,p(∂Sα)×H−1/2,p(∂Sβ), and for every κ > 0 and p ∈ C̄κ

‖π±αβf‖1/2,p;∂Sα;−1/2,p;∂Sβ
≤ c|p|‖f‖1/2,p;∂S, (16)

‖f‖1/2,p;∂S ≤ c|p|‖π±αβf‖1/2,p,∂Sα;−1/2,p;∂Sβ
. (17)

(ii) The operators θ±αβ are homeomorphisms from H−1/2,p(∂S) to the space

H1/2,p(∂Sα)×H−1/2,p(∂Sβ), and for every κ > 0 and p ∈ C̄κ

‖θ±αβg‖1/2,p;∂Sα;−1/2,p;∂Sβ
≤ c|p|‖g‖−1/2,p;∂S, (18)

‖g‖−1/2,p;∂S ≤ c|p|‖θ±αβg‖1/2,p;∂Sα;−1/2,p;∂Sβ
. (19)

(iii) The operators ρ±αβ are homeomorphisms from the space H1/2,p(∂Sα) ×
H−1/2,p(∂Sβ) to H1/2,p(∂Sβ)×H−1/2,p(∂Sα), and for every κ > 0, p ∈ C̄κ

‖ρ±αβ{fα, gβ}‖1/2,p;∂Sβ ;−1/2,p,∂Sα ≤ c|p|‖{fα, gβ}‖1/2,p;∂Sα;−1/2,p;∂Sβ
, (20)

‖{fα, gβ}‖1/2,p;∂Sα;−1/2,p;∂Sβ
≤ c|p|‖ρ±αβ{fα, gβ}‖1/2,p;∂Sβ ;−1/2,p;∂Sα . (21)

Proof. (i) The continuity of π±αβ and (16) follow from Lemma 1. Let u ∈
H1,p(S

±) be a unique solution of the problem

p2(B1/2u, B1/2v)0;S± + a±(u, v) = ±(gβ, v)0;∂Sβ
∀v ∈ H̊1,p(S

±, ∂Sβ),

παγ±u = fα,
(22)

where {fα, gβ} ∈ H1/2,p(∂Sα)×H−1/2,p(∂Sβ). By (11),

‖u‖1,p;S± ≤ c|p|‖{fα, gβ}‖1/2,p,∂Sα;−1/2,p;∂Sβ
. (23)

If f = γ±u ∈ H1/2,p(∂S), then π±αβf = {fα, gβ}; hence, π±αβ are surjective. The
trace theorem and (23) imply that (17) holds.

(ii) From Lemma 1 and (i) it follows that θ±αβ are homeomorphisms from

H−1/2,p(∂S) to H1/2,p(∂Sα) × H−1/2,p(∂Sβ). Let u ∈ H1,p(S
±) be the unique

solution of the problem

p2(B1/2u, B1/2v)0;S± + a±(u, v) = ±(g, v)0;∂S ∀v ∈ H1,p(S
±),

where g ∈ H−1/2,p(∂S). By Theorem 3 in [8],

‖u‖1,p;S± ≤ c|p|‖g‖−1/2,p;∂S.

If f = (T ±
p )−1g, then ‖f‖1/2,p;∂S ≤ c|p| ‖g‖−1/2,p;∂S. We now have

‖παf‖1/2,p;∂Sα + ‖πβg‖−1/2,p;∂Sβ
≤ ‖f‖1/2,p;∂S + ‖g‖−1/2,p;∂S ≤ c|p|‖g‖−1/2,p;∂S,

which proves (18).
Next, let u be the solution of (2), γ±u = f and T ±

p f = g. From the esti-
mate [7]

‖g‖−1/2,p;∂S ≤ c‖u‖1,p;S±
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and (11) it follows that (19) is holds.
(iii) The definition of ρ±αβ and assertion (i) indicate that these operators are

homeomorphisms from H1/2,p(∂Sα)×H−1/2,p(∂Sβ) to H1/2,p(∂Sβ)×H−1/2,p(∂Sα).
Let u be the solution of (2), f = γ±u, and g = T ±

p f . We have

‖παg‖−1/2,p;∂Sα + ‖πβf‖1/2,p;∂Sβ
≤ ‖g‖−1/2,p;∂S + ‖f‖1/2,p;∂S ≤ c‖u‖1,p;S±

≤ c|p| ‖{fα, gβ}‖1/2,p;∂Sα;−1/2,p;∂Sβ
,

which proves (20). Estimate (21) is proved similarly. ¤
We now consider four representations for the solutions of problems (DM±) in

terms of dynamic potentials and prove the unique solvability of the correspond-
ing systems of boundary integral equations. We begin with the representation

u(x, t) = (V α)(x, t), (x, t) ∈ G+ or G−, (24)

which yields the system of boundary equations

(π1V0α)(x, t) = f1(x, t), (x, t) ∈ Γ1,

(π2T ±V0α)(x, t) = g2(x, t), (x, t) ∈ Γ2.
(25)

Theorem 4. For every κ > 0, k ∈ R, f1 ∈ HL−1

1/2,k,κ(Γ1), and g2 ∈ HL−1

−1/2,k,κ(Γ2)

system (25) has a unique solution α ∈ HL−1

−1/2,k−2,κ(Γ), in which case u defined

by (24) belongs to HL−1

1,k−1,κ(G
±). If k ≥ 1, then u is the solution of (DM±).

Proof. We give the proof of this assertion and of the next three ones only for
(DM+). The exterior problem (DM−) is treated similarly.

In terms of Laplace transforms, (25) takes the form

π1Vp,0α̂ = f1, π2T +
p Vp,0α̂ = g2,

or
π+

12 Vp,0α̂ = {f1, g2}. (26)

By Lemmas 5 and 2, (26) has a unique solution α̂ ∈ H−1/2,p(∂S) and

‖α̂‖−1/2,p;∂S ≤ c|p|2‖{f1, g2}‖1/2,p;∂S1;−1/2,p,∂S2 (27)

for all p ∈ Cκ. Taking (27) and Theorem 1 into account, we complete the proof
by the standard scheme used in [8]. ¤

The second representation is

u(x, t) = (Wβ)(x, t), (x, t) ∈ G+ or G−, (28)

and it leads to the system

(π1W
±β)(x, t) = f1(x, t), (x, t) ∈ Γ1,

(π2Nβ)(x, t) = g2(x, t), (x, t) ∈ Γ2.
(29)

Theorem 5. For all κ > 0, k ∈ R, f1 ∈ HL−1

1/2,k,κ(Γ1), and g2 ∈ HL−1

−1/2,k,κ(Γ2)

system (29) has a unique solution β ∈ HL−1

1/2,k−2,κ(Γ), in which case u defined by

(28) belongs to HL−1

1,k−1,κ(G
±). If k ≥ 1, then u is the solution of (DM±).
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Proof. In the case of (DM+), (29) written in terms of Laplace transforms takes
the form

π1W
+
p β̂ = f1, π2Npβ̂ = g2,

or
π+

12W
+
p β̂ = {f1, g2}. (30)

If g = Npβ̂, then W+
p β̂ = (T +

p )−1g and (30) can be rewritten as

θ+
12g = {f1, g2}. (31)

By Lemmas 5 and 1, (31)—hence, also (30)—have a unique solution β̂ ∈
H1/2,p(∂S) and

‖β̂‖1/2,p;∂S ≤ c|p|2‖{f1, g2}‖1/2,p;∂S1;−1/2,p;∂S2 (32)

for all p ∈ Cκ. Theorem 1 and (32) now enable us to complete the proof in the
usual way. ¤

The third representation is

u(x, t) = (V α1)(x, t) + (Wβ2)(x, t), (x, t) ∈ G+ or G−, (33)

where α1 ∈ H̊L−1

−1/2,k,κ(Γ1) and β2 ∈ H̊L−1

1/2,k,κ(Γ2). This representation yields the
system of boundary equations

(π1V0α1)(x, t) + (π1W
±β2)(x, t) = f1(x, t), (x, t) ∈ Γ1,

(π2T ±V0α1)(x, t) + (π2Nβ2)(x, t) = g2(x, t), x, t ∈ Γ2.
(34)

Theorem 6. For all κ > 0, k ∈ R, f1 ∈ HL−1

1/2,k,κ(Γ1), and g2 ∈ HL−1

−1/2,k,κ(Γ2)

system (34) has a unique solution {α1, β2} ∈ H̊L−1

−1/2,k−1,κ(Γ1) × H̊L−1

1/2,k−1,κ(Γ2),

in which case u defined by (33) belongs to HL−1

1,k−1,κ(G
±). If k ≥ 1, then u is the

solution of (DM±).

Proof. Going over to Laplace transforms, we see that in the case of (DM+)
system (34) becomes

π+
12(Vp,0α̂1 + W+

p β̂2) = {f1, g2}. (35)

We claim that {α̂1, β̂2}, where

α̂1 = [(θ+
12)

−1 − (θ−12)
−1]{f1, g2},

β̂2 = [(π−12)
−1 − (π+

12)
−1]{f1, g2},

is a solution of (35). Indeed, from the definition of π±12 and θ±12 it follows

that π1[(π
+
12)

−1 − (π−12)
−1] = 0; hence, β̂2 ∈ H̊1/2,p(∂S2). Analogously, α̂1 ∈

H̊−1/2,p(∂S1). Then, since (θ±12)
−1 = T ±

p (π±12)
−1 and Vp,0(T +

p − T −
p ) = I, we

have

Vp,0α̂1 + W+
p β̂2 = Vp,0{(θ+

12)
−1 − (θ−12)

−1 + T −
p [(π−12)

−1 − (π+
12)

−1]}{f1, g2}
= Vp,0{(θ+

12)
−1 − T −

p (π+
12)

−1}{f1, g2} = (π+
12)

−1{f1, g2},
which proves the assertion.
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The difference {α̃1, β̃2} ∈ H̊−1/2,p(∂S1)× H̊1/2,p(∂S2) of two solutions of (35)
will satisfy

π+
12(Vp,0α̃1 + W+

p β̃2) = {0, 0},
so

Vp,0α̃1 + W+
p β̃2 = 0.

We take u(x, p) = (Vpα̃1)(x, p)+(Wpβ̃2)(x, p). This function is a solution of both
(DM+

p ) and (DM−
p ) with f1 = 0 and g2 = 0, respectively; therefore, u(x, p) = 0

in S+ and in S−. Then β̃2 = γ−u − γ+u = 0 and α̃1 = T +
p γ+u − T −

p γ−u = 0,
which proves the uniqueness of the solution.

The estimates

‖α̂1‖−1/2,p;∂S ≤ c|p| ‖{f1, g2}‖1/2,p;∂S1;−1/2,p;∂S2 ,

‖β̂2‖1/2,p;∂S ≤ c|p| ‖{f1, g2}‖1/2,p;∂S1;−1/2,p;∂S2

follow from (17) and (19). The proof is completed by following the standard
procedure. ¤

The fourth representation is

u(x, t) = (Wβ1)(x, t) + (V α2)(x, t), (x, t) ∈ G+ or G−, (36)

where β1 ∈ H̊L−1

1/2,k,κ(Γ1) and α2 ∈ H̊L−1

−1/2,k,κ(Γ2). This yields the system

(π1W
±β1)(x, t) + (π1V0α2)(x, t) = f1(x, t), (x, t) ∈ Γ1,

(π2Nβ1)(x, t) + (π2T ±V0α2)(x, t) = g2(x, t), (x, t) ∈ Γ2.
(37)

Theorem 7. For all κ > 0, k ∈ R, f1 ∈ HL−1

1/2,k,κ(Γ1), and g2 ∈ HL−1

−1/2,k,κ(Γ2)

system (37) has a unique solution {β1, α2} ∈ H̊L−1

1/2,k−2,κ(Γ1) × H̊L−1

−1/2,k−2,κ(Γ2),

in which case u defined by (36) belongs to HL−1

1,k−1,κ(G
±). If k ≥ 1, then u is the

solution of (DM±).

Proof. In terms of Laplace transforms, for (DM+) (37) takes the form

π+
12(W

+
p β̂1 + Vp,0α̂2) = {f1, g2}. (38)

We claim that

β̂1 = [(π−12)
−1ρ+

21 − (π+
12)

−1]{f1, g2},
α̂2 = [(θ+

12)
−1 − (θ−12)

−1ρ+
21]{f1, g2}

is the solution of (38). Indeed, we have

W+
p β̂1 + Vp,0α̂2

= Vp,0{T −
p [(π−12)

−1ρ+
21 − (π+

12)
−1] + (θ+

12)
−1 − (θ−12)

−1ρ+
21}{f1, g2}

= Vp,0{T +
p (π+

12)
−1 − T −

p (π+
12)

−1}{f1, g2} = (π+
12)

−1{f1, g2};
hence, (38) holds.

Since π2[(π
−
12)

−1ρ+
21−(π+

12)
−1]{f1, g2} = 0, we have β̂1 ∈ H̊1/2,p(∂S1). Similarly,

α̂ ∈ H̊−1/2,p(∂S2). To prove the unique solvability of (38), we repeat (with
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obvious changes) the proof of Theorem 6. From (17), (19), and (20) it follows
that for all p ∈ Cκ

‖β̂1‖1/2,p;∂S ≤ c|p|2‖{f1, g2}‖1/2,p;∂S1;−1/2,p;∂S2 ,

‖α̂2‖−1/2,p;∂S ≤ c|p|2‖{f1, g2}‖1/2,p;∂S1;−1/2,p;∂S2 .

The proof is now completed in the usual way. ¤
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