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ON TWO-POINT BOUNDARY VALUE PROBLEMS FOR
TWO-DIMENSIONAL DIFFERENTIAL SYSTEMS WITH

SINGULARITIES

S. MUKHIGULASHVILI

Abstract. For a differential system
du1

dt
= h0(t, u1, u2)u2,

du2

dt
= −h1(t, u1, u2)u−λ

1 − h2(t, u1, u2),

where λ ∈]0, 1[ and hi :]a, b[×]0, +∞[×R → [0, +∞[ (i = 0, 1, 2) are contin-
uous functions, we have established sufficient conditions for the existence of
at least one solution satisfying one of the two boundary conditions

lim
t→a

u1(t) = 0, lim
t→b

u1(t) = 0

and
lim
t→a

u1(t) = 0, lim
t→b

u2(t) = 0.
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Two-point boundary value problems for second order ordinary differential
equations with singularities with respect to one of the phase variable frequently
occur in applications (see, for example, [1, 3, 4, 10, 11, 12]) and are investigated
with sufficient thoroughness in the works of S. Taliafero [13], J. E. Bouillet and
S. M. Gomes [2], Yu. A. Klokov and A. I. Lomakina [7], A. G. Lomtatidze [8, 9],
I. Kiguradze and B. Shekhter [6] and others. However analogous problems for
two-dimensional singular differential systems still remain little studied. In this
paper we investigate the first and second boundary value problems for nonlinear
differential system with singularities with respect to both independent and/or
one of the phase variables.

We consider the differential system

du1

dt
= h0(t, u1, u2)u2,

du2

dt
= −h1(t, u1, u2)u

−λ
1 − h2(t, u1, u2), (1)

with the boundary conditions

lim
t→a

u1(t) = 0, lim
t→b

u1(t) = 0 (2)

or

lim
t→a

u1(t) = 0, lim
t→b

u2(t) = 0. (3)

Here λ ∈]0, 1[, hi :]a, b[×]0, +∞[×R → [0, +∞[ (i = 0, 1, 2) are continuous
functions. Moreover, there exist a continuous function h :]a, b[→ [0, +∞[ and
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positive numbers l, l0 such that 0 <
∫ b

a
h(t) dt < ∞ and the inequalities

h(t) ≤ h0(t, x, y) ≤ l h(t), h1(t, x, y) + h2(t, x, y) ≥ l0h(t) (4)

hold on the set ]a, b[×]0, +∞[×R.
Solutions of problems (1), (2) and (1), (3) are sought for in the class of

continuously differentiable vector functions (u1, u2) :]a, b[→]0, +∞[×R.
We set

δ1(t) =

∫ t

a

h(s) ds

∫ b

t

h(s) ds, δ2(t) =

∫ t

a

h(s) ds,

δ(t) = l δ1(t)

( ∫ b

a

h(s) ds

)−1

.

Theorem 1. Let, along with (4) the conditions

δ1(t) > 0 for a < t < b (5)

and

lim sup
ρ→+∞

[
(2 l l−1

0 )λρλ2−1

∫ b

a

δ1−λ
1 (t) h∗1(t, ρ) dt + ρ−1

∫ b

a

δ1(t) h∗2(t, ρ) dt

]

< l−2

∫ b

a

h(t) dt (6)

be satisfied, where

h∗i (t, ρ) = sup
{
hi(t, x, y) : 0 < x < l, δ(t)|y| < ρ

}
(i = 1, 2). (7)

Then problem (1), (2) is solvable.

Theorem 2. Let, along with (4), the conditions

δ2(t) > 0 for a < t ≤ b

and

lim sup
ρ→+∞

[( 2

l0 δ2(b)

)λ

ρλ2−1

∫ b

a

δ1−λ
2 (t) h∗1(t, ρ) dt + ρ−1

∫ b

a

δ2(t) h∗2(t, ρ) dt

]
<

1

l

hold, where

h∗i (t, ρ) = sup
{
hi(t, x, y) : 0 < x < ρ, δ2(t)|y| < ρ

}
(i = 1, 2).

Then problem (1), (3) is solvable.

As an example, consider the differential system

du1

dt
= (t− a)α (b− t)β ρ0(t, u1, u2)u2,

du2

dt
= − p1(t, u1, u2)

(t− a)α1 (b− t)β1
u−λ

1 − p2(t, u1, u2)

(t− a)α2 (b− t)β2
,

(8)

where λ ∈]0, 1[, and

α > −1, β > −1, αi ≥ −α, βi ≥ −β (i = 1, 2),
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and pi :]a, b[×]0, +∞[×R →]r1, r2[ (i = 0, 1, 2) are continuous functions, ri =
const > 0 (i = 1, 2).

Theorems 1 and 2 give rise to

Corollary 1. The inequalities

α1 < (α + 1)(1− λ) + 1, β1 < (β + 1)(1− λ) + 1, α2 < α + 2, β2 < β + 2

guarantee the solvability of problem (1), (2), and the inequalities

α1 < (α + 1)(1− λ) + 1, β1 < 1, α2 < α + 2, β2 < 1

guarantee the solvability of problem (1), (3).

The above example shows that Theorem 1 (Theorem 2) covers the case where
the functions h1 and h2 have singularities of arbitrary order at t = a and t = b
(at t = a).

To prove the formulated theorems, we need two lemmas from [5] on the
representation of a solution of the differential system

dv1

dt
= p(t) v2,

dv2

dt
= q(t) (9)

under the boundary conditions

v1(a) = 0, v1(b) = 0 (10)

or
v1(a) = 0, v2(b) = 0. (11)

Lemma 1. Let p, q :]a, b[→ R be continuous functions such that
∫ b

a

|p(t)| dt < +∞,

∫ b

a

( ∫ t

a

|p(τ)| dτ

∫ b

t

|p(τ)| dτ
)
|q(t)| dt < +∞ (i = 1, 2),

γ0
def
=

∫ b

a

p(t) dt 6= 0. (12)

Then problem (9), (10) has a unique solution v = (v1, v2) and the representations

vi(t) =

∫ b

a

gi(t, s) q(s) ds (i = 1, 2) (13)

are valid, where

g1(t, s) =





− 1

γ0

∫ s

a

p(τ) dτ

∫ b

t

p(τ) dτ for s ≤ t,

− 1

γ0

∫ t

a

p(τ) dτ

∫ b

s

p(τ) dτ for s > t,

g2(t, s) =





1

γ0

∫ s

a

p(τ) dτ for s ≤ t,

− 1

γ0

∫ b

s

p(τ) dτ for s > t.
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Lemma 2. Let p, q ∈]a, b[→ R be continuous functions such that conditions
(12) and ∫ b

a

p(t) dt < +∞,

∫ b

a

( ∫ t

a

|p(τ)| dτ
)
q(t) dt < +∞

are fulfilled. Then problem (9), (11) has a unique solution v = (v1, v2) and
representations (13) are valid, where

g1(t, s) =





−
∫ s

a

p(τ) dτ for s ≤ t,

−
∫ t

a

p(τ) dτ for s > t,

g2(t, s) =

{
0 for s ≤ t,

−1 for s > t.

Proof of Theorem 1. By virtue of condition (6), the constant ρ can be chosen
so that the inequalities

ρ > 1 +
l0
2 l

( ∫ b

a

h(s) ds

)2

, (14)

(2 l

l0

)λ

ρλ2

∫ b

a

δ1−λ
1 (t) h∗1(t, ρ) dt +

∫ b

a

δ1(t) h∗1(t, ρ) dt <
ρ

l2

∫ b

a

h(t) dt (15)

be fulfilled.
Let B be a Banach space of two-dimensional continuous vector functions

v = (v1, v2) : [a, b] → R2 with the norm

‖v‖ = max
{|v1(t)|+ |v2(t)| : a ≤ t ≤ b

}

and Bρ be a set of all v = (v1, v2) ∈ B satisfying the conditions

l0
2 l

ρ−λδ1(t) ≤ v1(t) < ρ, |v2(t)| ≤ ρ for a ≤ t ≤ b.

In view of inequality (14), Bρ is a nonempty closed convex subset of the
space B.

For arbitrary v = (v1, v2) ∈ Bρ we set

γ(v1, v2) =

∫ b

a

h0

(
τ, v1(τ),

v2(τ)

σ(τ)

)
dτ,

q(v1, v2)(t) = −h1

(
t, v1(t),

v2(t)

σ(t)

)
v−λ

1 (t)− h2

(
t, v1(t),

v2(t)

σ(t)

)
,

g1(v1, v2)(t, s) · γ(v1, v2) =





−
∫ s

a

h0

(
τ, v1(τ),

v2(τ)

σ(τ)

)
dτ

×
∫ b

t

h0

(
τ, v1(τ),

v2(τ)

σ(τ)

)
dτ for s ≤ t,

−
∫ t

a

h0

(
τ, v1(τ),

v2(τ)

σ(τ)

)
dτ

×
∫ b

s

h0

(
τ, v1(τ),

v2(τ)

σ(τ)

)
dτ for s > t,
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g2(v1, v2)(t, s) · γ(v1, v2) =





∫ s

a

h0

(
τ, v1(τ),

v2(τ)

σ(τ)

)
dτ for s ≤ t,

−
∫ b

s

h0

(
τ, v1(τ),

v2(τ)

σ(τ)

)
dτ for s > t.

Let us now define the continuous operators Wi : B → C([a, b]) (i = 1, 2) and
W : B→ C([a, b])× C([a, b]) by the equalities

Wi(v1, v2)(t) = (σ(t))i−1

∫ b

a

gi(v1, v2)(t, s) q(v1, v2)(s) ds (i = 1, 2)

and
W (v1, v2)(t) =

(
W1(v1, v2)(t),W2(v1, v2)(t)

)
.

Then if problem (1), (2) has a solution u = (u1, u2) satisfying the conditions

l0
2 l

ρ−λ δ1(t) ≤ u1(t) ≤ ρ, σ(t)|u2(t)| ≤ ρ for a ≤ t ≤ b, (16)

lim
t→a

σ1(t) u2(t) = 0, lim
t→b

σ1(t) u2(t) = 0, (17)

the vector function v = (v1, v2) with the components

v1(t) = u1(t), v2(t) = σ(t) u2(t) (18)

belongs to the set Bρ and, by virtue of Lemma 1, is a solution of the operator
equation

v(t) = W (v)(t). (19)

Conversely, if equation (19) has a solution v = (v1, v2) ∈ Bρ, then, again by
Lemma 1, the function u = (u1, u2), the components of which are defined from
equalities (18), is a solution of problem (1), (2) satisfying conditions (17). Thus
to prove the theorem it is sufficient to establish that the operator W has a fixed
point on the set Bρ.

In the first place, we will show that

W (Bρ) ⊂ Bρ. (20)

Let (v1, v2) ∈ Bρ. Then by virtue of (7)

|q(v1, v2)(t)| ≤ ϕ(t) for a < t < b,

ϕ(t) =
(2 l

l0

)λ

ρλ2

δ−λ
1 (t) h∗1(t, ρ) + h∗2(t, ρ),

and, also, by virtue of the second of equalities (4)∣∣q(v1, v2)(t)
∣∣ ≥ ρ−λ l0 h(t) for a < t < b.

Taking into account the latter estimates and the first of equalities (4), we
obtain

W1(v1, v2)(t) ≥ l0
l

ρ−λ
( ∫ b

a

h(τ) dτ
)−1

[ ∫ b

a

h(τ) dτ

∫ t

a

( ∫ s

a

h(τ) dτ
)
h(s) ds

+

∫ t

a

h(τ) dτ

∫ b

t

( ∫ b

s

h(τ) dτ
)
h(s) ds

]
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=
l0
2 l

ρ−λ δ1(t) for a ≤ t ≤ b, (21)

W1(v1, v2)(t) ≤ l2
( ∫ b

a

h(τ) dτ
)−1

[ ∫ b

t

h(τ) dτ

∫ t

a

( ∫ s

a

h(τ) dτ
)
ϕ(s) ds

+

∫ t

a

h(τ) dτ

∫ b

t

( ∫ b

t

h(τ) dτ
)
ϕ(s) ds

]
for a ≤ t ≤ b (22)

and

W2(v1, v2)(t) ≤ l2
( ∫ b

a

h(τ) dτ
)−2

δ1(t)

[ ∫ t

a

( ∫ s

a

h(τ) dτ
)
ϕ(s) ds

+

∫ b

t

( ∫ b

s

h(τ) dτ
)
ϕ(s) ds

]
for a ≤ t ≤ b. (23)

From equalities (21), (23) with (15) taken into account we obtained

Wi(v1, v2)(t) ≤ l2
( ∫ b

a

h(τ) dτ
)−1

∫ b

a

δ1(τ) ϕ(τ) dτ < ρ (i = 1, 2) (24)

for a ≤ t ≤ b.

This and (21) imply that inclusion (20) is valid.
Now note that from the definition of the operators Wi (i = 1, 2) and Lemma

1 it follows that the functions Wi(v1, v2)(t) (i = 1, 2) are continuously differen-
tiable on the interval ]a, b[ for any v = (v1, v2) ∈ Bρ and

d

dt
W1(v1, v2)(t) = h0

(
t, v1,

v2

σ

)
δ−1(t) W2(v1, v2)(t),

d

dt
W2(v1, v2)(t) = −

(
h1

(
t, v1,

v2

σ

)
W−λ

1 (v1, v2)(t) + h2(t, v1, v2)
)
δ(t)

+
δ′(t)
δ(t)

W2(v1, v2)(t).

From this, taking into account estimates (21) and (24), we obtain
∣∣∣ d

dt
Wi(v1, v2)

∣∣∣ ≤ ηi(t) (i = 1, 2) for a < t < b, (25)

where ηi :]a, b[→ [0, +∞[ are continuous functions defined by the equalities

η1(t) = ρ
h(t)

δ(t)
, η2(t) = δ(t) ϕ(t) + ρ

h(t)

δ1(t)

∫ b

a

h(τ) dτ.

Analogously, from estimates (22) and (23) we obtain∣∣W1(v1, v2)(t)
∣∣ +

∣∣W2(v1, v2)(t)
∣∣ ≤ ε0(t) for a ≤ t ≤ b, (26)

where the continuous function ε0 : [a, b] → [0, +∞[ is defined by the equality

ε0(t) = 2 l2
( ∫ b

a

h(τ) dτ
)−1

[ ∫ b

t

h(τ) dτ

∫ t

a

( ∫ s

a

h(τ) dτ
)
ϕ(τ) dτ

+

∫ t

a

h(τ) dτ

∫ b

t

( ∫ b

s

h(τ) dτ
)
ϕ(τ) dτ

]
,
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and therefore
ε0(a) = 0, ε0(b) = 0. (27)

From (25)–(27) we conclude that the set of functions W (Bρ) is equicontinuous
and uniformly bounded, i.e., the continuous operator W transforms the bounded
convex set Bρ into its compact subset and, by virtue of the Shauder’s principle
of fixed point, equation (19) has at least one solution. ¤

Theorem 2 is proved in an analogous manner with the only difference that
we use Lemma 2.
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